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Abstract

We devised a novel procedure to identify human cancer genes acting in a recessive manner. Our strategy was to combine
the contributions of the different types of genetic alterations to loss of function: amino-acid substitutions, frame-shifts, gene
deletions. We studied over 20,000 genes in 3 Gigabases of coding sequences and 700 array comparative genomic
hybridizations. Recessive genes were scored according to nucleotide mismatches under positive selective pressure, frame-
shifts and genomic deletions in cancer. Four different tests were combined together yielding a cancer recessive p-value for
each studied gene. One hundred and fifty four candidate recessive cancer genes (p-value,1.561027, FDR = 0.39) were
identified. Strikingly, the prototypical cancer recessive genes TP53, PTEN and CDKN2A all ranked in the top 0.5% genes. The
functions significantly affected by cancer mutations are exactly overlapping those of known cancer genes, with the critical
exception for the absence of tyrosine kinases, as expected for a recessive gene-set.
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Introduction

A variety of approaches have been applied to the identification of

cancer genes [1]. Procedures have been developed that allowed

identification of genes causative of cellular transformation [2,3], and

of complex processes such as invasiveness and metastasis [4]. In

vitro and in vivo methods, using cellular or animal models, led

generally to the discovery of dominant cancer genes, or oncogenes.

On the other hand, tumor suppressors have been discovered mainly

by molecular genetics approaches. Such is the need of identifying

additional tumor suppressors, or recessive cancer genes, that new

tests for loss-of-function continue to be developed [5].

Many well-characterized cancer genes harbor somatic base

substitutions or small insertion/deletions. For example, coding

region frame-shifts and point mutations account for 75% of the

somatic mutations in CDKN2A and TP53, two major tumor

suppressor genes [6,7,8]. The oncogene B-raf, first described over

20 years ago, was also shown to be mutated in some human

cancers [9], alongside PI3K and some tyrosine phosphatases [10].

Meanwhile, other cancer genes have been discovered through the

phenomenon of inherited predisposition. Familial cancer is rare in

comparison to non-hereditary cancer, but a number of recessive

genes have been identified using linkage analysis [11,12]. Large

scale super-family sequencing projects, i.e. the kinome and

phosphatome projects, followed and showed that, although

missense mutations are found in some members of these two

superfamilies, they are not a common ground for somatic cancer

mutations. Greenman and co-workers [13] undertook compre-

hensive sequencing of 518 protein-kinase-encoding genes in 210

cancers. Kinases have been implicated in many aspects of

tumorigenesis and several have now been validated as targets for

drug therapy [14]. In their analysis of the collection of cellular

kinases, the kinome, Greenman et al. [13] identified 1,000

mutations. Mutations were relatively common in cancers of the

lung, stomach, ovary, colon and kidney, and rare in cancers of the

testis and breast, and in carcinoid tumors, which are usually found

in the gastrointestinal tract. Tumors with defects in DNA-

mismatch repair harbored large numbers of mutations, whereas

other types of tumor revealed no detectable mutations. To

distinguish driver from passenger mutations, Greenman et al.

used a statistical model comparing the observed-to-expected ratio

of synonymous (no amino-acid change) mutations with that of

non-synonymous (altered amino acid) mutations. An increased

proportion of non-synonymous mutations implies selection

pressure during tumorigenesis. Overall, they identified 158

predicted driver mutations in 120 kinase genes. In contrast to

the recurrent mutations in BRAF in malignant melanomas [15]

most kinase mutations identified across different tumor types were

therefore single hits. More recently, Wood and co-workers [16]

used a different strategy, but reached similar conclusions, with the

complete sequencing of 20,857 transcripts from 18,191 genes in a

limited number of tumors (11 breast and 11 colon). The high

number of automatically detected DNA mutations provided

immediately the following question: how to identify from a

potentially high number of sequence mismatches those that are

causative of cancer pathogenesis. A series of subsequent filters
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revealed that most of them were silent (did not result in amino acid

change) and a similar amount were single nucleotide polymor-

phisms (SNPs). The final number of mutations which were defined

as truly somatic affected more than 1000 genes. Interestingly, few

common driver mutations were identified among the kinase genes

in these studies. This is consistent, for example, with the finding

that only 1 out of 18 members of the PI3K family had somatic

mutations in cancer [17].

Interesting observations can be made from an accurate global

study of the mutations reported in cancer. Futreal et al. [18]

conducted such an extended census from bibliography indicating

that as many as 299 genes contribute to human cancer. However

70% of these genes are associated with leukemias, lymphomas and

mesenchymal tumors, which account for only 10% of cancer

incidence. Furthermore about 75% of those genes are associated

with translocations, and at least 90% of listed cancer genes are

dominant at the cellular level (i.e. activated oncogenes, fusion

oncoproteins). Nevertheless, it is generally recognized that the vast

majority of germline mutations resulting in cancer predisposition

are recessive [18]. Thus it seems likely that most of the cancer

genes are recessive and remain still undiscovered.

For these reasons we devised a novel method for the

identification of candidate recessive cancer genes from genome-

scale datasets. We applied our novel procedure to mine data from

sequences and comparative genomic hybridizations. Our method

takes account of the different gene inactivation modes, ranging

from point mutations to whole gene deletions. The assumption

underlying our investigation was that, by studying cancer genes

from different mutational perspectives and combining the

respective probabilities, sequencing noise and polymorphisms

could be filtered out and bona fide recessive cancer genes would be

identified.

Results

Harvesting candidate mutations from ESTs
In this paper, a novel method was applied to the identification of

genes mutated in non-hereditary human cancers (Figure 1). The

procedure gathered sequence information from the expression

sequence tag (EST) database and an appropriate algorithm was

tailored to extract information from ‘‘low quality’’ sequence data.

The procedure analyzed more than 36109 nucleotides of human

coding sequence in over 5,600,000 ESTs derived from both

healthy and cancerous tissues and cell lines. ESTs are potentially

very valuable for mutation studies since they represent cloned

single alleles, but are also unverified sequences, with a high rate of

sequencing errors [19,20]. Therefore, in order to exploit the full

potential of ESTs we had to develop a method for the detection of

bona fide ‘‘cancer’’ mutations in a context of frequent sequencing

errors or, at best, polymorphisms. Although previous work [19]

attempted to evaluate sequencing error rate in ESTs, we followed

an alternate route. Our procedure was based on the assumption

that the rate of sequencing errors was constant for each human

gene, at each nucleotide position. As a corollary, we assumed that

the ‘‘gene/position-specific sequencing error rate’’ was constant

across normal and cancer EST libraries. Since base composition,

context and sequence are by definition constant within each

different human gene, we believed these assumptions were safe.

Only exceptions would be due to the tumors harboring DNA

repair defects.

High sequencing noise was expected to be present in the

heterogeneous EST database and cancer is a complex multi-

faceted genetic disease, therefore a single statistical test would not

result in reliable selection of cancer genes. Furthermore, we

wanted to focus on recessive genes, inactivated by the occurring

events. Thus, to assay the different mutational modes of recessive

cancer gene, we accordingly devised a number of mutational tests.

The statistical tests were eventually combined to identify the genes

that are often inactivated in cancer.

Starting from the RefSeq human mRNA repository, 27,184

sequences (defined Queries) were aligned to more than 5.6 million

human EST sequences, from 7574 different EST libraries, for a

total of almost 3.0 Gbases of coding sequence. BLASTs [21] were

run for each query versus the ESTs and 3,839,543 successful

alignments were produced (stored in the Alignments SQL table of

the Cancer Mutome database) for 24,932 human queries (Stats

database table). An average of 150 hits (high scoring pairs, HSP. or

sequences) was produced for each query (human gene or splicing

variant). The quality control of the BLAST alignments was of the

foremost importance for our strategy. In order to minimize the

mining of technical errors we defined a stringent threshold for

alignment quality (expect#1E-21) and the low quality ends of

alignments were discarded. All (43,965,904) nucleotide mismatch-

es, and gaps/insertions, were recorded in the database Mutations

table. Amino acid (AA) substitutions and premature stops

(33,614,754 mismatches) were then selected from the alignments

(AA_Mutation table). To reduce the complexity, and the expected

number of false positives, we decided to evaluate only those genes

with a high number of mismatches (irrespective of the samples

cancer status). A pre-processing based on inter-quartile range

(IQR) was therefore applied and 8,972 genes (IQR higher than

0.5) were retained for further cancer mutation assays. These genes

were sufficiently rich in putative mutations (mismatches) to fulfill

the role of potential cancer gene candidates.

The first component of our strategy was the identification of

genes harboring inactivating point mutations. We evaluated the

Figure 1. The rationale for selection of candidate recessive
cancer genes. The diagram shows the steps in the procedure for the
evaluation of mutation probabilities and the data flow towards the
identification of candidate recessive cancer genes. Molecular data were
extracted from public databases (dbEST and GEO at NCBI, and Stanford
Microarray Database). A very large number of alignments (over 4.5
million) was obtained for over 24,000 human genes from BLAST analysis
of 3 Gbases of EST sequences. The alignments were parsed to extract
mismatches which were deposited in the Cancer Mutome local SQL
database. The mismatches were then evaluated by specific procedures
to associate mutational p-values to each human gene. In parallel,
almost 20,000 human genes were assayed from 744 array CGH to define
their propensity to deletion in cancer. The specific mutational p-values
were combined to produce a recessive cancer p-value. A genome
subset of 154 genes, among which TP53, PTEN, CDKN2A and CDKN2B
were present, was selected (cancer p-value,1.561027).
doi:10.1371/journal.pone.0003380.g001
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point mutations according frequency, location, capacity to alter

the amino acid sequence, and consequences on the reading frame.

Our procedure was thus tailored to consider statistically all the

above features of a point mutation.

Data mining for amino-acid substitutions and premature
terminations

We defined pAA as the probability that a gene displays an

excess of amino acids substitutions in cancer when compared to

non cancer samples. pNSSR, instead, indicates the probability that

the significant amino acids substitutions in the cancer samples are

under positive selection pressure. To detect short range clustering

of cancer mutations, common in cancer recessive genes, and to

balance out noise, i.e. sequencing errors, we chose a paired t test

coupled to a sliding window. We normalized the counts of the

mismatches in the two classes, cancer and control, by using a gene

specific and position specific factor. Null mismatch counts were

adjusted to unity, prior to normalization. The normalization

values were obtained, for each gene and at each nucleotide

position, as the local ratios of the sequenced nucleotides in the

cancer and control samples. The paired t test (cancer vs. control,

paired for codons) was applied to a sliding window with a length of

25 codons. To perform a robust assay a codon was evaluated only

when aligned at least 10 times in each class (cancer and control).

Gene specific confidence limits for T scores where generated by

bootstrap analysis and a threshold p-value of 0.05 was used to

select the significant amino acid positions. For each human gene, a

p-value (pAA) was finally associated to the sum of the peaks

corresponding to the significant T scores. A sequence mismatch

was recorded only once for each EST library.

An over-estimation of pAA could be due to passenger

mutations, such as those produced by altered DNA repair systems,

prevalent in some cancer. Since passenger mutations should be

randomly distributed over the genome, an additional test was

therefore implemented to refine the pAA. The ratio of non-

synonymous (NS) to synonymous (S) DNA mutations is a measure

of the selective pressure during tumor progression, as synonymous

alterations are unlikely to exert a growth advantage and will be

selectively lost [17]. Furthermore, mismatches due to sequencing

errors, as well as differential representation (cancer to normal

differential expression), are all expected to be neutral with respect

to the NS to S ratio. The codons significant for amino acid

substitutions (p,0.05) were therefore assayed for positive pressure.

As a proof-of-concept, the NS/S ratios in the TP53 mutated

region were analyzed by paired t test (p,0.033, FDR = 0.092) and

revealed higher values in cancer than in control. Thus we applied

the NS to S ratio test to each gene, in cascade after that for the

local mutation frequency (pAA) described above. Bootstrap was

again used to define the p-values. The probability of a cancer

protein having frequent amino acid changes (pAA) coupled to

selective positive pressure in cancer (pNSSR), two events which are

not independent, was defined as the average of the two respective

p-values (pAA-NSSR).

Data mining for frame-shifts in cancer ESTs
Having defined for each human gene a p-value for causal amino

acid substitutions in sporadic cancers, we needed a corresponding

index for gene inactivation due to open reading frame shifts in

exons. Cancer genes can be disrupted by micro-insertions or -

deletions in their coding sequence, resulting in an altered primary

structure. A genome wide survey of our mismatch database

indicated that single nucleotide alterations were by far the most

common insertions/deletions in ESTs. We indicated with pFrame-

shift the probability that a gene had an excess of frame-shifts, due

to single nucleotide deletions/insertions in cancer, compared to

control tissues. We tested the hypothesis that these mutations were

frequent in cancer genes, by studying again TP53. Our assay

showed that single nucleotide frame-shifts associated to cancer

were non-randomly enriched in TP53. When looking for frame-

shifts induced by 1 nucleotide insertions/deletions, an analogous

test to that for pAA was designed, as detailed in Experimental

Procedures, to generate pFrameshift.

Identification of deleted genes in cancer by high
resolution array comparative genomic hybridization

Cancer genes can be affected in their genomic structure by large

amplifications and deletions. Recessive cancer genes are expected

to be deleted or otherwise inactivated and this component must be

included in our mutational model. We therefore assigned to each

human gene p-values for deletion in cancer. To obtain such p-

values, we compiled data from high resolution comparative

genomic hybridizations of 744 tumors into the GeoSoft database.

We used array CGH (aCGH), obtained from GEO (NCBI) and

SMD (Stanford Microarray Database), with sufficiently high

resolution to distinguish the human genes (information for samples

and datasets in supplemental Table S1). Each tumor sample was

compared to a healthy control sample on a two channel

oligonucleotide-based platform. The human genes were evaluated

in each sample by using the normalized log2 ratio (tumor over

control). Different probes related to the same gene were averaged.

Gene symbols were used as keys to unequivocally identify a gene

within and across platforms. Data were normalized according to

the providers. As a pre-processing step we reduced the assay

complexity by retaining only those genes with high variability

(standard deviation of log2 ratio.0.2). Then, for each gene we

computed the percentiles of the log2 ratios (only for genes

measured in at least 300 samples). A gene affected by deletions in

tumors would possess a low (negative) log2 ratio 5thpercentile,

while one with amplifications would display a high (positive) 95th

percentile.

Bootstrap analysis (random swap between the tumor and

control channels) was used to simulate gene specific 5th and 95th

percentiles. Then, gene specific p-values for deletions (pDeletion)

were finally calculated as the percentage of simulated 5th

percentiles exceeding the real 5th percentiles. At this stage, we

had to take in consideration two phenomena, associated to aCGH

but not linked to cancer: sex chromosomes and polymorphic

structural copy number variations (CNVs). The control sample in

aCGHs was frequently from male (more than 50% of aCGHs),

while roughly half of the tumors were of female origin and thus

lacked the Y-chromosome. Therefore the Y-chromosome genes

were expected to appear as deleted, or better ‘‘pseudo-deleted’’.

Conversely, we expected the X chromosome genes, except for

those belonging to the pseudo-autosomal region, to appear as

‘‘pseudo-amplified’’. Genes located in the sex chromosomes

indeed behaved correctly, as shown in detail for the pseudo-

autosomal region 1 (PAR1) in Xp22 (supplemental Figure S1).

Polymorphic CNVs, from normal population variability and not

linked to cancer, should also lead to large fold-changes, resulting in

high 95th or low 5th percentiles. However, we expected that

polymorphic CNVs, not associated to cancer, would not display

significant pDeletion values. In fact their 5th percentiles would not

qualify as significant after the random swap simulation. CDKN2A

and CDKN2B were identified as the most deleted genes in human

cancers; PTEN, ATM, and TP53 were also identified as deleted (p-

values,0.001). Three thousand and three hundred seventy four

genes were significantly deleted (p,0.001).

Mutated Genes in Cancer
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Combination of mutation analyses: the candidate
recessive cancer genes

Cancer genes are affected by different types of point mutations

and of chromosomal alterations. We defined a candidate cancer

gene as recessive when affected by mutations potentially leading to

loss of function; i.e. when it was frequently mutated in its coding

region and frequently altered in its genomic structure, in particular

deleted. The combination of the different genome wide tests

produced a p-value for recessive cancer genes. The recessive

cancer gene (pRecessiveCancer) p-value was defined as the

product of the three p-values (pAA-NSSR, pFrameshift, pDele-

tion). One hundred and fifty four human genes were included in

the final candidate gene list after combinatorial mutation analysis

was performed (pRecessiveCancer,1.561027). The number of

cancer recessive genes in a simulation by random association of the

four mutation tests was of 60.5 (false detection rate of 0.39). The

selection by the combinatorial approach appeared to be specific,

since three classical recessive cancer genes, TP53 (16th position),

PTEN (92nd) and CDKN2A (135th) were detected. When we

compared the candidate gene-set to the whole genome, no major

bias emerged towards gene size and structural polymorphisms, as

expected from a well-behaved statistical procedure. The recessive

cancer gene sizes did not differ significantly from that of the whole

human genome (supplemental Figure S2). When we considered

copy number variations, the cancer gene-set contained 15

polymorphic CNVs (15/154 or 10%) while 13.6% of all genes

scored for pDeletion contained at least one CNV. This difference

in proportion was not significant (p..0.05), suggesting that there

was no false enrichment for CNVs by our method, as expected by

the design of the algorithm.

Gene ontology and functional analysis
The mechanisms and functional pathways associated with the

cancer recessive genes were statistically evaluated. The enrichment

in Gene Ontology (GO) terms was assessed by using EASE, at

http://david.abcc.ncifcrf.gov. The biological processes significant-

ly affected in the cancer gene set are listed in supplemental Table

S2. The significant GO terms grouped by EASE functional

clustering were: ATP/nucleotide binding, cell death/apoptosis,

cell cycle, mitochondrion, RNA binding, methylation, tumor

suppressor, DNA metabolism and DNA repair (EASE enrichment

score .2, EASE P-value,161024, Benjamini p-value,0.01). A

highly overlapping functional spectrum was obtained for the

Cancer Census genes [18]. The most notable exceptions to the

overlapping ontologies in the two cancer gene-sets were related to

‘‘protein tyrosine kinases’’, absent from the candidate recessive list.

These proteins are one of the most represented classes of

oncogenes, or dominant cancer genes. A functional classification

similar to that of EASE was obtained with BinGO and Cytoscape

(data not shown), where some of the most significant cellular

processes identified were involved in cancer pathogenesis, such as

cell cycle, cell death/apoptosis (corrected p-value,161023).

Finally, we generated a control set of human genes by random

associating the p-values from the four mutation tests. When EASE

and BinGO were applied to this control set no significant GO

terms were identified.

Discussion

We devised and applied a multi-tier genome-wide data mining

assay towards the identification of genes prone to ‘‘recessive-type’’

mutations in cancer. The p-values resulting from each tier were

combined to produce a ‘‘recessive cancer gene’’ p-value (Table 1

and 2). Three of the most notable cancer recessive genes, i.e.

TP53, PTEN and CDKN2A, ranked 16th, 92nd and 135th,

respectively, among all tested human genes. The block diagram

of our rationale and the data flow are shown in Figure 1. The tests

can be subdivided into two groups: one for detection of point

mutations (amino acid substitutions and frame-shifts) and one for

structural alterations (large deletions). In principle we could have

also used a test for partial gene deletions, but in ESTs intra-gene

rearrangements can be confounded with alternative exon splicing.

The probability of a protein having amino acid mutations and

frame-shifts in cancer, events which are independent, was defined

as the product of the respective p-values. Just using these two tests,

the prototypical TP53 and PTEN cancer genes ranked 205th and

233rd out of 27,184 evaluated human transcripts (p-val-

ue,161024). Additionally, two other well-known recessive cancer

genes, CDKN2A and CDKN2B, also had significant p-values, albeit

lower rankings (p,0.0025 and FDR = 0.019, respectively). This

behavior was expected for genes with small coding regions, which

might be more commonly deleted than mutated [6]. Their

presence in the significant point mutations cancer gene-set, even at

this intermediate stage, reassured us of the selection capabilities of

our algorithm. Nevertheless this early classification, based entirely

on point mutations, was compiled only from two mutation tests;

thus, relying on EST sequencing data, it was still not reliable

according to our model which incorporated an additional

mutation mode. It should be noted that we did not set to identify

translocations, alterations expected to be dominant at the cellular

level and therefore not suited to our quest for recessive genes.

The last test, based on aCGH analysis, confirmed that a very

large portion of the human genome is frequently deleted in cancer.

As expected for our 2-channels aCGH procedure, we correctly

detected sex chromosome genes as differentially represented in the

genome screens. In particular, owing to the resolution of our

structural assay, the genes from the pseudo-autosomal region 1

were identified as normal diploid (supplemental Figure S1). Most

importantly, we would expect that polymorphic CNVs had not

filtered through the aCGH assay. Indeed, only a small percentage

of cancer genes coincided with polymorphic CNVs and this

percentage is even smaller than expected by chance (Table 2).

The number of deletions detected by aCGH in the cancer

genome is very high (more than 10% of human genes were deleted

in cancer). Notwithstanding this deletion excess, when all mutation

modes are included, the number of candidate genes is less than

0.5% of the analyzed human genome.

The cancer gene products are involved in biological processes

such as cell cycle, DNA repair and apoptosis, in agreement with

literature. The same functional terms are also associated to the

genes in the COSMIC Cancer Census [18]. Strikingly, tyrosine

kinases, dominant oncogenes, present in the Cancer Census, were

absent from our cancer gene-set, in agreement with the selection

for recessive genes.

Some strong limitations are inherent to our approach. It is

unlikely that the recorded frame-shifts are polymorphisms, since

they alter the primary structure of the gene products. Conversely,

they might be very often results of sequencing errors. For this

reason, we chose to filter out as much as possible the sequencing

errors by using a paired t test over a sliding window. Another

controversy might be related to the somatic character of the

detected mutations. Since there are virtually no germ-line

sequences corresponding to the tumor libraries in the EST

database, there can not be any formal demonstration that the

selected genes correspond to somatic mutation targets. We can not

establish how many of the detected mismatches are real mutations,

nor how many of them are truly of somatic origin. We could only

attach to each human gene a p-value for the excess of mismatches

Mutated Genes in Cancer
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Table 1. Mutation p-values for the candidate recessive cancer genes.

GENE SYMBOL pDeletion pAA pNSSR pAA-NSSR pFrameshift pRecessive Cancer

NASP 5.00E-05 0.0005 0.0005 0.0005 0.0005 1.25E-11

CCNB1 0.0001 0.0005 0.0005 0.0005 0.0005 2.50E-11

DDX21 0.0002 0.0005 0.0005 0.0005 0.001 1.00E-10

DHX9 5.00E-05 0.0005 0.0005 0.0005 0.004 1.00E-10

GANAB 5.00E-05 0.0005 0.0005 0.0005 0.004 1.00E-10

ILF3 0.0005 0.0005 0.0005 0.0005 0.0005 1.25E-10

AIPL1 5.00E-05 0.002 0.011 0.0065 0.0005 1.63E-10

NOLC1 5.00E-05 0.004 0.003 0.0035 0.001 1.75E-10

MYO1C 5.00E-05 0.004 0.014 0.009 0.0005 2.25E-10

NUDC 0.0012 0.0005 0.0005 0.0005 0.0005 3.00E-10

PGAM1 0.002 0.0005 0.0005 0.0005 0.0005 5.00E-10

IPO4 0.0003 0.003 0.0005 0.0018 0.001 5.25E-10

XRCC5 5.00E-05 0.0005 0.0005 0.0005 0.021 5.25E-10

MTO1 5.00E-05 0.0005 0.0443 0.0224 0.0005 5.60E-10

ANP32B 5.00E-05 0.006 0.0421 0.0241 0.0005 6.02E-10

TP53 5.00E-05 0.022 0.031 0.0265 0.0005 6.63E-10

AFG3L2 5.00E-05 0.013 0.002 0.0075 0.002 7.50E-10

FAF1 5.00E-05 0.0737 0.006 0.0398 0.0005 9.96E-10

CALR 0.002 0.0005 0.0005 0.0005 0.001 1.00E-09

SREBF2 0.004 0.0005 0.0005 0.0005 0.0005 1.00E-09

XRCC6 5.00E-05 0.007 0.002 0.0045 0.005 1.12E-09

ARMC8 5.00E-05 0.002 0.0005 0.0013 0.02 1.25E-09

GTPBP4 5.00E-05 0.005 0.002 0.0035 0.008 1.40E-09

HSPA4 0.0004 0.016 0.001 0.0085 0.0005 1.70E-09

HDAC1 5.00E-05 0.001 0.0005 0.0008 0.0486 1.82E-09

PGD 5.00E-05 0.075 0.0005 0.0378 0.001 1.89E-09

VCP 0.002 0.0005 0.0005 0.0005 0.002 2.00E-09

ATXN2L 0.0025 0.0005 0.0005 0.0005 0.002 2.50E-09

RPL6 0.001 0.001 0.009 0.005 0.0005 2.50E-09

SARS 5.00E-05 0.0952 0.007 0.0511 0.001 2.56E-09

NCL 0.0001 0.005 0.001 0.003 0.01 3.00E-09

PTPRC 0.012 0.0005 0.0005 0.0005 0.0005 3.00E-09

SMARCA4 0.012 0.0005 0.0005 0.0005 0.0005 3.00E-09

CCT3 0.0004 0.012 0.004 0.008 0.001 3.20E-09

NET1 5.00E-05 0.01 0.001 0.0055 0.013 3.58E-09

HNRPD 5.00E-05 0.011 0.0005 0.0057 0.013 3.74E-09

SQSTM1 0.01 0.001 0.0005 0.0008 0.0005 3.75E-09

TUBB2C 0.002 0.0005 0.007 0.0037 0.0005 3.75E-09

C1QBP 0.002 0.001 0.007 0.004 0.0005 4.00E-09

TRAP1 0.002 0.0005 0.0005 0.0005 0.004 4.00E-09

ALDOA 0.018 0.0005 0.0005 0.0005 0.0005 4.50E-09

RNASEH2A 5.00E-05 0.1183 0.0651 0.0917 0.001 4.59E-09

DDX24 0.002 0.002 0.0005 0.0013 0.002 5.00E-09

ILVBL 5.00E-05 0.019 0.001 0.01 0.01 5.00E-09

SERPINB3 5.00E-05 0.1205 0.2837 0.2021 0.0005 5.05E-09

UQCRC1 5.00E-05 0.016 0.0005 0.0083 0.016 6.60E-09

EEF2 0.028 0.0005 0.0005 0.0005 0.0005 7.00E-09

NUSAP1 5.00E-05 0.001 0.008 0.0045 0.033 7.43E-09

DNAJC11 0.0002 0.1653 0.008 0.0866 0.0005 8.66E-09

HSP90AA1 0.036 0.0005 0.0005 0.0005 0.0005 9.00E-09
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GENE SYMBOL pDeletion pAA pNSSR pAA-NSSR pFrameshift pRecessive Cancer

MYH9 5.00E-05 0.0709 0.002 0.0365 0.005 9.12E-09

HK1 5.00E-05 0.01 0.001 0.0055 0.034 9.35E-09

IARS 0.01 0.003 0.001 0.002 0.0005 1.00E-08

YBX1 0.004 0.0005 0.0005 0.0005 0.005 1.00E-08

HDLBP 0.03 0.0005 0.001 0.0008 0.0005 1.12E-08

EWSR1 0.02 0.0005 0.002 0.0013 0.0005 1.25E-08

DHX15 5.00E-05 0.0456 0.0005 0.023 0.011 1.27E-08

SERPINB4 5.00E-05 0.3571 0.6667 0.5119 0.0005 1.28E-08

POLR2A 5.00E-05 0.038 0.005 0.0215 0.012 1.29E-08

ALG14 5.00E-05 0.098 0.1023 0.1002 0.003 1.50E-08

PRMT1 0.002 0.003 0.012 0.0075 0.001 1.50E-08

COX4NB 5.00E-05 0.001 0.005 0.003 0.1047 1.57E-08

SPTBN1 5.00E-05 0.026 0.004 0.015 0.021 1.58E-08

PTPRF 5.00E-05 0.0455 0.0005 0.023 0.014 1.61E-08

KHDRBS1 5.00E-05 0.117 0.013 0.065 0.005 1.62E-08

PABPC1 0.002 0.0005 0.003 0.0018 0.005 1.75E-08

CTNNA1 0.018 0.0005 0.0005 0.0005 0.002 1.80E-08

DDB1 0.018 0.0005 0.0005 0.0005 0.002 1.80E-08

GNB2L1 0.074 0.0005 0.0005 0.0005 0.0005 1.85E-08

WDR1 0.002 0.003 0.001 0.002 0.005 2.00E-08

AARS 0.024 0.003 0.0005 0.0018 0.0005 2.10E-08

NDE1 0.0001 0.012 0.002 0.007 0.03 2.10E-08

NQO1 0.002 0.002 0.0005 0.0013 0.009 2.25E-08

RUVBL2 5.00E-05 0.006 0.1778 0.0919 0.005 2.30E-08

ZWINT 5.00E-05 0.0496 0.003 0.0263 0.018 2.37E-08

HP1BP3 0.0007 0.002 0.006 0.004 0.009 2.52E-08

WDR79 5.00E-05 0.0501 0.002 0.026 0.02 2.60E-08

SLC25A6 0.002 0.0005 0.005 0.0027 0.005 2.75E-08

TYMS 5.00E-05 0.037 0.009 0.023 0.024 2.76E-08

SLC25A3 0.06 0.0005 0.0005 0.0005 0.001 3.00E-08

ACLY 5.00E-05 0.0798 0.02 0.0499 0.014 3.49E-08

ALDH3A1 0.14 0.0005 0.0005 0.0005 0.0005 3.50E-08

TTC8 5.00E-05 0.015 0.1626 0.0888 0.008 3.55E-08

YME1L1 5.00E-05 0.0403 0.015 0.0276 0.026 3.59E-08

ATP5A1 5.00E-05 0.029 0.008 0.0185 0.039 3.61E-08

MRPS2 5.00E-05 0.007 0.0915 0.0493 0.015 3.69E-08

HNRPH3 5.00E-05 0.0816 0.0005 0.0411 0.018 3.70E-08

IMMT 0.004 0.038 0.004 0.021 0.0005 4.20E-08

IMPDH2 0.006 0.014 0.0005 0.0073 0.001 4.35E-08

NCKAP1 5.00E-05 0.0417 0.0745 0.0581 0.015 4.36E-08

TTLL12 5.00E-05 0.019 0.01 0.0145 0.0606 4.39E-08

PTEN 0.002 0.0721 0.017 0.0445 0.0005 4.45E-08

WBSCR16 0.182 0.0005 0.0005 0.0005 0.0005 4.55E-08

XPNPEP1 5.00E-05 0.0926 0.0005 0.0465 0.02 4.65E-08

SREBF1 5.00E-05 0.0651 0.3175 0.1913 0.005 4.78E-08

CCDC5 5.00E-05 0.0907 0.005 0.0479 0.021 5.02E-08

DDX19B 5.00E-05 0.007 0.0005 0.0037 0.2685 5.03E-08

MAPK6 5.00E-05 0.0692 0.2286 0.1489 0.007 5.21E-08

MAP4 5.00E-05 0.0442 0.0005 0.0223 0.0469 5.24E-08

PHB2 0.22 0.0005 0.0005 0.0005 0.0005 5.50E-08
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GENE SYMBOL pDeletion pAA pNSSR pAA-NSSR pFrameshift pRecessive Cancer

SAE1 0.016 0.0005 0.0005 0.0005 0.007 5.60E-08

TALDO1 5.00E-05 0.1008 0.063 0.0819 0.014 5.73E-08

AHCY 0.23 0.0005 0.0005 0.0005 0.0005 5.75E-08

GTF3C1 0.0001 0.0496 0.001 0.0253 0.023 5.82E-08

PRPF19 0.002 0.0549 0.005 0.0299 0.001 5.99E-08

LASP1 5.00E-05 0.0522 0.007 0.0296 0.0409 6.06E-08

TRIP10 5.00E-05 0.1418 0.01 0.0759 0.016 6.07E-08

HSPD1 0.244 0.0005 0.0005 0.0005 0.0005 6.10E-08

EIF4G2 0.016 0.0005 0.015 0.0077 0.0005 6.20E-08

SFN 0.17 0.0005 0.001 0.0008 0.0005 6.38E-08

TPM3 0.274 0.0005 0.0005 0.0005 0.0005 6.85E-08

ZNF259 5.00E-05 0.004 0.011 0.0075 0.1896 7.11E-08

MAD2L2 5.00E-05 0.0529 0.0713 0.0621 0.024 7.45E-08

GSK3B 5.00E-05 0.0969 0.2139 0.1554 0.01 7.77E-08

SH3BP5 0.003 0.0531 0.002 0.0276 0.001 8.27E-08

CNDP2 5.00E-05 0.0798 0.004 0.0419 0.0407 8.53E-08

PRKD2 5.00E-05 0.1108 0.1208 0.1158 0.015 8.69E-08

CAPG 0.142 0.0005 0.002 0.0013 0.0005 8.87E-08

CAPNS1 0.042 0.0005 0.008 0.0043 0.0005 8.93E-08

YY1 5.00E-05 0.2286 0.0988 0.1637 0.011 9.00E-08

ACSL5 5.00E-05 0.1375 0.0581 0.0978 0.019 9.29E-08

CCT6A 0.382 0.0005 0.0005 0.0005 0.0005 9.55E-08

RPUSD3 5.00E-05 0.1418 0.015 0.0784 0.025 9.80E-08

SBF1 0.006 0.008 0.0005 0.0043 0.004 1.02E-07

YWHAE 5.00E-05 0.031 0.024 0.0275 0.0739 1.02E-07

XPO1 0.274 0.0005 0.001 0.0008 0.0005 1.03E-07

CRELD2 5.00E-05 0.022 0.029 0.0255 0.0818 1.04E-07

PDCD10 5.00E-05 0.03 0.015 0.0225 0.0926 1.04E-07

HNRPF 5.00E-05 0.023 0.024 0.0235 0.0903 1.06E-07

RFT1 5.00E-05 0.03 0.005 0.0175 0.1231 1.08E-07

BAX 5.00E-05 0.3922 0.2326 0.3124 0.007 1.09E-07

EFTUD2 0.446 0.0005 0.0005 0.0005 0.0005 1.11E-07

EEF1D 0.448 0.0005 0.0005 0.0005 0.0005 1.12E-07

FDPS 0.032 0.001 0.013 0.007 0.0005 1.12E-07

CDKN2A 5.00E-05 0.012 0.0579 0.0349 0.0648 1.13E-07

PFKP 5.00E-05 0.03 0.001 0.0155 0.1476 1.14E-07

TACC3 5.00E-05 0.036 0.005 0.0205 0.117 1.20E-07

FPGS 0.0001 0.039 0.0659 0.0524 0.023 1.21E-07

WDR74 5.00E-05 0.1667 0.008 0.0873 0.028 1.22E-07

CDKN2B 5.00E-05 0.012 0.0667 0.0393 0.0632 1.24E-07

SFPQ 5.00E-05 1 0.0005 0.5002 0.005 1.25E-07

NARS 5.00E-05 0.4124 0.1465 0.2794 0.009 1.26E-07

TCOF1 5.00E-05 0.02 0.0475 0.0338 0.0756 1.28E-07

CHAF1A 0.0001 0.2581 0.0667 0.1624 0.008 1.30E-07

ALDH18A1 5.00E-05 0.2273 0.0629 0.1451 0.018 1.31E-07

MGAT4B 0.532 0.0005 0.0005 0.0005 0.0005 1.33E-07

CYP2C9 5.00E-05 0.7843 1 0.8922 0.003 1.34E-07

MRPL37 5.00E-05 0.0488 0.011 0.0299 0.0895 1.34E-07

TTBK2 5.00E-05 0.037 0.0879 0.0625 0.0438 1.37E-07

AP3D1 0.0008 0.026 0.001 0.0135 0.013 1.40E-07
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with gene inactivating potential in cancer samples. The presence

of TP53, PTEN and CDKN2A in the candidate gene-set and its

functional characteristics, are evidences in favor of the hypothesis

that we measured an excess of somatic cancer mutations. We will

be able to refute this hypothesis by using various experimental

protocols. On the other hand, it is possible that some of the

candidate genes might bear germ-line mutations and thus

constitute predisposition traits for cancer insurgence.

When we compared our results to those of the recently

published massive sequencing project, some differences emerged.

We used a larger amount of sequencing data, albeit of lower

quality since we did not use second pass sequencing data. We

obtained from dbEST a number of mismatches roughly 5 times

higher than the genome wide sequencing screens. This excess

could be due to the lower quality sequencing data in ESTs or the

higher sensitivity of our approach compared to PCR based direct

sequencing. Detection of under-represented mutations in often

heterogeneous cancer biopsies can be a technical challenge for

direct sequencing, but not for cloned ESTs.

ESTs were used in previous attempts to identify cancer related

genes. Almost invariably these approaches were based on

expression profiling, which in tumor samples is probably correlates

and late events, among the steps leading to tumor development

and progression. In a very different data mining effort on EST

sequences in cancer, Qiu and co-workers [20] measured SNP-

tumor association. Their analysis was highly focused on single

nucleotide mismatches, and restricted to known mutations

described in the SNP database and present in at least 50 EST

hits. They identified 4,865 SNP frequent in tumors (p,0.05), out

of which 327 induced amino acid substitution (cSNP). Many major

histocompatibility complex (MHC) class II molecules were present

among these coding SNPs, while none was present in our recessive

cancer gene-set. Most importantly, no landmark cancer genes,

such as TP53, PTEN and CDKN2A were present within cSNPs.

Finally, none of the SNP genes detected by Qiu et al. [20] were

present in our candidate recessive cancer gene set.

The minute cancer recessive sub-genome (,0.5%) we identified

might represent a milestone towards the identification of novel

markers for early diagnosis and prognosis. Additionally, our

mining strategy can be applied to the data which will be available

upon the sequencing of cancer genomes [22]. Finally, our work

might lead to a different equilibrium within the pool of cancer

genes, currently unbalanced towards dominant oncogenes.

Materials and Methods

EST data mining
All human coding sequences were extracted from RefSeq

mRNA database at NCBI (27,184 sequences). The dbEST

database contained more than 5.6 million human ESTs (exceeding

3,009 million nucleotides in length). The dbEST libraries (7574)

were manually annotated corresponding to the biomaterial of

origin and ESTs were subdivided in the following seven classes:

cancer tissues and cell lines (Y, 4466 libraries), normal tissues (N,

2621), cell lines of uncertain origin (C, 193), hyperplasia (B, 32),

normal tissues associated to cancer lesions (A, 33), matched normal

controls from cancer patients (M, 70) and undetermined origin (U,

159). Only the library with clear cut origin was used: i.e. 4466

cancer tissues and cell lines (Y) vs. 2621 normal tissues (N). Tissues

associated (A) or matched (M) to cancer, benign tumors (B) and

other cell lines (C) were not used. The coding sequences for each

RefSeq entry were aligned against the human dbEST database by

using BLAST. The Cancer Mutome MySQL database was

populated with a total of 43,965,904 mismatches and gaps

extracted from 3,839,543 alignments. Perl was used to develop

all the scripts and implement the system. BioPerl was used for the

BLAST procedure and parsing. BLAST parameters were set to

default (expect = 1E-21) with the exception of recovering up to a

maximum of 500 alignments for each query.

Detection of point mutations in ESTs
To attenuate the problem of high sequencing error rate in

ESTs, our procedure retrieved candidate mutations only in the

region of maximum nucleotide identity to the query. Our

assumption was that an identical error rate was present in the

two EST populations, those derived from the control and those

from the cancer cells. Therefore the frequencies of mismatches due

to sequencing errors are expected to be comparable across ESTs

for the same genes. The mismatches were considered for

subsequent analysis only when present in the internal sequence

(not in the first or last ten nucleotides of the BLAST alignments).

Mismatches were then evaluated for their capabilities of changing

the amino acid residue in the correspondent codon. A single

candidate mutation was considered only once for each dbEST

library, to avoid bias due to RNA copy number. The 8972 human

genes most variable for number of mismatches (IQR.0.5) were

retained for further testing. Statistics for amino acid substitutions,

non-synonymous to synonymous nucleotide exchange rate and

frame-shifts were calculated for each human coding sequence.

Gene specific confidence limits for the respective paired t tests

were calculated by bootstrap analysis. The two bootstrap classes

were composed by random extracting 1000 times, with replace-

ment, cancer or normal status from the library classes [23,24].

In the first of three different measures, the frequencies of amino

acid substitution were compared, for each gene in normal and

cancerous tissues, by using paired t test over a 25-residues protein

window. Normalization of mismatches for the control and cancer

classes was attained by using a gene specific and local correction

factor. The correction factor was derived by dividing the

respective counts of ESTs in both classes at each nucleotide

GENE SYMBOL pDeletion pAA pNSSR pAA-NSSR pFrameshift pRecessive Cancer

PDCD6IP 5.00E-05 0.2597 0.039 0.1494 0.019 1.42E-07

CLTA 0.002 0.002 0.0693 0.0357 0.002 1.43E-07

CCNI 5.00E-05 0.03 0.0005 0.0152 0.1914 1.46E-07

ZFYVE19 5.00E-05 0.2516 0.0593 0.1555 0.019 1.48E-07

The top 154 recessive cancer genes have combined recessive cancer gene p-values lower than 1.5E-07. Alongside the Gene symbol, the p-values for each one of the 3
independent mutational events, i.e. amino acid substitution (pAA-NSSR), frameshift (pFrameshift), gene deletion (pDeletion) and the combined p-values are indicated.
The pAA-NSSR p-value was first obtained as the average of pAA and pNSSR, two non independent p-values. The global recessive cancer gene p-value
(pRecessiveCancer) was then calculated by multiplying the three independent p-values.
doi:10.1371/journal.pone.0003380.t001
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Table 2. The candidate recessive cancer genes with genomic location and associated copy number variations.

GENE SYMBOL CHROMOSOMAL LOCATION pRecessive Cancer Gene Length
Copy Number
Polymorphism

NASP chr1:45822303-45857154 1.25E-11 34851

CCNB1 chr5:68498668-68509822 2.50E-11 11154

DDX21 chr10:70385897-70414285 1.00E-10 28388

DHX9 chr1:181075073-181123505 1.00E-10 48432

GANAB chr11:62148878-62170680 1.00E-10 21802

ILF3 chr19:10625987-10664093 1.25E-10 38106

AIPL1 chr17:6267783-6279243 1.63E-10 11460

NOLC1 chr10:103901922-103913617 1.75E-10 11695

MYO1C chr17:1314229-1335801 2.25E-10 21572

NUDC chr1:27120810-27145474 3.00E-10 24664

PGAM1 chr10:99176016-99183187 5.00E-10 7171

IPO4 chr14:23719265-23727964 5.25E-10 8699

XRCC5 chr2:216682376-216779248 5.25E-10 96872

MTO1 chr6:74228208-74267896 5.60E-10 39688

ANP32B chr9:99785309-99818043 6.02E-10 32734

TP53 chr17:7512444-7531642 6.63E-10 19198

AFG3L2 chr18:12319107-12367194 7.50E-10 48087 cnp1251

FAF1 chr1:50679522-51198524 9.96E-10 519002

CALR chr19:12910422-12916303 1.00E-09 5881

SREBF2 chr22:40559051-40632319 1.00E-09 73268

XRCC6 chr22:40347240-40389998 1.12E-09 42758

ARMC8 chr3:139388837-139498909 1.25E-09 110072 cnp270

GTPBP4 chr10:1024348-1053704 1.40E-09 29356

HSPA4 chr5:132415560-132468607 1.70E-09 53047

HDAC1 chr1:32530294-32571811 1.82E-09 41517

PGD chr1:10381671-10402787 1.89E-09 21116 cnp10

VCP chr9:35046560-35062564 2.00E-09 16004

ATXN2L chr16:28741914-28756057 2.50E-09 14143 cnp1177

RPL6 chr12:111327376-111331826 2.50E-09 4450

SARS chr1:109558062-109582308 2.56E-09 24246

NCL chr2:232027703-232037449 3.00E-09 9746

PTPRC chr1:196874759-196993168 3.00E-09 118409

SMARCA4 chr19:10932605-11033952 3.00E-09 101347

CCT3 chr1:154545375-154574819 3.20E-09 29444

NET1 chr10:5478545-5490424 3.58E-09 11879

HNRPD chr4:83493490-83514173 3.74E-09 20683

SQSTM1 chr5:179180502-179197681 3.75E-09 17179

TUBB2C chr9:139255531-139257980 3.75E-09 2449

C1QBP chr17:5276822-5283195 4.00E-09 6373

TRAP1 chr16:3648038-3707599 4.00E-09 59561

ALDOA chr16:29984544-29989235 4.50E-09 4691 cnp1179

RNASEH2A chr19:12778427-12785462 4.59E-09 7035

DDX24 chr14:93587021-93617311 5.00E-09 30290

ILVBL chr19:15086786-15097577 5.00E-09 10791 cnp1283

SERPINB3 chr18:59473411-59480094 5.05E-09 6683

UQCRC1 chr3:48611435-48622102 6.60E-09 10667

EEF2 chr19:3927054-3936461 7.00E-09 9407

NUSAP1 chr15:39412360-39460537 7.43E-09 48177

DNAJC11 chr1:6616817-6684460 8.66E-09 67643
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GENE SYMBOL CHROMOSOMAL LOCATION pRecessive Cancer Gene Length
Copy Number
Polymorphism

HSP90AA1 chr14:101616827-101675839 9.00E-09 59012

MYH9 chr22:35007271-35113927 9.12E-09 106656

HK1 chr10:70748628-70831641 9.35E-09 83013

IARS chr9:94012445-94095859 1.00E-08 83414

YBX1 chr1:42920652-42940604 1.00E-08 19952

HDLBP chr2:241815351-241903927 1.12E-08 88576

EWSR1 chr22:27994016-28026515 1.25E-08 32499

DHX15 chr4:24138187-24195282 1.27E-08 57095

SERPINB4 chr18:59455474-59462482 1.28E-08 7008

POLR2A chr17:7328421-7358653 1.29E-08 30232

ALG14 chr1:95220884-95311071 1.50E-08 90187

PRMT1 chr19:54872307-54883516 1.50E-08 11209

COX4NB chr16:84369736-84390601 1.57E-08 20865

SPTBN1 chr2:54536957-54752086 1.58E-08 215129

PTPRF chr1:43769133-43861929 1.61E-08 92796

KHDRBS1 chr1:32252077-32282058 1.62E-08 29981

PABPC1 chr8:101784319-101803491 1.75E-08 19172

CTNNA1 chr5:138117005-138298621 1.80E-08 181616

DDB1 chr11:60823494-60857242 1.80E-08 33748 cnp921

GNB2L1 chr5:180596533-180603512 1.85E-08 6979

WDR1 chr4:9685060-9727671 2.00E-08 42611 cnp312

AARS chr16:68843797-68880913 2.10E-08 37116 cnp1189

NDE1 chr16:15651604-15726490 2.10E-08 74886

NQO1 chr16:68300805-68318034 2.25E-08 17229

RUVBL2 chr19:54188967-54210994 2.30E-08 22027

ZWINT chr10:57787204-57791040 2.37E-08 3836

HP1BP3 chr1:20941757-20985768 2.52E-08 44011

WDR79 chr17:7532519-7547544 2.60E-08 15025

SLC25A6 chrY:1465044-1470998 2.75E-08 5954

TYMS chr18:647650-663492 2.76E-08 15842

SLC25A3 chr12:97511533-97519908 3.00E-08 8375

ACLY chr17:37276706-37328798 3.49E-08 52092

ALDH3A1 chr17:19581891-19592200 3.50E-08 10309

TTC8 chr14:88360730-88414087 3.55E-08 53357

YME1L1 chr10:27439390-27483327 3.59E-08 43937

ATP5A1 chr18:41918107-41938197 3.61E-08 20090

MRPS2 chr9:137532374-137536337 3.69E-08 3963

HNRPH3 chr10:69761884-69772952 3.70E-08 11068

IMMT chr2:86224565-86276404 4.20E-08 51839

IMPDH2 chr3:49036771-49041879 4.35E-08 5108

NCKAP1 chr2:183497850-183611474 4.36E-08 113624 cnp194

TTLL12 chr22:41892572-41913051 4.39E-08 20479

PTEN chr10:89613174-89718511 4.45E-08 105337

WBSCR16 chr7:74094219-74127635 4.55E-08 33416 cnp627

XPNPEP1 chr10:111614513-111673192 4.65E-08 58679

SREBF1 chr17:17656110-17681050 4.78E-08 24940

CCDC5 chr18:41938322-41962296 5.02E-08 23974

DDX19B chr16:68890572-68925230 5.03E-08 34658

MAPK6 chr15:50098738-50145751 5.21E-08 47013

MAP4 chr3:47867189-48105715 5.24E-08 238526
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GENE SYMBOL CHROMOSOMAL LOCATION pRecessive Cancer Gene Length
Copy Number
Polymorphism

PHB2 chr12:6944777-6950152 5.50E-08 5375

SAE1 chr19:52325983-52405371 5.60E-08 79388

TALDO1 chr11:737431-755023 5.73E-08 17592 cnp884

AHCY chr20:32331736-32354784 5.75E-08 23048

GTF3C1 chr16:27379435-27468752 5.82E-08 89317

PRPF19 chr11:60414782-60430632 5.99E-08 15850

LASP1 chr17:34279893-34331540 6.06E-08 51647

TRIP10 chr19:6690706-6702528 6.07E-08 11822

HSPD1 chr2:198059554-198073243 6.10E-08 13689

EIF4G2 chr11:10775169-10787158 6.20E-08 11989

SFN chr1:27062219-27063534 6.38E-08 1315

TPM3 chr1:152400913-152431233 6.85E-08 30320

ZNF259 chr11:116154486-116163949 7.11E-08 9463

MAD2L2 chr1:11657124-11663774 7.45E-08 6650

GSK3B chr3:121028237-121295203 7.77E-08 266966

SH3BP5 chr3:15271360-15357905 8.27E-08 86545

CNDP2 chr18:70314576-70339336 8.53E-08 24760

PRKD2 chr19:51869412-51912224 8.69E-08 42812

CAPG chr2:85475381-85491187 8.87E-08 15806

CAPNS1 chr19:41322757-41333094 8.93E-08 10337

YY1 chr14:99774854-99814557 9.00E-08 39703

ACSL5 chr10:114125945-114178127 9.29E-08 52182

CCT6A chr7:56086871-56099176 9.55E-08 12305

RPUSD3 chr3:9854533-9860676 9.80E-08 6143

SBF1 chr22:49232101-49260320 1.02E-07 28219

YWHAE chr17:1194594-1250267 1.02E-07 55673

XPO1 chr2:61558573-61618922 1.03E-07 60349

CRELD2 chr22:48698347-48707178 1.04E-07 8831

PDCD10 chr3:168884389-168935345 1.04E-07 50956

HNRPF chr10:43201070-43223305 1.06E-07 22235

RFT1 chr3:53099850-53139503 1.08E-07 39653

BAX chr19:54149928-54156867 1.09E-07 6939

EFTUD2 chr17:40283804-40332289 1.11E-07 48485

EEF1D chr8:144733040-144750726 1.12E-07 17686

FDPS chr1:153546200-153557080 1.12E-07 10880 cnp61

CDKN2A chr9:21957751-21984490 1.13E-07 26739

PFKP chr10:3099751-3168995 1.14E-07 69244 cnp816

TACC3 chr4:1693063-1716693 1.20E-07 23630 cnp308

FPGS chr9:129605328-129616377 1.21E-07 11049

WDR74 chr11:62356959-62364204 1.22E-07 7245

CDKN2B chr9:21992905-21999312 1.24E-07 6407

SFPQ chr1:35421789-35431322 1.25E-07 9533

NARS chr18:53418891-53440175 1.26E-07 21284

TCOF1 chr5:149717427-149760063 1.28E-07 42636

CHAF1A chr19:4353659-4394393 1.30E-07 40734

ALDH18A1 chr10:97355676-97406557 1.31E-07 50881

MGAT4B chr5:179156710-179166547 1.33E-07 9837

CYP2C9 chr10:96688429-96739137 1.34E-07 50708

MRPL37 chr1:54438427-54456638 1.34E-07 18211

TTBK2 chr15:40823837-41000299 1.37E-07 176462
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position of the query. The score assigned to each human RefSeq

gene corresponded to the sum of the T scores values exceeding the

gene-specific confidence limit (p,0.05) over the sliding window

(i.e. the area of the peaks above the threshold).

The second measure, linked to the amino acid substitution

frequency consisted in the evaluation of the selective pressure for

amino acids changes. This filter was implemented to separate

causal from bystander mutations and to further diminish the

effects of sequencing errors. The ratios of non-synonymous (NS) to

synonymous (S) nucleotide substitutions within the cancer and

normal ESTs were calculated for each gene. A paired t test was

used to compare the cancer and normal NS/S substitution ratios

at different codons. When the number of synonymous substitutions

at denominator was null, unity was added to both numerator and

denominator. Only the amino acid positions significant for

frequency of substitutions (in the amino acid substitution test

above) were evaluated here. The gene specific confidence limit at

5%, the p-values and the FDR were again computed by bootstrap,

as described above.

A third measure on point mutations was relative to the

frequency of frame-shifts, which can produce premature protein

termination or other major alterations in primary structure. In a

paired t test, analogous to that for the pAA, a 25-nt sliding window

based procedure was applied to the number of frame-shifts

induced in cancer by 1 nucleotide insertions or deletions. Longer

DNA alterations were not recorded, and were extremely rare. The

gene p-values for such frame-shifts in cancer were again computed

by bootstrap and defined as pFrameshift.

ESTs P-value and false detection rate calculation
Procedures were devised for calculation of gene-specific p-values

and false detection rates in each one of the described approaches.

Bootstrap analysis was used to compute the adjusted probability

that a human gene was affected in cancer but not in normal ESTs

[23,24]. The resampling test allowed us to define confidence limits

for each different gene and to effectively tackle local issues such as

DNA composition, CpG occurrence, and protein or gene length.

For the point mutation analyses, the resampling procedure was

performed only on the protein residues found to be above T

threshold (p,0.05). A range of bootstraps were performed to

choose the lowest number of resampling cycles yielding stable p-

values through a short gene list and 1000 cycles were found to be a

satisfactory requirement. The ESTs belonging to cancer and

normal classes were randomly subdivided to form two simulated

classes with the same size as the original ones. The gene specific p-

value was defined as the frequency at which the resampling test

scored equal or better than the real test. Null p-values were set to

half of the lowest p-value in the respective simulations.

Detection of deletions in array CGH
744 comparative genomic hybridization arrays were studied

(537 samples from GEO and 207 from SMD). All platforms were

2-channel based, data were downloaded as normalized values, and

probes were indexed by gene symbol. Gene data and annotations

were stored in the GeoSoft database. All normalized log ratios

were converted to log2 ratios, with the cancer value at the

numerator and the control value at the denominator. Pre-filtering

of genes was performed on standard deviation, to exclude the

genes which did not show high variation of their genomic profiles

(std dev,0.2). Genes were scored when measured in at least 300

tumors. Deleted cancer genes were expected to have log2 ratios

lower than the 5th percentile of the bootstrapped log2 ratios;

amplified genes log2 ratios higher than the 95th percentile of the

bootstrapped values. Bootstrap analysis was used (10,000 random

swaps of tumor and control channels) to obtain gene specific p-

values and confidence limits for deletion and amplification.

Point Mutation and aCGH combined p-values
Finally, the p-values obtained by the three different tests: pAA-

NSSR, pFrameshift and pDeletion were multiplied together to

compute the global pRecessiveCancer p-value. This p-value was

used to sort the human genes by their propensity to bear mutations

in cancer. One hundred and 54 genes were selected with p-value

below 1.561027. One hundred resampling cycles were performed

by randomly associating p-values for each mutation test and

yielded a false detection rate of 39%. EASE (http://david.abcc.

ncifcrf.gov) and BinGO (Cytoscape plugin) were used for Gene

Ontology analysis. Hyper-geometric test with Benjamini and

Hochberg false discovery rate correction was used in BinGO [25].

Supporting Information

Figure S1 Genomic structures are correctly identified by the

aCGH protocol. Track analysis in UCSC Genome Browser of

Xp22 Pseudo-Autosomal Region 1 (PAR1). The Pseudo-Autoso-

mal Region 1 is correctly identified as normal (diploid) by the

array CGH analysis, while the rest of X chromosome is reported,

also as expected, ‘‘pseudo-amplified’’. The chromosome X genes 3

prime of PAR1 appear as amplified because their DNA copy

number is higher than expected when compared to the respective

average DNA copy number in the whole, mixed sex, tumour

population.

Found at: doi:10.1371/journal.pone.0003380.s001 (0.31 MB TIF)

Figure S2 Distribution of gene size in the candidate recessive

cancer gene-set. The recessive cancer gene sizes do not differ

significantly from the gene sizes in the human genome (most

common genes range between 32 and 128 kb).

GENE SYMBOL CHROMOSOMAL LOCATION pRecessive Cancer Gene Length
Copy Number
Polymorphism

AP3D1 chr19:2051993-2102556 1.40E-07 50563

PDCD6IP chr3:33814560-33886198 1.42E-07 71638

CLTA chr9:36180891-36202055 1.43E-07 21164

CCNI chr4:78188198-78216149 1.46E-07 27951

ZFYVE19 chr15:38886565-38894059 1.48E-07 7494

The top 154 genes have combined recessive cancer gene p-values lower than 1.561027 (FDR = 0.39). Alongside the gene symbol, genome coordinates, gene length,
cancer gene p-value and eventual copy number polymorphic site are reported.
doi:10.1371/journal.pone.0003380.t002
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Found at: doi:10.1371/journal.pone.0003380.s002 (0.28 MB TIF)

Table S1 Array CGH datasets.

Found at: doi:10.1371/journal.pone.0003380.s003 (0.04 MB

DOC)

Table S2 Functional (Gene ontology, biological process) chart of

the candidate cancer recessive genes, FDR,0.5

Found at: doi:10.1371/journal.pone.0003380.s004 (0.22 MB

DOC)
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