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The functions of immunoglobulin transporting receptors (Ig transporting receptors) in 
immune system encompass from passive immunity to adaptive immunity by transporting 
immunoglobulins (Igs) and prolonging their half-life as well as enhancing immunosur-
veillance. Prior to the weaning, Ig transportations from mother to offspring confer the 
immediate passive immunity for neonates. After the weaning, FcRn and polymeric 
immunoglobulin receptor on infant intestinal epithelial cells retrieve Ig in intestinal lamina 
propria into the gut lumen for preventing pathogen invasion. This is not only improving 
the pathological consequences of infection but also helping the neonates for develop-
ing their own immune response; besides it would be the guidance for designing novel 
vaccines. Moreover, the investigations on Ig transporting receptors over-expressed 
transgenic animals have been carried out to improve Ig concentrations in serum and 
milk; thus, it would be a sustainable method to produce antibody-enriched milk-derived 
colostrum replacer for neonates. In order to generate mammary gland bioreactor, a series 
of methods have been developed for enhanced regulation of Ig transporting receptors 
expression and Ig transportation.

Keywords: immunoglobulin transporting receptors, immunoglobulins, immunity, bioreactor

iNTRODUCTiON

The continuous supply of maternal IgG1 (ruminants) and IgA (monogastric) confers the passive 
immunity to neonatal mammals until weaning. Neonatal Fc receptor (FcRn) and the polymeric 
immunoglobulin receptor (pIgR) are responsible for the transportation of these maternal immuno-
globulins (Igs). FcRn has been considered as a saturable receptor that mediates the passive transfer 
of IgG from mother to offspring and protects IgG from catabolism (1). pIgR is responsible for 
the transport of pentameric IgM and/or dimeric IgA by binding with their joining peptide chain 
(J-chain) (2). The binding affinity of pIgR toward IgM and IgA is differing among the species; high 
affinity could be found in human and bovine compared to mice and rats (thereby less IgM and IgA 
secretion in the milk) (3, 4). The expressions of FcRn and pIgR in mammary gland vary among 
different animal species and influence the level of Igs in milk. For instance, IgA constitutes 90% of 
total milk Igs in monogastric species, but it is only 9% in case of bovine (5).

The Igs transport from mother to offspring occurs through placenta and small intestine; these two 
sites exhibit different significance in different animals (1, 6, 7). Passive immunity relies on prenatal 
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FiGURe 1 | Regulation and surveillance of FcR on immunity. IgA antibody-secreting cells homing receptor (LHR) on lymphocyte homing to diverse mucosal 
surfaces, binding with vascular addressinMAdCAM-1 (mucosal address in cell adhesion molecule-1), VCAM-1 (vascular cell adhesion molecule-1), and the mucosal 
epithelial chemokine CCL28, mediates lymphocytes homing when there is pathogen invasion, a process that enables the passive transfer of maternal IgA antibody 
from the mother to the gut of the immunologically naive newborn (17). The interactions of signaling proteins activate FcR transcription. Molecular containing IgG-Fc 
(e.g., antigen–antibody/Fc complex) is internalized into acidified endosome (endocytosis) by binding with FcRn on the mucosal surfaces, and presented to APC. 
Ig transporting receptors mediate Ig transcytosis from the basolateral into the lumen (1, 11).
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IgG transfer mediated by FcRn on placental syncytiotrophoblasts 
in monogastric animals, whereas in ruminants, it relies on Ig 
absorption from colostrums after birth (1, 8). It has been reported 
that the FcRn expressed on antigen-presenting cells (APCs) could 
bind with antigens; then, the immune complexes are delivered 
to dendrtic cells (DCs) for primary immune response (9, 10). In 
addition, the pIgR on the mucosal surfaces could translocate the 
secretory IgA (SIgA) from the lamina propria into intestine and 
maternal precursors of IgA-containing cells would home to the 
mammary gland where they secrete IgA into milk (11–13). Thus, 
the FcRn and pIgR could protect animals from the pathogen 
invasion in intestinal, respiratory and reproductive systems, 
and/or dietary antigens (1, 12). Hence, both FcRn and pIgR play 

important roles for not only strengthening passive immunity but 
also promoting active immunity. It has also been observed that 
significant increase in humoral responses and mAbs production 
without any sign of autoimmunity in the transgenic (tg) mice 
(14–16).

Numerous studies have reported that multi-copies of FcRn and 
pIgR in animals could exhibit an increased ability in strengthen-
ing immunity. Besides, the strategies of genetic engineering and 
molecular regulations have been applied to regulate the expression 
of FcRn and pIgR. Factors involved in the regulation of passive 
immunity transfer and immunosurveillance are summarized in 
Figure 1. This review aims to summarize the vital roles of FcRn 
and pIgR for the improvement of passive immunity and adaptive 
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immunity; as well as the strategies coupled with the regulations 
of FcRn and pIgR.

PASSive iMMUNiTY iMPROveMeNT 
MeDiATeD BY FcRn OR pigR

Ruminants are born hypogammaglobulinemic (reduction in all 
types of gamma globulins). The young ungulates are depending 
on mammary secretion of colostrum and intestinal absorption of 
Igs prior to the development of their own humoral defense system 
for enhancing intestinal and systemic protection (18). In general, 
a minimum of 150–200 g of IgG is required for achieving adequate 
passive transfer within 2 h after birth (19). A failure of passive 
immunity delivery will occur when a threshold concentration 
of IgG is not reached before closure occurs (20). Moreover, in a 
mice study, lacking of maternal antibodies led to delayed genera-
tion of their own lgG compared to the normal littermates (21). 
As such, the intake of antibody-enriched milk (for the neonates) 
is necessary for the establishment of animals’ adaptive immune 
defense in early life. Since milk is a convenient source of antibody 
collection, bovine is the superexcellent choice used for polyclonal 
and monoclonal antibody production. In FcRn over-expressed 
tg rabbits immunized with ovalbumin, a long serum persistence 
of IgG (7.1 ± 0.46 days when 5.3 ± 0.3 days in control group) and 
the highest IgG level [31.61 ± 2.7 mg/ml while 14.8 ± 2.6 mg/
ml in wild type (wt) (p < 0.01)] were observed (22). In addition, 
it has been observed that more IgG were transported into milk 
after upregulated the expression of FcRn receptors in the mam-
mary glands of possum, rabbit, and bovine (23–25). On the other 
hand, continuous milking is defined as a management system 
without a planned dry period; it has been described to reduce 
health problems common in periparturient cattle, but result-
ing in reduction on colostrum Ig and subsequently calf health 
(26–28). In FcRn over-expressed tg bovine, the increased IgG 
protection and transportation could be achieved with adequate 
IgG along with continuous milking; thus, it reduces the health 
problems associated with the high yielding transition cow. FcRn 
or pIgR over-expression in bovine could also be useful for the 
treatment of mastitis. In general, the control of mastitis during 
lactation relies on administration of antibiotics or non-steroidal 
anti-inflammatory drugs; nonetheless, the antibiotic treatment 
is inefficient and the antibiotic residues would pass on to milk 
(29). The tg bovine over-expression of pIgR could increase the 
SIgA in the mammary gland; it would provide stronger and 
longer protection against the mastitis pathogens from the envi-
ronment. The free secretory component (SC), the extracellular 
ligand-binding region of pIgR, is an important component of 
innate anti-microbial defense (11). In addition, IgA-containing 
cells would home to the mammary gland when there is inflam-
mation, increased pIgR in mammary gland of tg bovine could 
transport more SIgA to resist environmental pathogens as well 
as continuous supply of Igs into milk. Ig-enriched milk from tg 
animal is an effective alternative to antibiotics, the widespread 
use of antibiotics alternatives would reduce antibiotic resistance, 
accordingly, to better maintain the intestinal homeostasis, espe-
cially to the newborn (30, 31).

ADAPTive iMMUNiTY iMPROveMeNT 
MeDiATeD BY FcRn AND pigR

The presence of FcRn on APCs suggests that FcRn may influence 
the antigen presentation (32, 33). Generally, vaccines exhibit a 
shorter half-life (several hours) but immunogen containing 
IgG-Fc exhibits longer half-life (20  days) with the confirmed 
involvement of FcRn on enterocytes and APCs; further it could 
reach up to 30  days in FcRn over-expressed animals (34). The 
immunization of FcRn over-expressed tg mice led to 3- to 10-fold 
increases of antigen-specific IgM and IgG in serum, as well as 
higher number of antigen-specific B cells and DCs in spleen (16). 
The elevated antigen-specific IgM and IgG levels were proposed 
to be the result of the increased diversification of the antigen-
specific Ab repertoire (35). bFcRn tg mice immunized with a 
conserved hemagglutinin subunit 2-based synthetic peptide 
mounted a robust immunoreaction on day 28 that continued 
to rise through day 50 while wt mice showed a weak immune 
response (14). The strength humoral immune response was 
owing to a higher level of ICs and their increased phagocytosis 
by the tg neutrophils (NE) and greater influx of these cells into the 
regional secondary lymphoid organs (35, 36). In another study, tg 
mice expression of bovine FcRn (bFcRn) in secondary lymphoid 
organs can boost a threefold of antigen-specific activated T 
helper (Th) cells compared with wt immunized with T-dependent 
antigens (9). Hence, tg DC can phagocytose and present antigens 
to Th cells more efficiently when loaded with Antigen–IgG ICs 
(35, 37). Meanwhile, ligation of FcRn to ICs can also induces the 
production of IL-12 from DCs, thereby activating CD4+ T(II) 
cells in the induction of Th1 polarization and priming CD8+ T(I) 
cells in the promotion of cytotoxicity activation (37).

In general, the antibodies must be active at the portals of viral 
entry in the gastrointestinal tract to prevent intestinal infection. 
SIgA, produced by selective transport of pIgA across mucosal epi-
thelial barrier by pIgR, is the first line of specific immunological 
defense against environmental pathogens. During the adaptive 
immune response, the immune system could prime pIgR for 
the transportation of IgA produced in the laminar propria into 
intestinal tract as SIgA (6, 12). It has been proved that pIgR is 
involved in lymphocyte homing in addition to transporting 
mucosal pIgA (11). pIgR knockout mice lack mucosal Igs and 
accumulate 100-fold of serum IgA than wt, meanwhile, 14-fold 
IgA-secreting plasma cells was detected in the intestinal lamina 
propria compared to wt (38). Increased lymphocyte and SIgA in 
mucosa help to maintain mucosal homeostasis in the intestine of 
the neonate. FcRn also behave an important factor on bacterial 
colonization and pathological consequences of infection in addi-
tion to antigen presentation. Tg mice with human FcRn exhibited 
that antigen within the lumen can be retrieved by administering 
specific IgG intravenously. These formed Antigen–IgG ICs are 
retrieved by the epithelial cell and transported into the lamina 
propria, being internalized by APCs (39, 40). In a Helicobacter 
heilmannii infection model, the specific IgG were exclusively 
presented in gastric juice of wt mice, while lymphoid follicles and 
bacterial loads have increased along with deeper gastric epithe-
lium invasion in FcRn-deficient mice (41). FcRn over-expressed 
tg mice fed with Francisella tularensis led to more efficient antigen 
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recognition in the gastrointestinal tract and mucosal localization 
enhancement that confers immune protection (42). Similarly, 
the FcRn-mediated transport of IgG across the gastric, genitou-
rinary, and lung epithelium is associated with protection from 
viral infections and H. heilmannii at these sites (39). Likewise, 
the FcRn is the vehicle that transports luminal antigens across 
the luminal epithelial barrier and presents the cargo to related 
immune cells. The application of mucosal vaccination targeted to 
FcRn can effectively promote the internalization of immunogen, 
resulting in substantial and enabling immune efficiencies. The 
non-immunized 7- to 8-month-old bFcRn tg mice did not show 
detectable antinuclear antibodies with the same general antibody 
profile compared to wt littermates (43). Hence, tg animal with 
bFcRn over-expression could be proposed as an ideal choice for 
monoclonal antibody production; because it enhances immune 
responsiveness without eliciting autoimmunity (14). However, 
the vaccinated wt and pIgR knockout mice behaved equally resist-
ant despite dramatic differences in the titer of SIgA in intestinal 
secretions in a Salmonella typhimurium challenge experiment 
without any differences in terms of CD8+ T cells and T-cell 
responses (44). In another S. typhimurium challenge experiment, 
pIgR knockout mice were profoundly sensitive to infection with 
S. typhimurium and shed more bacteria that can readily infect 
other animals (45). These findings suggest that the major role of 
pIgR probably to resist the invasion of mucosal antigens based on 
SIgA, rather than protection of local mucosal surfaces by prompt-
ing an immune response.

CURReNT UNDeRSTANDiNG ABOUT THe 
ReGULATiONS OF FcRn AND pigR

In order to increase the host immunity and antibody production, 
a series of methods have been developed for enhanced regulation 
of FcRn and pIgR expression. It will bring substantial advantages 
for the production of antibody-enriched milk, which would 
replace colostrums and serve as functional food.

Genetic Modulations
Gene polymorphisms and haplotypes of receptor genes are the 
crucial factor to the antibody production and livability of the 
neonates (41, 46–48). In order to harvest antibody-enriched 
colostrum or milks, Ig bioreactors could be bred by genetic engi-
neering with respect to FcRn and pIgR on the basis of their poly-
morphisms and haplotype research. This would also be useful in 
the intervention to some immunosuppressed periparturient cows. 
Besides, the development of nuclear transplantation technique 
and the CRISPR/Cas9 system (clustered regularly interspaced 
short palindromic repeats/CRISPR-associated system) realize the 
possibility for using cattle as an attractive candidate of bioreactor.

Allelic variation in FCGRT (which encodes the α-chain 
of FcRn) is associated with variation of IgG concentration in 
neonatal calves. Among five different variable number tandem 
repeat (VNTR1–VNTR5) in FCGRT promoter, the monocytes 
from VNTR3 homozygous individuals express 1.66-fold more 
FcRn transcript and show an increased binding to polyvalent 
human IgG when compared with monocytes from VNTR2/
VNTR3 heterozygous individuals; VNTR3 allele supports the 

transcription of a reporter gene twice as effectively as the VNTR2 
allele; moreover, monocytes from VNTR3 homozygous individu-
als were reported to bind IgG at acidic pH more efficiently than 
heterozygous individuals (47). β2-microglobulin (β2M) exons II 
and IV are identified with 12 single-nucleotide polymorphisms 
(SNPs) and were assorted into 8 haplotypes. One of the haplotypes 
(the β2M 2, 2) showed an increased risk of failure for Igs transfer 
(47). Researchers have also identified three divergent haplotypes 
of pIgR and explained the variation in the concentration of 
SIgA and the pIgR level (46). Genome-wide analysis identified 
a significant association between SIgA and six SNPs located in 
the PIGR, PIGR-2, PIGR-5, PIGR-9, PIGR-13, PIGR-17, and 
PIGR-19. Pair-wise analysis demonstrated that all six SNPs were 
in almost complete linkage disequilibrium. PIGR-17 transformed 
to alanine from valine at codon 580, and PIGR-2 located in the 
promoter region is likely to influence the quality or quantity of the 
gene product (49). IgG clearance is more rapid in β2M-deficient 
mice than in α-chain-deficient mice (23, 50, 51). However, the 
homologous molecules of β2M, such as MHC-I, are not known 
to extend the half-life of IgG. There must be another β2M-related 
molecule that plays a supporting role during the recycling of IgG. 
These results suggest that supplemental copies of the gene may 
prolong half-life of IgG as well as maintain a high IgG concentra-
tion. A study using FcRn tg mice in mammary glands results in 
an increase of IgG levels both in milk and serum (23). Another 
study reported that, tg mouse over expressing bovine FCGRT led 
to a higher transcription and expression of FcRn and an extended 
IgG half-life (52). Furthermore, the tg mice over-expression of 
pIgR from 60- to 270-fold above normal pIgR showed total IgA 
levels in milk to be 1.5- to 2-fold higher compared with IgA levels 
of wt mice (53). An overview of the genetic modulations on Ig 
transporting receptors studies associated with transcytosis is 
shown in Table 1.

Genome engineering techniques are targeting Ig transport-
ing receptors for improving the Ig concentrations in milk and 
maintain immune homeostasis, thereby enhancing the chance 
to generate Ig bioreactor by combining natural genetic variation 
selection.

Molecular Modulations
Numerous pieces of evidence suggest that microbial-associated 
molecular patterns (MAMPs) stimulate expression of pIgR on 
IECs, as part of a homeostatic loop in which the microbiota 
enhances the production of SIgA, which in turn regulates the 
composition and function of the microbiota (57, 58). Ultraviolet-
inactivated reovirus induced a stronger increase in pIgR expres-
sion than live virus in HT-29 cells, suggesting that the induction 
of pIgR expression required viral components but not viral 
replication (59). It has been reported that MAMPs stimulate the 
expression of pIgR, more specifically, the immune response was 
initiated by microbial component, the toll-like receptor ligands, 
and then induced de novo synthesis of RelB and activation of PIGR 
transcription through the TLR3 pathway (11). The regulation 
pathways are presented in Figure  2. Additionally, in PRM/Alf 
mice with a huge extended intestine, a twofold increase of IgA-
containing cells and pIgR expression in mammary gland as well 
as two- to fourfold increase of IgA in milk have been described 
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TABLe 1 | Genetic modulation on FcRn or pigR.

Receptor Target 
gene

Genetic modulation Species experimental outcomes Reference

FcRn FCGRT/β2M FCGRT/β2M 
over-expression

Murine Twofold serum IgG increase in milk and two- to fourfold increase in serum (23)

β2M β2M disruption Murine 104-fold IgG reduction in serum (21)
FCGRT or 
β2M

β2M knockout or 
FCGRT knockout

Murine Decreased IgG half-lives in β2M-deficient mice (21.8 h) and FcRn FCGRT-deficient 
mice (26.6 h)

(50)

β2M β2M over-expression Brushtail 
possum

Increased FcRn transcription and IgG concentration in milk (24)

FCGRT FCGRT 
over-expression

Murine Three- to ten-fold increases of antigen-specific IgM and IgG, which lead to twofold 
increase of specific titers in the hemagglutination inhibition assay

(16)

pIgR PIGR PIGR over-expression Murine 1.5- to 2-fold IgA increase in milk (53)
PIGR PIGR over-expression Murine 10- to 270-fold (0.1–2.7 mg/ml) SC protein increase in milk (54)
J chain J chain disruption Murine Stable binding of pIgA and SC decreased (55)
PIGR PIGR knockout Murine Lack of active external IgA and IgM transcytosis completely (54)
rab3b rab3b over-expression Epithelial cells Ten percent reduction of dIgA transcytosis (56)

FiGURe 2 | FcRn or pigR transcription regulation. Serum NE binds with β2AR on B cells and activates PKA–p38 MAPK pathways, which subsequently leads to 
the release of bound p-p38 MAPK to bind with enhancer in the promoter region of pIgR, and pIgR increase followed (62). When inflammation occurs, lymphocyte 
homing induced antibodies production in lamina propria; subsequently, microbes bind with epithelial TLRs with MAMPs and activate NFκB; cytokines released in the 
vicinity of lymphocytes bind to cytokine receptors and activate IRF-1/NFκB-dependent pathways (58); IRF-1/NFκB proteins get into nucleus and trigger the 
transcription of Igs receptors (63). As a consequence, concentrations of Ig transporting receptors increase.
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compared with C57BL/6J mice (29). This result indicated that 
the intestine can export IgA-containing cells to the mammary 
gland; and MAMPs could be a stimulation of pIgR expression 
and SIgA accumulation in mammary gland and milk. As such, 
MAMPs can be applied on the Ig transport receptor tg cattle to 
acquire immune milk with enriched antibody. Additionally, the 
signals (released by antibody and microbiota in neonate gut) 
have a modulation effect on the maturation of intestinal barrier 
function and activation of endogenous Ig transportation, as well 
as the development of adaptive immunity (60, 61).

Host cytokines, such as IFN-γ, IL-4 and TNF-α can regulate 
the gene transcriptions of Ig transporting receptor by activating 
and nuclear of STAT1 dimers, resulting in de novo transcription 
of AP-1, NF-κB, and IRF-1 (58, 64) (Figure  2). For instance, 
ISRE presents at the first outer exon in promoter region of 
FcRn (the binding site of IRF-1). It has been reported that the 
stimulation of bovine endothelial cells with the IFN-γ could 
lead to the appearance of activated STAT1 in the nucleus and 
increased transcription of the IRF1 gene. This has resulted in 
rapid upregulation of the bFcRn expression in endothelial cells 
(65). Interactions among these cytokine-inducible elements 
in exon 1 and intron 1 of the PIGR gene may be responsible 
for the observed synergy between IFN-γ, IL-4, and TNF in 
upregulation of pIgR expression (58, 66). One putative NFκB 
transcription binding sites was identified in the 5′-flanking 
region of the mouse FCGRT promoter and was the close prox-
imity to the transcription start site (63). A fourfold increase of 
bFcRn gene in spleen, and twofold increase of bFcRn protein 
in macrophages were observed in the bFcRn tg mice stimulated 
by intraperitoneal LPS injection (63). The activation of NF-κB 
by inflammatory cytokines could enhance the gene transcrip-
tion of FcRn indirectly by synergizing with STAT1 to activate 
IRF1 gene transcription, or by binding to a cognate element in 
the 5′-flanking region of the FcRn genes directly (63, 65, 66). 
Pro-inflammatory agents can induce the rapid and temporary 
upregulation of bFcRn; it could be the immunologic adjuvants 
and optimize the expression and function of Ig transporting 
receptor in the professional APCs, this contributes to the much 
augmented humoral immune response.

The concentrations of FcRn are significantly upregulated in 
late pregnancy and reach their peaks during colostrogenesis; then 
downregulated in the lactation period and coincident with the 
Ig concentrations in milk and colostrum that differs at various 
stages of lactation with the highest concentrations appearing in 
early colostrum secretions (5). In an in vitro study, the stimulation 

of bovine mammary epithelial cells with estrogen (E2) and pro-
gesterone (P4) induced an increase of FCGRT mRNA, coincident 
with FcRn expression during late pregnancy and the colostro-
genesis period; meanwhile, a similar increase was observed 
on bRab25 and bRhoB mRNAs (members of GTPases) and 
assist recycling or transcytosis (67). This reveals the regulatory 
mechanism of E2/P4 for colostrogenesis extended temporarily 
by increasing the expression of FcRn and transcytosis-related 
motor proteins. However, the binding sites of E2/P4 have not yet 
identified in FcRn gene.

CONCLUSiON

The clear understanding of the mechanisms behind the expres-
sion and mediation of Ig transporting receptor in the mammary 
gland and intestinal mucosa would contribute for the better inter-
vention of Ig transfer from mother to fetus. This could also aid for 
the development of mammary gland bioreactor. Ig transporting 
receptors could mediate the immunity transfer and immune 
surveillance, thereby the high survival rate and improved 
immune system can be achieved. In Ig transporting receptors 
over-expressed tg animals, the increased Ig concentrations in 
serum and mucosa can supply adequate Ig through continuous 
milking as well as safe and effective protection against mastitis 
pathogens. Moreover, the presence of Ig transporting receptors 
in mucosal epithelium is capable of transporting antibody or 
antigen–antibody complex bidirectionally, and further present 
to APCs. This would help to design immunization strategies for 
mucosal protection from infections.
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