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Background. ,e homeobox (HOX) gene family has been found to be involved in human cancers. However, its involvement in
hepatocellular carcinoma (HCC) has not been well documented. Here, we comprehensively evaluated the role of HOXs in HCC.
Methods. RNA sequencing profile of TCGA-LIHC and LIRI-JP were obtained from the Cancer Genome Atlas (TCGA) and the
International Cancer Genome Consortium (ICGC), respectively. Data of TCGA-LIHCmethylation were downloaded fromUCSC
Xena. Genetic alteration data for the TCGA samples was obtained from cBioPortal and GSCA. ,e diagnostic efficiency was
assessed using ROC curves. ,e prognostic significance was evaluated by the Kaplan–Meier method and Cox regression analysis.
Subsequent functional analysis was performed through the clusterProfiler package. ssGSEA, ESTIMATE, and TIDE algorithms
were employed to explore the relationship between HOXs and the HCC microenvironment. Finally, pRRophetic package and
NCI-60 cancerous cell lines were applied to estimate anticancer drug sensitivity. Results. ,e mRNA levels of HOXs in HCC
tissues were higher than those of noncancerous tissues and were correlated with poor overall survival (OS). HOXA6, C6, D9, D10,
and D13 could serve as independent risk factors for OS. Further functional analysis revealed that these five HOXs regulate the cell
proliferation, cell cycle, immune response, and microenvironment composition of HCC. In addition, the aberrant expression and
methylation of HOXs is of great value in the diagnosis of HCC. Conclusion. HOXs play crucial roles in HCC and could serve as
potential markers for HCC diagnosis and prognosis.

1. Introduction

Hepatocellular carcinoma is an important cause of human
cancer-related deaths worldwide, and its incidence continues to
rise [1]. Meanwhile, it is also one of the cancers with the worst
prognosis. According to statistics, the median survival time of
advanced cases is only 2-3 years [2]. Surgery is the most
important treatment for early HCC. However, due to the lack
of specific symptoms, patients miss the best opportunity for
surgery [1]. Posthepatic resection recurrence is another con-
siderable challenge. Even in patients with early HCC, the 5-year

recurrence rate was close to 70% [3]. ,e high recurrence rate
and poor curative effect are related to the complicated path-
ogenesis of HCC, as various networks of molecules and sig-
naling pathways are involved in its occurrence and
development [4]. ,erefore, the discovery of new molecules
involved in HCC progression and the identification of new
diagnostic markers and therapeutic targets is critically im-
portant for improving HCC patients’ prognosis.

,eHOX genes share a DNA sequence called “homeobox”
which consists of a 120-base pair and encodes a polypeptide
consisting of 61 amino acids, known as a homeodomain [5].

Hindawi
Journal of Oncology
Volume 2022, Article ID 5758601, 17 pages
https://doi.org/10.1155/2022/5758601

mailto:sgjzp@hotmail.com
https://orcid.org/0000-0002-6867-9967
https://orcid.org/0000-0002-0059-1301
https://orcid.org/0000-0002-6926-2354
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5758601


For the first time, HOX genes were found to be involved in the
embryogenesis of Drosophila melanogaster [6]. Notably,
structural and developmental variations were observed in
mutant D. melanogaster, such as the replacement of antennae
with legs. ,ese anomalies, caused by mutations, are called
“homeotic” transformations. In 1921, geneticists proposed the
existence of genes that specifically regulate these transforma-
tions [7]. Seventy years later, the protein structures of such
genes were identified in humans, and termed “homeotic” or
“HOX” genes [8, 9].,e discovery of theHOXgene is crucial to
understanding the genetic control mechanisms of embryonic
development. In mammals, diverse HOXmembers control the
development of different parts of the body [10].

,irty-nine HOXs were identified in the human genome,
located on chromosomes 2, 7, 12, and 17, and divided it them
into four gene clusters (A, B, C, and D, respectively). Each
cluster was also divided into 13 paralog groups. Each gene
cluster contains from 9 to 11 members (Figure S1) [11]. Over
the past century, many studies found that HOXs were closely
related to human cancers [12–15]. Meanwhile, the aberrant
methylation of HOX genes was also identified as a char-
acteristic of cancers [16]. All these findings have shown the
potential of HOXs as biomarkers for human cancers.

In HCC, the abnormal expression of few HOX members
was established to be involved in disease progression
[17, 18]. However, the significance of most HOXmembers is
still not clear. Here, we integrally analyzed the genomic data
of HOXs in HCC, and assessed their diagnostic and prog-
nostic value.

2. Materials and Methods

,e flowchart of this study is presented in Figure 1.

2.1. Datasets Sources and Processing. ,e RNA-seq (FPKM
format) and clinical data of TCGA-LIHC were downloaded
from the GDC Data Portal (https://portal.gdc.cancer.gov/).
,e RNA-seq (FPKM) of LIRI-JP was downloaded from
ICGCData Portal (https://dcc.icgc.org/).,e limma package
[19] in R software was applied to identify HOX genes dif-
ferentially expressed between cancerous tissues and adjacent
noncancerous tissues. ,e threshold was set as |log2 Fold
Change| >1.5 and a P value <0.05. ,e methylation data for
TCGA-LIHC was downloaded from the University of
California, Santa Cruz (UCSC; Santa Cruz, CA, USA) Xena
data portal (https://xena.ucsc.edu/).,e beta values from the
same sample but from different vials/portions/analytes/ali-
quotes were averaged, whereas the beta values from different
samples were combined into a genomic matrix.,e Corrplot
[20] package in R software was used to evaluate the cor-
relation between the gene expression or the methylation
levels of the CpG sites and the corresponding gene
expression.

2.2. Assessment of Genetic Alterations in HOX Genes.
cBioPortal is an interactive open-source platform that
provides large scale cancer genomics data sets (https://www.
cBioPortal.org/) [21]. We obtained the genomic data of

samples in TCGA-LIHC (Firehose Legacy), including mu-
tations, putative copy-number alterations from GISTIC, and
mRNA expression z-Scores (RNASeq V2 RSEM) with a
z-score threshold± 2.0. All samples were divided into two
groups. ,e altered group included 59 samples with mu-
tations or CNA, whereas the unaltered group consisted of
301 samples without mutations or CNA. ,en, the differ-
ences in the overall survival and disease-free statuses (since
initial treatment) between the two groups were analyzed
using K–M survival analysis.

Gene Set Cancer Analysis (GSCA) is an integrated da-
tabase for the analysis of cancer genomics (http://bioinfo.
life.hust.edu.cn/GSCA/#/) [22]. We obtained the details of
the SNV and CNV of HOX family genes in TCGA-LIHC
from the GSCA database. ,e mutation data showed seven
types of deleterious mutations. ,e CNV data were pro-
cessed through GISTICS2.0. Based on the GISTIC score,
CNV was divided into four categories.

2.3. PPI Network and Functional Enrichment Analysis.
,e genes coexpressed with HOX genes in TCGA-LIHC
were collected from the UALCAN database (https://ualcan.
path.uab.edu/) [23]. A correlation coefficient ≥0.4 was
considered to indicate a significant correlation. Based on
genes significantly correlated with HOXs, we constructed a
PPI network using STRING v.10.0b (https://string-db.org/)
[24]. Next, we screened the hub genes and visualized the
STRING results using Cytoscape v3.8.0 (https://cytoscape.
org/cy3.html) [25]. ,en, the clusterProfiler package [26] in
R was employed to identify the Gene Ontology (GO) terms
(including cellular component, biological process, and
molecular function) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways that were enriched by hub
genes and to visualize the results.

2.4. Relationship between HOXs and HCC
Microenvironment. ,e abundance of 24 immune cell types
was predicted by calculating the single-sample gene set
enrichment analysis (ssGSEA) scores based on the gene set
signatures of each type of the immune cells through
ImmuCellAI (http://bioinfo.life.hust.edu.cn/ImmuCellAI/
#!/) [27]. Further, we obtained bubble plots presenting
the correlation between the mRNA expression of the HOX
genes and the estimated abundance of immune cells from
the GSCA database. ,en, the ssGSEA scores of 13 immune
functions of each HCC sample were quantified using the
GSVA package [28] in R software.

Afterwards, the stromal cell levels in HCC tissues were
estimated using the ESTIMATE algorithm, which analyzes
the composition of the microenvironment and calculates the
tumor purity based on the gene expression data [29].

2.5. Role of HOXC6 in Immune-Checkpoint Inhibitor
Treatment. First, the correlation of HOXC6 with two types
of immune-checkpoint inhibitor treatment response-related
biomarkers, immune-checkpoint genes, and tumor muta-
tion burden (TMB) was evaluated. Gene expression and
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somatic mutation data were obtained from TCGA-LIHC,
and TMB was calculated based on the somatic mutation data
collected.

,en, the Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm (http://tide.dfci.harvard.edu/login/) [30]
was applied to predict the response to anti-PD-1 and anti-
CTLA4 treatment.

2.6. Anticancer Drug Sensitivity Prediction. We analyzed the
relationship between HOX genes expression and anticancer
drugs sensitivity by estimating the half-maximal inhibitory
concentration (IC50). ,e IC50 of sorafenib in each HCC
sample was predicted using the pRRophetic package [31] in
R.

,e NCI-60 human cancer cell line panel [32] was
previously used by cancer investigators and the NCI De-
velopmental ,erapeutics Program (DTP) to discover novel
anticancer drugs [33]. We obtained data of the RNA-seq/
composite expression and the compound activity (average z
score) of DTP NCI-60 from CellMiner v2.6 (https://
discover.nci.nih.gov/cellminer/home.do) [34].

2.7. Statistical Analysis. Statistical analyses were conducted
in R software (version 4.0.2). Wilcoxon rank-sum test was
used to analyze the differences between the two subgroups.

,en, the Kaplan–Meier method and the log-rank test were
utilized to analyze the differences in the survival between the
groups of patients. ,e best cut-off values of the groups were
determined using the survminer package in R. Moreover,
independent prognostic analysis was conducted via Cox
proportional hazards models. We factored gender, age,
tumor stage, and tumor differentiation into confounding
factors and excluded patients with multiple sets of expres-
sion data, missing expression data, or without the afore-
mentioned clinical information. Pearson correlation test was
employed to measure the correlation between variables.
Receiver operating characteristic curves were established to
evaluate the diagnostic values of HOXs, and the pROC
package was used to quantify the area under the curve
(AUC). In all statistical analyses, a P value <0.05 was
considered statistically significant.

3. Results

3.1. Increased HOX Family Genes Expression in HCC. We
first compared the transcriptional expression of HOXs in
374 HCC and 50 noncancerous samples from TCGA-LIHC
(Figure 2(a)). ,e result showed that the mRNA levels of
HOXs were generally higher in HCC. ,en, we analyzed the
differences between 243 HCC and 202 noncancerous
samples from the LIRI-JP cohort. Similar to our previous
result, the mRNA levels of the HOX family members in HCC
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Figure 1: Flowchart of the present research.
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were generally higher than those in the noncancerous
samples, except for HOXB4. A total number of 25 members
(Figure 2(b)); HOXA3, 6-7, 9-11, 13, HOXB8-9, 13,
HOXC5-6, 8-11, 13, HOXD1, 3-4, 8-11, and D13 were
significantly upregulated (|log2 FC|> 1.5, P< 0.05) in the
two cohorts (Figures 2(c) and 2(d)) (Table S1).

Altogether, the expression of HOX genes was generally
increased in the HCC tissues, suggesting that they may play
important roles in HCC.

3.2. Methylation Patterns of HOX Genes in HCC. We first
analyzed the correlation between the methylation levels of
different CpG sites in the promoters of the HOX genes and
the corresponding expression of the HOX genes based on
the data of the TCGA-LIHC cohort (Figure S2). A total
number of 5 CpG sites showed a significant negative cor-
relation (r<−0.3) between the methylation level and the
corresponding gene expression (Figure 3(a)). ,en, we
analyzed the differences in their methylation levels between
HCC samples and noncancerous samples (Figure 3(b)). We
found that the methylation levels of cg20712820 in HCC
were significantly lower than those in the noncancerous
samples. Conversely, the methylation levels of cg06397837
and cg07083464 in HCC were significantly higher than those
in the adjacent noncancerous samples. ,ese data suggested
that these three CpG sites may be closely associated with
HCC.

3.3. Diagnostic Value of HOXs in HCC. First, the diagnostic
value of HOX genes expression was assessed by performing
ROC curve analysis based on the expression data collected
from the TCGA and ICGC databases (Figures 4(a) and 4(b)).
We established that a total number of five HOX members
(HOXA10, 13, D1, 3, and D4) had superior predictive power
(AUC >0.8) in both cohorts. Among them, the AUC of
HOXA13 was higher than 0.9 (0.91 and 0.92, respectively).

Next, we also assessed the diagnostic value of three
differentially methylated CpG sites (Figure 4(c)). We de-
tected a correlation between the methylation of cg20712820
and cg07083464 andHCC incidence (AUCs of 0.74 and 0.79,
correspondingly).

,e above data suggested that the expression of
HOXA10, 13, D1, 3, and D4 could serve as potential markers
for the diagnosis of HCC, especially HOXA13. Besides, the
methylation levels of cg20712820_HOXA3 and
cg07083464_HOXA13 also had moderate value for the
identification of HCC.

3.4. Prognostic Value of HOXs in HCC. ,e clinical char-
acteristics of all HCC patients included in our survival
analysis are displayed in Table 1. First, the prognostic
value of the HOX family members was evaluated using
the K–M method. As can be observed in Figure 5(a), the
high expression of HOXA3, 6, 9-11, 13, B8-9, 13, C6, 8-11,
13, D3, 8-10, and D13 was related to poor OS. Moreover,
the results of the Cox regression model revealed that the
elevated expression of HOXA6, 9, B8, C6, 8, D9-10, and

D13 was significantly associated with unfavorable OS
(Figure 5(b)). Five of them (HOXA6, C6, D9-10, and
D13) were independent risk factors (Figure 5(c)). ,ese
results indicated that HOXA6, C6, D9-10, and D13 could
serve as markers for predicting the prognosis of HCC
patients.

3.5. Genetic Alterations of HOXs inHCCPatients. To further
explore the role of HOX family in HCC patients, we
assessed the genetic alterations of the HOX members. We
first analyzed the mutation, CNA, and the expression data
of TCGA-LIHC using the cBioPortal. ,e genetic alter-
ations percentages of HOXs in HCC varied from 1.9% to
8% (Figure 6(a)). We next obtained the details of CNV and
the mutations of HOXs from the GSCA database. We
established that heterozygous amplification was the main
type of CNV (Figure 6(b)), and missense mutations con-
stituted the largest proportion of the mutations
(Figure 6(c)). Moreover, the results of the K–M analysis
obtained by using the cBioPortal showed poor OS and DFS
in cases with mutations and CNV of HOX genes
(Figures 6(d) and 6(e)).

In conclusion, the genetic alterations of HOXs in HCC
patients were also associated with poor prognosis.

3.6. Functional Enrichment Analysis of Prognosis-Related
HOXs. To further explore the mechanism by which the five
HOXs influence HCC patients’ prognosis, we first obtained
the genes that were significantly correlated (|r| ≥ 0.4) with
these HOXs in TCGA-LIHC from the UALCAN database.
,en, STRING analysis was conducted to construct a PPI
network, and Cytoscape was applied to screen the hub
genes. As can be seen in Figure 7(a), there were 145 genes
in the core network. ,e gene (CDK1) with the darkest red
color and the largest node size had the highest degree in
the network. ,en, GO and KEGG enrichment analysis
were performed to understand the potential function of
the hub genes (Table S2, S3). ,e top 30 enriched cate-
gories of each GO group are depicted in Figures 7(b)–7(d).
,e KEGG pathways are illustrated in Figure 7(e). ,ese
results revealed that the hub genes were involved mainly in
cell proliferation, cell cycle regulation, and immune
response.

3.7. Relationship between the Five Prognosis-Related HOX
Genes and the TumorMicroenvironment. To further explore
the roles of the five HOXs in tumor microenvironment
(TME), we first used the GSCA database to analyze the
correlation between the expression levels of these HOXs
and the estimated abundance of 24 immune cell types
(Figure 8(a)). We found that the five HOXs were associated
with a number of immune cell types. ,en we used the
ssGSEA algorithm to analyze the effect of the five HOX
genes on immune functions (Figure 8(b)). All HCC sam-
ples were divided into two groups based on the median
HOXs expression level. ,e HCC samples with high
HOXA6 expression had lower scores of their cytolytic
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activity. In contrast, the samples with high HOXC6 ex-
pression showed higher scores in multiple immune func-
tions, such as check point, but obtained lower scores in the
type II IFN response. Meanwhile, the scores of CCR, APC
costimulation, and parainflammation of the groups with
high expression of HOXD9 and HOXD10 were lower than
those in the groups with low expression of these two HOXs.
,e samples with high expression of HOXD10 and

HOXD13 had lower scores in both IFN response types. In
addition, the higher expression of HOXD9 was also as-
sociated with a lower score of type II IFN response but a
higher score of MHC class I.

Further, using the ESTIMATE algorithm, we also ex-
plored the association of the five HOXs with stromal cells,
another important component of TME. As visible in
Figure 8(c), the stromal scores in the tissues with high
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Figure 2: Expression profile of HOXs in HCC. (a) Heatmap of HOX family genes expression in TCGA-LIHC; (b) venn diagram of
differentially expressed HOX genes in two HCC cohorts; (c) expression of 25 DEGs in TCGA-LIHC; (d) Expression of 25 DEGs in LIRI-JP.
(∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001).
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HOXC6 expression were higher than those in the tissues
with low HOXC6 expression. However, the results of
HOXD9 and HOXD10 were opposite to those of HOXC6.

,e further KM analysis showed that the patients with
higher stromal scores had better overall survival
(Figure 8(d)).
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Figure 3: Methylation patterns of HOX genes in TCGA-LIHC. (a) Correlation between the methylation and expression of HOX genes. ,e
methylation levels of 5 CpG sites were negatively correlated with the expression of the corresponding HOX gene (r<−0.3); (b) differences in
the methylation levels of 5 CpG sites in HCC and noncancerous tissues. ,ree of the five CpG sites were differentially methylated positions
between HCC and noncancerous tissues.
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Taken together, the role of the five prognosis-related
HOXs in HCC may be achieved in part by influencing the
compositions and functions of TME.

3.8. Relationship between HOXC6 and Immune-Checkpoint
Inhibitor 8erapy. To elucidate the relationship between
HOXC6 and immune checkpoint, we first investigated the
expression differences of 46 immune-checkpoint genes

between tissues with low and high HOXC6 expression. As
can be seen in Figure 9(a), the median expression level of
most immune-checkpoint genes was higher in the tissues
with high HOXC6 expression than in those with low. ,en,
we measured the correlation between the expression of
HOXC6 and immune checkpoints (Figure 9(b)). Our results
evidenced that the expression of 25 genes was correlated
with HOXC6 expression. Among them, PDCD1LG2
(r� 0.32), CD70 (r� 0.52), TNFRSF8 (r� 0.37), and CD276
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Figure 4: Diagnostic value of HOXs in HCC. ROC curves of HOX genes expression in TCGA-LIHC (a) and LIRI-JP (b); ROC curves of the
methylation levels of three differentially methylated CpG sites in TCGA-LIHC (c). AUC: area under the curve.
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(r� 0.35) were closely correlated with the expression level of
HOXC6. It should be noted that the expression of PD-1
(PDCD1) had little correlation (r� 0.13) with the expression
of HOXC6, and CTLA4 expression was independent of
HOXC6 expression. Meanwhile, the Pearson correlation
coefficient between PD-L1 (CD274) expression and HOXC6
expression was 0.23.

,en, TIDE algorithm was employed to predict the
clinical response to anti-PD1 and anti-CTLA4 treatments.
,e TIDE score in HCC samples with high HOXC6 ex-
pression was higher than that in tissues with low HOXC6
expression (Figure 9(c)). However, HOXC6 expression was
independent of TMB.

In conclusion, the high expression of HOXC6 in HCC
might suggest poor outcome of anti-PD1 and anti-CTLA4
therapy. However, some other checkpoint genes, such as
CD70, were associated with HOXC6, suggesting that
HOXC6 might be a potential marker for therapy targeting
these immune checkpoints in HCC.

3.9. Correlation between HOXs and Anticancer Drug
Sensitivity. In the past decade, sorafenib has been the only
systemic agent with proven clinical efficacy for patients with
advanced HCC [35]. We first compared the estimated IC50
of sorafenib in tissues with low and high expression of HOX
genes. As shown in Figure 10(a), tissues with high HOXA6,
B9, C5, 8, 10, and D1 expression were less sensitive to
sorafenib.

,en, the NCI-60 cancerous cell lines were used to
measure the correlation between HOXs expression and the
sensitivity to 218 FDA approved anticancer drugs. ,e
expression of HOXC9, D10, and D11 were positively
correlated with the IC50 of lenvatinib (Figure 10(b)),
which was the first new drug approved for advanced stage
HCC in the first-line setting in over 10 years [36].
Meanwhile, there were also significant correlations be-
tween the IC50 values of many drugs and the expression of
HOX genes (Table S4).

Taken together, the expression of HOXs may be asso-
ciated with the efficacy of many anticancer drugs, which
might be another factor affecting the prognosis of cancer
patients.

4. Discussion

,e HOX genes were discovered in the human body at the
end of the 20th century, and have attracted widespread at-
tention since then [8, 9]. Apart from their well-known roles
in embryogenesis, for over 20 years, the links between HOX
genes and human cancer have been comprehensively in-
vestigated. Accumulating evidence has shown the role of
HOXs in many cancers [12–15]. However, the significance of
most HOX members in HCC has remained unclear. To
address this scientific gap, we conducted the present study,
which is the first to comprehensively analyze the role of
HOXs in HCC using multiple bioinformatics algorithms.
We found that the increased mRNA levels of HOX genes in
HCC were associated with poor prognosis. Among them,
HOXA6, C6, D9, D10, and D13 were identified as inde-
pendent risk factors. Functional analysis suggested that cell
proliferation, cell cycle, and microenvironment regulation
might be the main mechanisms of the involvement of these
five HOXs in HCC development. Meanwhile, multiple HOX
members (such as A13) showed excellent diagnostic value in
HCC.

A previous study showed that the transcription of HOXs
was silent in adult noncancerous liver tissues, whereas the
expression levels of most HOXs in HCCwere increased [37].
Moreover, in almost all HCC samples analyzed in another
study, the mRNA content of HOXA13 in HCC tissues was
over 100 times higher than that in normal liver tissues,
strongly suggesting that HOXA13 was closely related to
HCC [38]. In our study, the HOXA13 expression fold
change was 191 in TCGA cohort and 161 in ICGC cohort
after outliers’ removal. Our results on the expression of HOX
genes in HCCwere consistent with those of previous studies.
Abnormal methylation of HOX genes was also evidenced to
be characteristic for some human cancers [16]. However, the
published reports on the significance of methylation of
HOXs in HCC are scarce. ,e hypothesis that HOXD3 was
upregulated in HCC by methylation modification was
proposed [39]. Here, we identified five CpG sites that might
regulate the expression of corresponding HOX genes.
Among them, the hypomethylation of cg20712820_HOXA3
and the hypermethylation of cg07083464_HOXA13 were
closely related to HCC. ,erefore, further research of these
two CpG sites may be conducive to better understanding the
role of HOXs in HCC.

Several studies have elucidated the clinical significance of
these five HOXs in some cancers. HOXA6 was found to be
associated with the proliferation, apoptosis, migration and
invasion of CRC [40]. In ccRCC, HOXA6 inhibited cell
proliferation and induced cell apoptosis by the suppression
of the PI3K/AKTsignaling pathway [41]. Our present results
also suggested that HOXA6 may affect the proliferation and
apoptosis of HCC. In an earlier investigation, the increased
HOXC6 expression promoted the proliferation of HCC and
reduced the sensitivity to 5-FU [42]. Meanwhile, HOXC6
promoted the invasion of HCC cells by driving EMT [43]. In
addition, HOXD9 enhanced EMT and cell metastasis in
HCC by ZEB1 regulation [44]. ,e HOXD10/RHOC/
UPAR/MMPs pathway is related to the migration and

Table 1: Clinical characteristics of the HCC patients.

Characteristic Type N Proportion (%)

Age ≤65 232 62.70
>65 138 37.30

Gender Male 249 67.30
Female 121 32.70

Histologic grade
G1-2 232 62.70
G3-4 133 35.95

Unknown 5 1.35

Pathologic stage
Stage I-II 256 69.19

Stage III-IV 90 24.32
Unknown 24 6.49

Vital status Dead 130 35.14
Alive 240 64.86
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Figure 5: Continued.
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Figure 5: Prognostic value of HOXs in HCC. (a) K–M analysis for OS of patients stratified by HOX genes expression; (b) univariate Cox
analysis; (c) multivariate Cox analysis of HOX family genes and clinical factors.
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Figure 6: Continued.
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Figure 6: Genetic alterations of HOXs in TCGA-LIHC. (a) ,e genetic alteration rate of HOXs; (b) the constitute of CNV of HOXs; (c) the
details of SNV of HOXs; (d, e) Differences in OS and DFS between patients with CNV or SNV and patients without CNV or SNV.
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invasion of HCC [45]. ,e aforementioned in vitro exper-
iments have evidenced that these HOXs are involved in the
progression of HCC. We also confirmed the effect of HOXs
on the clinical outcomes of HCC patients by analysis of
large-sample follow-up data. Notably, the drug sensitivity
data of the present study suggested that HOX genes may
have guiding significance in the treatment of HCC and even
pan-cancer.

,e disturbance of various components of TME also
contributes to the malignant features of HCC [46]. As one of
the main components of TME, the abundance of immune
cells, especially T cells, is closely associated with tumor
progression [47]. Tregs are the major immunosuppressive
and anti-inflammatory cells that can inhibit the T-cell re-
sponse through IL-17 and IL-6 activities, leading to T-cell
exhaustion and immune escape [48, 49]. NK cells were found
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Figure 10: Relationship between the HOXs expression and anticancer drug sensitivity. (a) Differences in the estimated IC50 of sorafenib
between HCC tissues with different expression levels of HOXs; (b) correlation between the HOXs expression and IC50 of lenvatinib in NCI-
60 cancerous cell lines.

14 Journal of Oncology



to be the main antitumor cells in the liver [50]. NKTcells can
directly kill tumor cells by recognizing the CD1d antigen or
by activating NK cells, and the number of NKT cells is
positively correlated with OS and RFS of HCC patients
[51, 52]. Here, we also focused our attention on some crucial
immune response processes. Cytolytic activity (CYT) reflects
the ability of cytotoxic Tcells and NK cells to lyse tumor cells
[53]. A recent study found that higher CYT values in HCC
indicate greater immunogenicity and more favorable TME,
which leads to better prognosis [54]. ,is might be a
mechanism by which HOXA6 expression is associated with
poor prognosis. ,e absence of the costimulatory molecules
renders tumors invisible to the immune system, whereas
inhibitory molecules protect tumors from effective T cells
[55]. Chemokines are the bridge between inflammation and
tumor, and control several aspects of tumor biology, such as
immune infiltration, angiogenesis, proliferation and mi-
gration [56]. IFN response plays crucial roles in promoting
host antitumor immunity and is considered to be pivotal
components in the cancer-elimination phase of the cancer
immunosurveillance [57]. ,e expression of HLA is related
to tumor immune escape, and it is considered to act as a
tumor suppressor [58]. It can be inferred that these HOX
genes may be regulators of TME that influence the patient’s
clinical outcome by their effects on antitumor immunity.
Nevertheless, the mechanisms through which they shape the
TME remains to be further explored.

Certain limitations of our study are to be acknowledged.
First, we analyzed the expression of the HOX family genes
only at the mRNA level. ,us, it is necessary to further
investigate the role of HOXs at the protein level. Second, our
results on the molecular mechanism of HOXs need to be
verified by further experiments. We will focus on addressing
these issues in future studies.

5. Conclusions

In conclusion, HOX genes expression was generally upregu-
lated and correlated with poor prognosis in HCC. HOXA6, C6,
D9-10, and D13 are independent risk factors that might affect
patients’ prognosis through multiple pathways. ,e tran-
scription and methylation characteristics of HOXs also had
excellent diagnostic efficacy. ,erefore, the HOX family genes
might play important roles in the occurrence and development
of HCC and thus could be exploited as effective biomarkers for
HCC diagnosis and prognosis.
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