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ABSTRACT

Invasive ductal carcinoma (IDC) is a major histo-morphologic type of breast 
cancer. Histological grading (HG) of IDC is widely adopted by oncologists as 
a prognostic factor. However, HG evaluation is highly subjective with only 50%–85% 
inter-observer agreements. Specifically, the subjectivity in the assignment of the 
intermediate grade (histologic grade 2, HG2) breast cancers (comprising ~50% of 
IDC cases) results in uncertain disease outcome prediction and sub-optimal systemic 
therapy. Despite several attempts to identify the mechanisms underlying the HG 
classification, their molecular bases are poorly understood.

We performed integrative bioinformatics analysis of TCGA and several other 
cohorts (total 1246 patients). We identified a 22-gene tumor aggressiveness grading 
classifier (22g-TAG) that reflects global bifurcation in the IDC transcriptomes and 
reclassified patients with HG2 tumors into two genetically and clinically distinct 
subclasses: histological grade 1-like (HG1-like) and histological grade 3-like (HG3-
like). The expression profiles and clinical outcomes of these subclasses were similar 
to the HG1 and HG3 tumors, respectively. We further reclassified IDC into low 
genetic grade (LGG = HG1+HG1-like) and high genetic grade (HGG = HG3-like+HG3) 
subclasses. For the HG1-like and HG3-like IDCs we found subclass-specific DNA 
alterations, somatic mutations, oncogenic pathways, cell cycle/mitosis and stem cell-
like expression signatures that discriminate between these tumors. We found similar 
molecular patterns in the LGG and HGG tumor classes respectively.

Our results suggest the existence of two genetically-predefined IDC classes, 
LGG and HGG, driven by distinct oncogenic pathways. They provide novel prognostic 
and therapeutic biomarkers and could open unique opportunities for personalized 
systemic therapies of IDC patients.

BACKGROUND

Invasive ductal carcinoma (IDC), the major 
histomorphologic type of breast cancer, is diagnosed in 
180,000 women in the USA each year. The morphological 
assessment of the degree of tumor cell differentiation, 
represented by tumor histological grades (HGs), has 
attracted much attention for its potential to elucidate 

the heterogeneities of breast carcinoma (BC) due to 
its powerful prognostic capability, relative low cost, 
and simple methodology [1–5]. Moreover, HGs are 
considered to be effective for assessing tissue preference 
for metastasis and the genetic makeup of tumors [6–9]. 
Histological grading can be performed by combining cell 
morphology (nuclear polymorphism), tissue architecture 
(tubule formation) and visual assessment of the cell 
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proliferation rate (mitotic count), but prognostic value of 
the combination of these features is still being discussed 
[1–3, 5, 10].

The HG of IDC is widely adopted by oncologists 
as a prognostic factor. However, HG evaluation is 
highly subjective with only 50%–85% inter-observer 
agreements [11]. The variability for the intermediate grade 
(histologic grade 2, HG2) breast cancers (comprising 
~50% of IDC cases) is particularly evident, resulting in 
uncertain disease outcome prediction and sub-optimal 
systemic therapy.

In addition, HGs lack prognostic and predictive 
information for different intrinsic tumor subtypes 
classified as HG2 tumors, creating an uncertainty in 
cancer classification and prognosis [9, 10, 12–15]. On 
the other hand, numerous studies have shown significant 
associations between HG and patient survival as 
independent prognostic marker especially if the patients 
with HG1 and HG3 were compared [4, 6, 8, 16].

Several attempts have been made to identify the 
molecular mechanisms underlying the morphological 
characteristics of HG to improve its objectivity [1, 5, 6, 
8, 17–19]. The continuous progressive model of tumor 
aggressiveness from low-grade to high-grade tumors 
has been accepted for the last few decades [20–22]. 
Alternatively, independent oncogenic pathways have 
been suggested based on observations of the differential 
loss of the 16q in HG1 versus HG3 tumors [1, 5, 18]. 
Previous genetic studies demonstrated the loss of 16q 
in HG1 IDC [1, 5, 17] and the possibility of micro-
deletions in 16q in HG3 IDC [23]. For a detailed review 
of 16q loss frequency in different histological types of 
BC, the reader is referred to a review by Burger et al. 
[24]. However, there is still ambiguity regarding the 
intermediate HG2 tumors.

It was demonstrated that HG2 patients can be 
dichotomized based on gene expression profiles, with 
high accuracy (95%) into two genetically, and clinically 
distinct subclasses: histological grade 1-like (HG1-like) 
and histological grade 3-like (HG3-like) [6, 25, 26]. 
These subclasses, HG1-like and HG3-like, have similar 
gene expression profiles and clinical outcomes to HG1 
and HG3 tumors, respectively. The 232 genes of  grading 
classifier were involved mostly in cell cycle, p53 pathway, 
inhibition of apoptosis, cell adhesion, cell motility, stress, 
hormone response and angiogenesis [6, 25, 26].

Also, it has been argued that this genetic tumor 
aggressiveness grading classifier and its multiple 
representative 5–7 genes subsets can improve prognosis 
and therapeutic planning for BC patients diagnosed 
with tumor histologic type (HG2). Importantly, the 
patients have not been pre-selected based on any 
clinical characteristics (e.g., tumor stages, tumor size, 
ER and LN status). These re-classification results have 
been reproduced across different cohorts and treatment 
groups and strongly correlated with survival pattern of 

the re-classified tumor subgroups. Similar results were 
observed for the specific subpopulation of the BC selected 
by ER+ status [8, 27].

Collectively, genetic grade signatures can improve 
prognosis of BC patients, especially IDC patients with 
HG2 tumors, which are relatively poorly defined by 
different grading systems [6, 8, 26, 28].

Importantly, HG2 sub-classification studies 
supported the view that the low- and high- grade, defined 
via transcriptomic analysis, reflect independent patho-
biological entities (distinct cell phenotypes) rather than a 
continuum of cancer progression [6, 25, 26].

Several studies have investigated the association of 
HG systems with DNA copy number variations (CNV) 
and mutation events [29, 30], but to our knowledge, no 
studies have reported a systematic interconnection of the 
CNV and mutation patterns in the HG2 of IDC.

To develop the concept of low- and high- 
grade tumors independence, we sought to provide a 
comprehensive transcriptome characterization of the low 
genetic grade (LGG, defined in this work as HG1 and 
HG1-like) and high genetic grade, HGG (defined in this 
work as HG3-like and HG3) tumors. This is an attempt 
to improve the objectivity of molecular grading of IDCs 
classes as well as narrowing the diagnostic, prognostic 
and predictive biomarkers spaces of IDC, specifying 
the differences between the tumors of each genetically-
defined grade class. We also extend the characterization 
of these genetic classes to include stem-cell related 
genes, chromosome alterations and mutations that could 
differently drive their progression. Eventually, we discuss 
how these findings may boost our understanding of 
different cancer etiologies that lead to each genetic grade 
class and could help in the discovery of clinically-relevant 
biomarkers and improvement of current therapeutic 
strategies.

RESULTS

Feature selection methods and identification of the 
22-gene tumor aggressiveness grading classifier

We studied the gene expression data of 430 
TCGA IDC samples profiled using Agilent G4502A. 
The tumors consisted of the following histological 
grades: 32 HG1, 183 HG2 and 215 HG3 tumor samples 
(Table 1A).

In this study, we proposed that HG2 tumors are 
genetically heterogeneous and include tumors which 
oncogenic pathways could be separated into two distinct 
subclasses similar to either HG1 or HG3 tumors. To test 
this hypothesis for TCGA dataset, we applied a trained 
pattern recognition classifier to the intermediate HG2 
tumors and evaluate the ability of the classifier to 
stratify HG2 tumors into HG1-like or HG3-like tumors 
(Figure 1A).
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The workflow of our analysis is presented in 
Figure 1B. Due to the high dimensionality of the feature 
space (n = 90,797 probesets), we used a two-step analysis 
consisting of 1) feature selection procedure to reduce 
the biomarker space and 2) pattern recognition analysis 
for training a classifier to distinguish between two 
tumor classes. The number of patients with HG1 tumors 
was much smaller (32 patients) than in HG3 tumors 
(215 patients), demonstrating the imbalanced training 
set. It is known, that balanced dataset is very important 
for creating a robust and accurate training set [31]. 
To overcome the imbalance in the classes size of the 
training data, under-sampling of the majority classes were 
performed to avoid the bias in training accuracy toward 
the majority class [31].

Addressing the imbalance problem [31, 32], 
our method shuffled the 215 HG3 tumor expression 

profiles and separated them into seven non-overlapping 
(independent) subgroups (Supplementary Figure S1). 
First, our method used the prediction analysis of 
microarray (PAM) [33, 34]. The algorithm selects the 
most differentially expressed genes (DEG) (represented 
by the microarray probesets) that discriminate HG1 and 
HG3 tumors in our seven training sets. These training sets 
resulted in seven statistically reproducible classification 
signatures (The training accuracies and numbers of 
features are shown in Supplementary Table S1).

We selected 39 common probesets (corresponding 
to 22 genes) from the seven PAM-derived signatures. 
The 22 genes comprise BUB1, CAPN8, CDC45, 
CDCA5, CDCA8, CENPA, CENPN, FAM72B/FAM72A, 
KIF13B, KIF14, KIF2C, MCM10, MELK, MTFR2, 
MYBL2, NAT1, NOSTRIN, ORC6, PIF1, SHCBP1, 
TICRR,and UBE2C.

Table 1: overview of the clinical information of TCGA cohort
A

Parameter Histological grade 1 (HG1) Histological grade 2 (HG2) Histological grade 3 (HG3)

number of samples 32 183 215

ER+/ER-/NA 31/0/1 163/17/3 127/85/3

PGR+/PGR-/NA 29/2/1 145/35/3 100/111/4

HER2+/HER2-/ 
Her2(eq)/NA 1/21/7/3 22/154/4/3 46/108/29/32

Age median (SD) 59 (13.2) 60 (13.8) 56 (12.6)

stage I/II/III/IV/X/NA 9/20/2/1/0/0 37/99/34/6/5/2 27/124/52/6/6/0

LN+/LN-/NA 11/21/0 93/90/0 115/99/1

M+/M-/NA 1/31/0 5/177/1 6/205/4

B

Parameter Genetic Grade 1-like 
(HG1-like)

Genetic Grade 3-like 
(HG3-like)

Genetic Grade 2 (GG2)

number of samples 101 78 4

ER+/ER-/NA 96/5/0 63/12/3 4/0/0

PGR+/PGR-/NA 89/12/0 53/22/3 3/1/0

HER2+/HER2-/ 
Her2(eq)/NA 6/92/2/1 15/59/2/2 1/3/0

Age median (SD) 61 (13.6) 58 (14) 53.5 (17)

stage I/II/III/IV/X/NA 25/52/18/2/2/2 12/46/14/4/2/0 0/1/2/0/1/0

LN+/LN- 53/48 37/41 3/1

M+/M-/NA 2/98/1 3/75/0 0/4/0

A. A summary of clinical parameters for the 430 IDC tumors of TCGA cohort for each histological grade. B. A summary of 
clinical parameters for the 183 IDC tumors of TCGA cohort for each subclass. ER: estrogen receptor. PGR: progesterone 
receptor. HER2: human epidermal growth factor receptor 2. LN: Lymph node. M: Metastasis. NA: not available. 
eq: equivocal. SD: standard deviation. ER, PgR and Her2 status were determined using Immunohistochemistry (IHC). Tumor 
stages determined according to American Joint Committee on Cancer system (AJCC). Histological grades were estimated 
using Nottingham Histologic Score, Scarff-Bloom-Richardson grading system (SBR), or Elston grading method.
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Figure 1: Schematic overview of the gene expression-based sub-classification of histological grade 2 (HG2) samples 
into HG1-like and HG3-like. A. The basic concept of HG2 dichotomization based on the pattern recognition analysis supervised by 
the gene expression of HG1 and HG3 tumors. B. the workflow of our methodology of the sub-classification of HG2 and integrative data 
analyses of different genetic grades obtained by 22g-TAG classifier of TCGA cohort. DEGs: Differentially Expressed Genes; DAGs: 
Differentially Altered Genes; HG: Histological grades; SWS: Statistically Weighted Syndrome algorithm; PAM: Prediction Analysis of 
Microarray algorithm; LGG: Low Genetic Grades; HGG: High Genetic Grades.
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After reduction of the biomarker space to these 
39 most representative probesets, we used the statistically 
weighted Syndrome (SWS) pattern recognition algorithm 
that outperforms PAM when a small number of 
features are used for training sets [6, 26]. It controls the 
stabilization of the prediction based on re-sampling and 
performs robustly in classification of small sample size 
of datasets [26, 35]. Similar to PAM analysis, SWS was 
performed for seven training/prediction sets to address the 
size imbalance of training classes. The average accuracy 
of SWS was 90.5 ± 3.4% (with average sensitivity of 
90.2 ± 3.7%, average specificity of 91.5 ± 5.3%).

Next, during the prediction step, each HG2 tumor 
was assigned to either HG1-like or HG3-like sub-class. 
The overall prediction for each sample was based on 
the consensus agreement across the seven trained SWS 
classifiers. Consensus agreement is determined by the 
number of times a sample assigned to a given subclass 
with an assigning probability threshold (p ≥ 0.7). The 
tumor samples that showed predicted probability in an 
uncertainty zone (0.5 ± 0.2) was classified as “HG2-like” 
class. According to these criteria, 55.2% (101/183) and 
42.6% (78/183) of HG2 tumors were assigned to HG1-
like and HG3-like tumor type, respectively. The remaining 
2.2% (4/183) of HG2 tumors could not be classified 
(interpreted as ‘true HG2′ and/or erroneous class). The 
distributions of the assigning probabilities of all training-
prediction iterations are presented in Supplementary 
Figure S2. Summary of clinical information for HG2 
tumors subclasses is shown in Table 1B.

We provide a threshold of each probeset signal 
intensity value that signifies “low” or “high” expression 
level. The threshold expression values are important 
characteristics of medical classification system and they were 
listed in Supplementary Table S2A. We refer to this table as 
22g-TAG classifier. All 22g-TAG genes are differentially 
expressed between HG1 and HG3 tumors (Supplementary 
Table S2A, examples of 5 genes are shown in Figure 2A)

Comparison of the 22g-TAG classifier genes 
with 72 known signatures, including alternative 
molecular tumor grading signatures

To test the novelty of genes in 22g-TAG, we 
compared our 22g-TAG with reference lists of 72 BC gene 
signatures previously published in other studies and collated 
by our group [36, 37] (including 2 grading signatures from 
previous studies [18, 20]). Only one gene (CAPN8) can be 
considered a novel IDC-associated gene. Because most of 
22g-TAG genes have been annotated as cell cycle genes, 
often considered the main hallmark of cancer, we assumed 
that a large proportion of 22g-TAG genes would be found 
in other gene signatures (Supplementary Table S3). Indeed, 
we found that ORC6 (origin recognition complex, subunit 
6 like (yeast)) and PIF1 (5ʹ-to-3ʹ DNA helicase homolog 
(S. cerevisiae) were observed in one of the 72 IDC signature 
gene lists. Consequently, they could also be considered 

“novel” BC-related genes and potential therapeutic targets. 
CAPN8 is a protease that plays a role in membrane 
trafficking of gastric cells and protection of gastric mucosa 
[38, 39]. PIF1 plays critical roles in DNA replication, cell 
growth, G-quadruplex, and R-loops resolving [40–42]. 
ORC6 is important cell cycle-related gene involves in DNA 
replication initiation and chromosome segregation [43, 44].

Interestingly, five genes (CDC45, KIF13B, ORC6, 
SHCBP1,and CAPN8) were not present in previously 
reported molecular tumor grading signatures [18, 20]. 
MELK, MYBL2, and CDCA8 were the most common and 
were observed in 20, 18, and 16 BC signatures, respectively.

22g-TAG signature genes are potential 
prognostic markers

According to our data driven grouping (DDG) 
prognosis analysis (see Methods), all 22g-TAG genes were 
significant for patient survival (log-rank test FDR < 0.05) and 
showed consistent pattern (oncogene-like/tumor suppressor-
like) in at least three of four independent validation cohorts 
(obtained from GEO dataset IDs: GSE1456 (Stockholm), 
GSE4922 (Singapore and Uppsala), and GSE21653 
(Marseille)). Therefore, they could be considered as 
perspective prognostic markers (Supplementary Table S4). 
Moreover, the data-driven expression threshold values of 
survival prediction analysis of the genes and their mean 
expression in the low- and high-risk tumor development 
groups are significantly correlated (Kendal’s tau correlation 
p < 0.05) among at least three cohorts (Supplementary 
Figure S3). Generally, the 22g-TAG signature outperformed 
other clinical parameters in the stratification of patients into 
prognostically meaningful groups, according to univariate 
and multivariate survival analyses based on Cox-regression 
model in at least three of the four validation cohorts 
(Supplementary Table S5). Collectively, the 22g-TAG 
signature genes are potentially reliable prognostic markers.

22g-TAG signature genes are involved in cell 
cycle/mitosis and oncogenic pathways

To study the biological relevance of the 22g-TAG 
genes, we performed gene ontology (GO) enrichment 
analysis and found that these genes are strongly enriched 
in cell cycle/mitosis gene ontology categories (p < 0.01, 
Supplementary Table S6).

Furthermore, using published datasets reporting the 
lists of periodically expressed cell cycle genes [45] and 
CycleBase database [46–48] containing experimentally 
defined cell cycle genes, we found that 80% (18/22) of 
22g-TAG genes are periodically over-expressed in the 
cell cycle and show successive expression peaks within 
the cell cycle (mostly in the G2/M phase, Figure 2B, 
Supplementary Table S2B).

To further explore the relationships and 
interconnectivity among the signature genes and other 
cancer related genes, we conducted network analysis 
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Figure 2: Functional and network analyses of 22g-TAG signature. A. The differences in gene expression profiles between HG1-
like and HG3-like samples for 5 genes from 22g-TAG signature. B. The peak expression of the 5 genes at the G2/M phase of the cell cycle. 
P is the p-value, which assesses the periodicity of a gene during the cell cycle according to the Cyclebase database. C. Network analysis of 
22g-TAG signature genes using MetaCore network analysis tool. D. Kaplan-Meier curves of LGG and HGG patients’ disease-free survival 
classified based on qPCR data of 22g-TAG genes E. Examples of the difference in qPCR-based expression for 2 genes of 22g-TAG for all 
histological and genetic grades of IDC patients. F. Heatmap of Kendall tau correlation coefficients between 22g-TAG genes using their 
qPCR-based relative expression profiles.
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using the MetaCore software (Thomson Reuters, St. 
Joseph, MI). MetaCore includes manually curated 
knowledge database about annotated genes, their products 
and functional interactions. The 22g-TAG gene symbols 
were used as the seed nodes for “extension” of the gene 
network via finding the shortest path between any two 
genes of seed node set with maximum two intermediate 
nodes (genes or their products). Results showed strong 
association of 22g-TAG genes with key cancer-related 
genes such as TP53, AURKA, TOP2A, E2F1, and MYC, 
and that this network was generally associated with the 
mitotic cell cycle biological process (p = 9.1 × 10−31). 
KIF2C and MYBL2 represent the convergence and 
divergence hubs, respectively for this network highlighting 
their role in IDC aggressiveness (Figure 2C). Two genes 
of 22g-TAG (KIF2C and NAT1) could be potentially 
druggable genes according to the drug-gene interaction 
database (DGIdb) [49], whereas 10 genes of 22g-TAG 
associated network are druggable (AR, AURKA, AURKB, 
CDK1, CDK2, MYC, PLK1, SMAD2, TOP2A, and TP53). 
Collectively, these analyses suggest that most 22g-TAG 
genes are molecularly interconnected and could act in 
concert with other genes during mitosis, specifically, 
during G2/M phases.

Quantitative PCR-based validation of the 
22g-TAG genes as a grading signature in an 
independent cohort

For further confirmation of the validity of the 
22g-TAG signature as a tumor grading and prognostic 
signature, qPCR was conducted on 84 RNA samples of BC 
patients obtained from OriGene (see Methods). CT values 
for each gene were obtained and normalized against 
endogenous control and normal tissue samples (n = 4) 
using the 2−∆∆Ct method [50]. Obtained fold change values 
were used for the re-classification of HG2 samples using 
SWS algorithm. HG1 (n = 8) and HG3 (n = 48) tumors 
were used for training, and HG2 tumors (n = 24) were used 
as a class discovery set. Again, we used under-sampling to 
address the training classes’ size imbalance. For that, HG3 
samples were shuffled and split into 3 non-overlapping sets 
of 16 samples each. Three training-prediction sets were 
performed using SWS algorithm. HG2 tumors were finally 
sub-classified based on the consensus sub-classification 
of the three prediction iterations. The average training 
accuracy is 83.3% (sensitivity: 66.6 ± 7.2%, specificity: 
91.7± 3.6%).

HG2 tumors (n = 24) were re-classified into 
HG1-like (n = 10) and HG3-like (n = 14) tumors. Because 
of the small number of HG2 samples, the prognostic 
survival levels of HG1-like and HG3-like patients were 
not significantly different. However, one of the HG1-like 
patients (10%) versus four of the HG3-like patients 
(28.6%) experienced a tumor relapse during the follow-up 
period. Furthermore, the survival difference between 

patients dichotomized onto low grade (HG1+HG1-like) 
and high grade (HG3-like+HG3) tumors is significant 
(log-rank test p = 1.9 × 10−2, Figure 2D).

Remarkably, all 22g-TAG genes show consistent 
expression trends across molecular grades according 
to both qPCR and microarray gene expression datasets 
(Supplementary Figure S4). Boxplots of the relative 
expression across different genetic grades for two genes 
are shown in Figure 2E. Expressions of all genes 
significantly correlate with each other based on qPCR data. 
Interestingly, oncogene-like genes correlate positively 
with each other but negatively with tumor suppressor-
like genes, and vice versa (Figure 2F). Collectively, the 
sub-classification of HG2 into biologically and clinically 
meaningful classes by 22g-TAG signature genes is 
reproducible across different patients’ cohorts and gene 
expression platforms.

Now, after we have assessed the validity of 22g-TAG 
as grading and prognostic signature, we will study the 
IDC/HG2 subclasses resulted from this signature.

HG1-like and HG3-like tumors have distinct 
transcriptome profiles

We characterized HG1-like and HG3-like tumors, 
resulted from 22g-TAG, using integrative genomics and 
transcriptomics data analysis (Figure 1B). Starting with 
global gene expression profiles, we identified and studied 
differentially expressed genes (DEG) between HG1-like 
(n = 101) and HG3-like (n = 78) tumors. We selected 4,933 
differentially expressed probesets based on the fold-changes 
(FC ≥ 1.25 or FC ≤ 0.75) and the statistical significance 
of two-tailed Wilcoxon test (Benjamini-Hochberg (FDR) 
< 0.01). These probeset signals correspond to RNA 
transcribed by 2147 genes: 887 genes (777 protein-coding, 
26 pseudogenes, 33 ncRNA, 1 snoRNA, and 50 unknown 
transcripts) and 1,260 genes (1099 protein-coding, 
83 pseudogenes, 18 ncRNA, and 60 unknown transcripts) 
were down-regulated and up-regulated, respectively, 
in HG3-like tumors with respect to HG1-like tumors 
(Supplementary Table S7).

GO enrichment analysis for the down-
regulated genes revealed significant association 
with cell adhesion (Benjamini p-value = 5.5 × 10−5), 
extracellular matrix cellular component (Benjamini  
p-value = 4 × 10−22), focal adhesion pathway (Benjamini 
p-value = 8.5 × 10−7), cytoskeleton organization 
(Benjamini p-value = 7.7 × 10−5), and response to hormone 
stimulus (Benjamini p-value = 7.3 × 10−4). Up-regulated 
genes are strongly associated with the cell cycle 
(Benjamini p-value = 2.5 × 10−66), M phase (Benjamini 
p-value = 1.1 × 10−56), chromosome segregation (Benjamini 
p-value = 5.5 × 10−23), DNA repair biological processes 
(Benjamini p-values = 5.6 × 10−16), DNA replication 
pathway (Benjamini p-values < 1.2 × 10−17) and are 
related to the chromosome, kinetochore, and microtubule 



Oncotarget36659www.impactjournals.com/oncotarget

cellular components (Benjamini p-values < 1.1 × 10−6). 
Interestingly, the gene locations of up-regulated genes 
are enriched in specific chromosomes, such as chr8, 
chr17, chr20, and chr22 (Benjamini p-values < 3 × 10−5, 
Supplementary Table S8).

We provide a quantitative measurement of the 
number of expressed genes per sample which expressions 
are deviated from reference (genes are represented by 
their assigned probesets). This reference is defined by 
the median values of the same genes in normal tissue to 
obtain a fold change profile with respect to the reference. 
Using fold change thresholds (FC ≥ 1.25 or FC ≤ 0.75) we 
count the number of genes that satisfied these criteria per 
sample. We call these genes as reference-deviated genes 
(RDG). We found that HG3-like tumors have significantly 
larger number of RDG than HG1-like tumors (p = 3 × 10−8, 
Figure 3A). Therefore, on the genome scale, HG1-like and 
HG3-like tumors have distinct gene expression profiles 
that were associated with distinct molecular functions 
when compared with each other and also with normal 
breast tissue.

HG1-like and HG3-like tumors are distinct in 
their genomic constitution

We studied HG1-like and HG3-like tumors at the 
DNA level to characterize the DNA copy number variation 
(CNV) and point mutation events of each tumor subclass 
(Figure 1B). We studied Affymetrix human genome-wide 
SNP 6.0 array data for HG1-like (n = 101) and HG3-like 
(n = 77) tumors that were also profiled by gene expression. 
The CNV data of each individual sample were analyzed 
by Partek® Genomics Suite™ software (see Methods). We 
transformed the CNV signal intensities into log2 values 
with respect to diploid status (i.e. transformed CNV signal 
intensity of diploid locus = 1). To determine whether a 
gene is amplified or deleted in a given tumor, thresholds of 
1.25 for gene gain and 0.75 for gene loss were applied to 
CNV signal intensities of HG1-like and HG3-like tumors. 
As a primary analysis, to detect the differences between 
HG1-like and HG3-like tumors, the number of altered 
genes (gain or loss) in each sample was determined based 
on the previously mentioned thresholds. HG1-like tumors 
exhibited fewer altered genes (AG) per sample than 
HG3-like tumors. This difference in the overall number of 
AG was assessed statistically using two-tailed Wilcoxon 
test (p =1.2 × 10−7, Figure 3B). This significant difference 
was also observed in both the loss and gain of genomic 
regions (p = 9.5 × 10−7 and 7.8 × 10−6 for gene loss and 
gain, respectively; Supplementary Figure S5A).

Next, we studied 25,172 unique gene symbols 
(annotated genes resulting from segmentation analysis, 
see Methods) and identified individual genes that exhibit 
differential copy number status between HG1-like and 
HG3-like tumors. Differentially altered genes (DAG) 
were selected based on the following criteria: a) the 
median value of CNV intensity of either HG1-like or 

HG3-like tumors passes the thresholds for gain or loss 
(1.25 and 0.75, respectively), and b) the CNV profiles 
of HG1-like and HG3-like tumors are significantly 
different (p < 0.05). Our results revealed 1,214 DAG 
(925 protein-coding, 242 ncRNA, 32 pseudo, 14 snoRNA, 
and 1 snRNA, Supplementary Table S9). These genes 
include well-known altered genes important for BC 
initiation, development, and progression. For instance, 
the TP53 gene, located on chromosome 17p, is deleted 
in 37% (37 of 101 samples) of HG1-like tumors and 64% 
(49 of 77 samples) of HG3-like tumors.

Further analysis of the genes’ loci showed that many 
of these altered genes are enriched in a few chromosomes. 
Specifically in HG1-like tumors, there is a deletion of part 
of 16q. In contrast, HG3-like tumors showed gains in 8q, 
17q, and 20q and losses in 8p, 11q, and 17p (Table 2A). It 
is notable that the chromosomes that harbor the DAG are 
the same chromosomes in which the DEG are enriched 
(chromosomes 8, 17, and 20).

Therefore, genes within these chromosomes could 
be considered as the major players in initiation and 
maintenance of differential level of malignancy that 
distinguish between HG1-like and HG3-like tumors at 
both the DNA and mRNA levels.

HG1-like and HG3-like tumors are distinct in 
their DNA point mutational profiles

Also, we conducted DNA point mutation analysis 
to study the mutations counts in HG1-like (n = 98) and 
HG3-like (n = 78) tumors (Figure 1B). We calculated 
the numbers of mutated sites (mutations counts) for 
all the genes in each tumor. Subsequently, we assessed 
the difference in the mutations counts in HG1-like and 
HG3-like tumors using two-tailed Wilcoxon test. We 
found that HG1-like tumors generally exhibited lower 
mutations counts than HG3-like tumors (p = 2.2 × 10−6, 
Figure 3C). This difference was consistent for the three 
most frequent types of mutations in our data- missense, 
nonsense, and silent mutations (p = 3.2 × 10−6, 6.4 × 10−4, 
and 1 × 10−5, respectively, Supplementary Figure S5B). 
The two most frequently mutated genes are TP53 and 
PIK3CA. These two genes are the only genes that show 
a significant association in their mutational status with 
the sub-classification of HG2 tumors, as assessed using 
Fisher’s exact test of independence. As we expected, 
TP53 showed significantly lower mutations counts in 
HG1-like tumors (12 of 98 samples; 12.5%) than in HG3-
like tumors (28 of 78 samples; 35.9%), (p = 1.5 × 10−4). 
However, PIK3CA exhibited higher mutations counts in 
HG1-like tumors (44 of 98 samples; 44.9%) than in HG3-
like tumors (21 of 78 samples; 26.9%), (p = 1.4 × 10−2) 
(Figure 3D).

These results suggest essential differences in 
mutations frequency in TP53 and PIK3CA provide 
mutagenesis background, strongly discriminating HG1-
like from HG3-like tumors.
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Reclassified HG1-like and HG3-like tumors from 
the HG2 tumors are genetically comparable to 
HG1 and HG3 tumors, respectively

Figures 3A, 3B, 3C, and Supplementary Figure S5 
show that there is no statistically significant differences 
between HG1 and HG1-like tumors as well as between 
HG3-like and HG3 with respect to RDG, AG, and 
mutation counts in all cases (p-values > 0.05). Moreover, 
no DEG between HG1 and HG1-like were detected 
whereas 1,837 DEG were detected between HG3-like and 
HG3 but these genes did not show significant enrichment 
in any biological process, cellular component, or 
pathway for the up- or down-regulated genes (Benjamini 

p-values > 0.01). Only a few molecular functions showed 
significant enrichment and are associated with ATP 
binding. Next, we performed unsupervised hierarchical 
clustering (HC) of expression profiles of all IDC presented 
in TCGA database. Only 4,933 probesets that were 
identified as differentially expressed expression signal in 
the comparison of HG1-like and HG3-like tumors were 
used for HC analysis. Using Euclidean distance and the 
average linkage agglomerative method, HC revealed 
two major clusters: 78% (104 of 133 samples) of HG1 
and HG1-like tumors were enriched in one cluster, and 
89% (261 of 293 samples) of HG3 and HG3-like tumors 
were enriched in the other cluster (Supplementary 
Figure S6). Large and positive value of Cohenʼs Kappa 

Figure 3: Major genomic and transcriptomic variations between subclasses of IDC determined by 22g-TAG 
classifier. A. Box plots of the number of reference deviated genes (RDG) per sample for histological and genetic grades of IDC associated 
with 22g-TAG classifier. B. Box plots of the numbers of altered genes (AG) per sample for histological and genetic grades of IDC associated 
with 22g-TAG classifier. C. Box plots of mutations count per sample for histological and genetic grades of IDC associated with 22g-TAG 
classifier. The differences in the numbers of RDG, altered genes or mutations counts between different combinations of genetic grades were 
assessed statistically using two-tailed Wilcoxon test. D. Bar plots of mutations counts per sample for different genetic grades for TP53 and 
PIK3CA. E. Bar plots of mutations counts per sample in LGG and HGG tumors for 12 genes that are correlated significantly with LGG and 
HGG classification. P is p-value of Fisher exact test.
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correlation coefficient suggests a high similarity between 
classification results of SWS and HC methods (κ = 0.67, 
p = 3.1 × 10−43; Supplementary Table S10).Thus, the 
results confirmed the 2-clusters pattern of all IDC derived 
due to 22g-TAG classifier.

We studied the DAG between HG1-like and HG1 
tumors. Using the same criteria used for HG1-like and 
HG3-like tumors, we found only 12 significant DAG 
between HG1-like and HG1 tumors; 11 genes are on 
chromosome 16, and one is on chromosome 1 (Table 2B). 
Similarly, for HG3-like and HG3 tumors, we found 
680 significant DAG enriched primarily in chromosomes 
11, 16, and 17 (Table 2C). These results suggest more 
diversity between HG3-like and HG3 tumors than between 
HG1-like and HG1 tumors.

Generally, 16q loss occurred more frequently in 
HG1 and HG1-like tumors compared with HG3-like and 
HG3 tumors. For example, an important centromeric 
protein-encoding gene located on 16q, CENPT, exhibited 
loss in 88%, 70%, 54.5%, and 46.7% of HG1, HG1-like, 
HG3-like, and HG3 tumors, respectively (Fisher-exact 
test p = 1 × 10−26) and thus, the CNV of this gene locus 
could be used as structural biomarker of the aggressiveness 
of IDC.

Finally, we observed no correlation between HG1 
and HG1-like according to the mutation status of all genes 
in the dataset. Similarly, for HG3-like and HG3 tumors, 
no genes showed any significant correlation between 
their mutation status and grade classification with the 
exception of TP53 ( p-value = 0.016). Thus, our results 

Table 2: summary of differentially altered genes (DAG) of copy number variaiton
A) chromosome Number of genes chromosome bands

chr8 472 8p23.3, 8p23.1, 8p21.3–8p12, 8q13.1–8q24.3

chr11 334 11q21–11q25

chr17 333 17p13.3–17p11.2,17q23.1

chr16 45 16q12.1–16q13

chr20 20 20q13.13–20q13.2

chr1 4 1q21.1–1q21.3

Total 1208 –

B) chromosome Number of genes chromosome bands

chr16 11 distributed in q arm

chr1 1 –

Total 12 –

C) chromosome Number of genes chromosome bands

chr11 335 11q21–11q25

chr16 286 16q21–16q24.3

chr17 58 17p13.3–17p13.2

chr7 1 –

Total 680 –

D) chromosome Number of genes chromosome bands

chr1 1 –

chr16 971 16p13.3–16p11.2, 16q11.216q24.3

chr17 192 17p13.2–17p11.2

chr8 694 8p23.3,8p23.1–8p12,8q12.2–8q24.3

Total 1858 –

Summary of number of genes and their genomic location that showed differentially altered copy number profile across 
different genetic grades. A. the DAG between HG1-like and HG3-like tumors. B. the DAG between HG1-like and HG1 
tumors. C. the DAG between HG3-like and HG3 tumors. D. the DAG between LGG and HGG tumors.
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from the comparisons of HG1-like with HG1 tumors as 
well as HG3-like with HG3 tumors from the perspectives 
of transcript expressions, CNV or mutations revealed the 
relative homogeneity of HG1/HG1-like tumors and that 
of HG3/HG3-like tumors. Overall, these findings suggest 
multi-layered molecular dichotomization of IDC into LGG 
and HGG classes, predetermined by 22g-TAG classifier, 
specific patterns of DNA alterations and point mutations.

Grading reclassification of IDC tumors correlates 
with intrinsic molecular subtypes and 16q loss

The intrinsic subtypes information of the tumors 
was obtained from TCGA network [51], of which PAM50 
model [52] was used to achieve the classification for each 
sample. A contingency table of the frequency of 5 different 
subtypes (normal-like, luminal-A, luminal-B, basal-like, 
and HER2-enriched subtypes) versus the 4 classes of 
grading classification (HG1, HG1-like, HG3-like, and 
HG3) was generated. Luminal-A tumors are enriched and 
distributed in HG1 and HG1-like tumors (low genetic 
grade/LGG), whereas luminal-B, HER2-enriched, and 
basal-like tumors are enriched in HG3 and HG3-like 
tumors (high genetic grade/HGG). The association of 
LGG with luminal-A/normal-like and that of HGG with 
luminal-B/HER2-enriched/basal-like tumors is significant 
(Chi-square p-value = 4.3 × 10−39, Table 3A).

In parallel, because of the small number of 
normal-like samples in TCGA cohort, we performed 
a similar analysis for the grading classification of the 
Uppsala and Stockholm cohorts studied previously 
by Ivshina et al., in which HG2 tumors were sub-
classified based on their 5-genes grading signature [6]. 
Therefore, we compared the reclassified LGG and 
HGG tumors of the Uppsala and Stockholm cohorts 
with their intrinsic molecular subtypes (Table 3B). The 
results showed that 73.7% of LGG tumors (177 of 240 
samples) were strongly associated with normal-like and 
luminal-A tumor subtypes. In contrast, 80% of HGG 
(124 of 155 samples) tumors are strongly associated 
with luminal-B, ERBB2+, and basal molecular tumor 
subtypes (Chi-square p-value = 2.8 × 10−45). The 
associations obtained from independent analyses of both 
TCGA and the Uppsala/Stockholm data are consistent 
(Table 3A and 3B).

To analyze the homogeneity of HG1 and HG1-
like tumors with respect to intrinsic subtypes, we 
performed a chi-square test of homogeneity between 
HG1 and HG1-like subgroups and the enriched intrinsic 
molecular subtypes within them (p > 0.05, Table 3B). 
The lack of statistical significance suggests that HG1 
or HG1-like subclasses could be similar. Similar results 
were observed for HG3 and HG3-like tumors (p > 0.05, 
Table 3A and 3B). Together, the homogeneity between 
HG1-like and HG1 tumors and the homogeneity between 
HG3-like and HG3 tumors seems to suggest the lack of a 

distinct intermediate grade between LGG and HGG. These 
results also provide plausible evidence to supporting the 
unlikelihood of inter-grade progression from the LGG to 
HGG classes.

Interestingly, this current subtype grouping was 
further corroborated by a study performed previously 
using a different classification method based on the 
expression of genes located on 16q [53], further suggesting 
that our sub-classification may also be associated with 16q 
copy number variation status.

Gene expression, copy number variation, and 
mutation data provide a molecular basis for 
the genome wide re-classification of IDC into 
clinically distinct LGG and HGG tumor classes

We considered LGG and HGG tumor classes as 
the two major classes of IDC, which are supposed to 
have distinct genomic background and perhaps distinct 
oncogenic pathways, cellular functions, and therapeutic 
specificity. Therefore, we performed similar analyses 
of gene expression, CNV, and point mutations for these 
major classes (LGG n = 133 and HGG n = 293).

For DEG, we selected 14,357 (16% of 90,797 
total probesets) differentially expressed probesets 
corresponding to 5,691 genes. Of these, 2,618 genes 
(2,285 protein-coding, 99 pseudogenes, 101 ncRNA, 
2 snoRNA, and 131 unknown) and 3,073 genes (2,594 
protein-coding, 187 pseudogenes, 84 ncRNA, 2 snoRNA, 
and 206 unknown) are down- and up-regulated, 
respectively, in HGG tumors with respect to LGG tumors 
(Supplementary Table S11).

GO functional enrichment analysis for down-
regulated genes showed significant associations with 
cell adhesion (Benjamini p-value = 5.34 × 10−11), 
response to steroid hormone stimulus (Benjamini 
p-value = 3.2 × 10−5) biological processes, extracellular 
matrix and basement membrane cellular components 
(Benjamini p-value < 1.4 × 10−3), and with PDGF 
signaling pathway (Benjamini p-value = 3.9 × 10−3, 
Supplementary Table S12). Up-regulated genes are 
associated with cell cycle, chromosome segregation, 
and DNA replication biological processes (Benjamini 
p-value < 1.3 × 10−14) and involved in kinetochore 
and spindle microtubule cellular components 
(Benjamini p-value < 1.9 × 10−3), and the genes 
are strongly enriched among the genes expressed 
in epithelial tissues (Benjamini p-value 2.7 × 10−12, 
Supplementary Table S12). It is noteworthy that the 
up-regulated genes in HGG tumors are significantly 
enriched on chromosomes 2, 8, 16, 20, and 22 
(Benjamini p-value < 1.4 × 10−4). Furthermore, HGG 
tumors have higher number of RDG than in LGG 
tumors (p = 2.8 × 10−13, Figure 3A). The high number 
of differentially expressed genes and the functional 
and chromosomal enrichment of these genes indicate 
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essential distinct genomic and transcriptomic profiles of 
LGG and HGG tumors.

For CNV data, we compared the number of AG 
in the LGG and HGG tumor subclasses. The results 
revealed that the difference in AG between LGG 
and HGG is significant (p = 3.7 × 10−16, Figure 3B). 
Furthermore, these patterns were also observed when 
deleted or amplified genes were analyzed separately 
(Supplementary Figure S5A). In all cases, there were 
more AG in the HGG than in the LGG tumors (median 
HGG: 3,565 genes per sample; LGG: 1,875 genes 
per sample).

Next, DAG analysis between LGG and HGG 
revealed 1,858 DAG (1,432 protein-coding, 347 ncRNA, 

61 pseudo, 17 snoRNA, and 1 snRNA, Supplementary 
Table S13) enriched in a few chromosomes (Table 2D). 
Specifically, 52% of the DAG (971 of 1,845 genes) are 
located on chromosome 16. Visualization of the copy 
number variation status across the chromosome arms 
showed that in LGG, there is a gain of 16p and deletion 
of 16q whereas HGG tumors showed gain of 8q and loss 
of 8p and 17p (Figure 4A). Our results provide plausible 
evidence to support the hypothesis that LGG and HGG 
tumors are distinct at the genotype level. In particular, 
the deletion of 16q in the LGG tumors and the lack of 
deletion of 16q in the HGG tumors support the model of 
independent tumor progression into low or high grades. It 
is noteworthy that both DAG and DEG between LGG and 

Table 3: the association of histological grades sub-classification and intrinsic subtypes
A) TCGA cohort LGG HGG

Intrinsic Subtypes HG1 HG1-like HG3-like HG3

Normal-like 0 (0%) 0 (0%) 0 (0%) 5 (2.8%)

Luminal-A 27 (87.1%) 92 (91.1%) 21 (26.9%) 33 (18.6%)

Luminal-B 4 (12.9%) 8 (7.9%) 32 (41%) 62 (35%)

Basal-like 0 (0%) 0 (0%) 8 (10.3%) 42 (23.7%)

ERBB2+ 0 (0%) 1 (1%) 17 (21.8%) 35 (19.8%)

Total 31 (100%) 101 (100%) 78 (100%) 177 (100%)

Chi-square test of homogeneity within HG3-
like and HG3 tumors p-value = 0.06

Chi-square test of independence between LGG and HGG tumors versus Normal-like, Luminal 
A as one class and Luminal B, Basal-like, HER2-enriched tumors as another class p-value = 
4.281E-39

B) Uppsala and 
Stockholm cohorts

LGG HGG

Intrinsic Subtypes HG1 HG1-like HG3-like HG3

Normal-Like 41 (37.3%) 43 (33.1%) 3 (5.6%) 1 (1%)

No Subtype 13 (11.8%) 23 (17.7%) 4 (7.4%) 1 (1%)

Luminal-A 43 (39.1%) 50 (38.5%) 12 (22.2%) 10 (9.9%)

Luminal-B 4 (3.6%) 6 (4.6%) 15 (27.8%) 27 (26.7%)

ERBB2+ 6 (5.5%) 7 (5.4%) 9 (16.7%) 20 (19.8%)

Basal-like 3 (2.7%) 1 (0.8%) 11 (20.4%) 42 (41.6%)

Total 110 (100%) 130 (100%) 54 (100%) 101 (100%)

Chi-square test of homogeneity within HG1-
like and HG1 tumors p-value = 0.43

Chi-square test of homogeneity within HG3-
like and HG3 tumors p-value = 0.25

Chi-square test of independence between LGG and HGG tumors versus Normal-like, Luminal-A as 
one class and Luminal-B, Basal-like, HER2-enriched tumors as another class p-value = 2.8e-45

Breast cancer intrinsic subtype stratification according to histological and genetic grade classification of TCGA A. Uppsala, 
and Stockholm B. Breast cancer cohorts:Low-genetic grade LGG (HG1+HG1-like) and high-genetic grade HGG (HG3-
like+HG3) are considered two major genetically distinct classes of BC.
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HGG tumors share the enrichment in chromosome 8 and 
16 (Table 2D, Supplementary Table S12).

Based on our analysis of somatic mutation 
profiles, we found that LGG tumors have significantly 
fewer mutations than HGG tumors. Figure 3C shows a 
significant difference between LGG and HGG tumors 
(Wilcoxon p-value = 3.8 × 10−13). The three types of 
mutations (missense, nonsense, and silent) show the 
same trend in the difference in mutations per sample 
across genetic grades (Supplementary Figure S5B).

The mutation status of TP53 and PIK3CA show 
a significant correlation with the new classification into 
two major genetic classes (Fisher’s exact test p-value for 
TP53 = 8.3 × 10−15, and for PIK3CA = 6.1 × 10−7). For TP53, 
the frequency of mutations in this gene consists of the 10% 
(14/130) in the LGG tumors and the 48% (137/284) in the 
HGG tumors. This correlation is positive regarding to HGG. 
Inversely, for PIK3CA the frequency of mutations in the 
gene consists of the 48%(62/130) in the LGG tumors and 
23%(67/284) in the  HGC tumors, suggesting the negative 
correlation relatively HGC. Other 10 genes also show 
significant correlation with the genetic grading into two 
major classes (Fisher’s exact test p < 0.05) where 2 genes 
(MUC4, TTN) are highly mutated in HGG tumors whereas 
8 genes (CBFB, CTCF, MAP3K1, CHD8, DYSF, DNAH1, 
MAP2K4, GATA3) are highly mutated in LGG tumors 
(Figure 3E). Specifically, the high mutation rate of the genes 
in specific regions of LGG tumor cells with respect to HGG 
tumor cells supports the independence of the oncogenic 
pathways hypothesis for LGG and HGG tumors.

DNA copy numbers of the differentially 
altered genes are strongly associated with their 
corresponding gene expression profiles

To assess the mechanistic role of DAG in cancer 
progression, we analyzed the effect of the CNV of 
each gene on its gene expression profile. A correlation 
analysis was conducted between the mRNA profile 
and the corresponding CNV profile for each gene 
(see Methods). Interestingly, RNA expression and 
corresponding CNV were significantly correlated for 
approximately 52% of the DAG (FDR <0.01, 976 
of 1,845 genes). Moreover, the DAG (1,845 genes) 
have stronger correlation with their gene expression 
profile compared with non-differentially altered genes 
(non-DAG). Non-DAG, (n = 23,327) and randomly 
matched copy number/expression (background/
control) (Figure 4B). Wilcoxon test shows a significant 
difference between the correlation coefficients of the 
DAG (median = 0.34) and non-DAG (median = 0.24) 
(p = 4.3 × 10−105); the DAG tend to have stronger 
positive correlations which reflect the importance of the 
CNV of these genes in driving their gene expressions 
that lead to functional distinction between LGG and 
HGG tumors.

Chromosome 22 copy number variation 
is a novel indicator of LGG and HGG 
independence

Generally, a loss of genetic material in low grade 
tumors but not in high grade represents the striking 
evidence for the independence of the low- and high- 
grade oncogenic pathways (e.g. 16q loss). In addition 
to the loss of 16q in low-grade tumors, 22q shows low 
CNV signal intensities for LGG tumors compared with 
HGG tumors. Although the median values of CNV 
signal intensities for LGG tumors do not pass the 
threshold of copy number loss, the difference in copy 
number between LGG and HGG is significant. This 
difference is notable for genes located downstream 
of the centromeric region and at the sub-telomeric 
region (Figure 4C). Generally, LGG tumors have a 
lower 22q copy number than do HGG tumors (Wilcoxon 
test p-value = 4 × 10−179), as shown in a cumulative 
distribution of all of the 22q genes CNV intensities 
in Supplementary Figure S7. Collectively, observed 
patterns of 22q CNV alterations provide plausible 
evidence to support the hypothesis that the oncogenic 
pathways related to the LGG and HGG gene expression 
phenotypes are independent.

DNA copy number variation reflects sub-
classification of HG2 tumors

We studied the discriminative potential of the CNV 
for classifying histological grades. DAGs between HG1 
and HG3 tumors were determined using the same criteria 
used previously for the selection of DAG. We obtained 
1,486 genes localized on 16p, 16q, 17p, 8p, and 8q. Next, 
we selected the top gene from each chromosome arm that 
has the minimum Wilcoxon test p-value as a representative 
marker for its chromosome arm CNV event. Therefore, 
5 genes (LOC286114 for 8p, MYC for 8q, POLR3E 
for 16p, HERPUD1 for 16q, and ZNF18 for 17p) were 
selected for subsequent class discovery analysis. Using 
SWS algorithm, the classifier was trained using HG1 and 
HG3 tumors. Similar to the gene expression data, HG3 
tumors were shuffled and divided into 7 non-overlapping 
groups, and 7 training-prediction subsets were performed. 
The average classification accuracy was 77 ± 4.3%. HG2 
tumors were sub-classified into HG1-like and HG3-like 
tumors in each training-prediction subset. Each HG2 
sample was assigned to a new subclass according to the 
consensus classification in all 7 classifiers. According to 
these criteria, 93 samples were classified as HG1-like 
(67 of 93 samples matched with gene expression-based 
HG1-like samples), and 73 samples were classified as 
HG3-like (42 of 73 samples match with gene expression-
based classified HG3-like samples). Sixteen samples 
showed intermediate assigning probabilities and were 
considered HG2. We have found significant positive 
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Figure 4: Copy number variation visualization of few chromosomes in which the differentially altered genes between 
LGG and HGG are enriched. A. Copy number variation for chromosomes 8, 16, and 17. For each chromosome, three bars are 
shown: - The upper bar is a plot of the negative log p-value of the Wilcoxon test per gene against its transcription start site. The Wilcoxon 
test assesses the difference in CNV profile between LGG and HGG tumors for each gene. -The middle bar is the median values of the 
CNV signal intensities of LGG (green) and HGG (red) tumors per gene against its transcription start site. - The lower bar is the ideogram 
of the corresponding chromosome (centromere in red). B. The distributions of Kendall’s tau correlation coefficients between CNV and 
corresponding gene expression of differentially altered genes between LGG and HGG tumors (red), non-differentially altered genes 
(remaining genes in the genome, blue), and a random match between the CNV profile and gene expression profile as a control distribution 
(n represents number of different combinations of matching the CNV profiles of genes with their expression profiles of multiple probesets). 
C. copy number variation visualization of chromosome 22.
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agreement between the classifications of HG2 tumors 
based on gene expression and copy number variation data 
(Cohen’s kappa coefficient = 0.32, p-value = 7.4 × 10−5, 
Supplementary Table S14). These results indicate that our 
classification of IDC tumors into LGG and HGG tumors 
can be achieved at genomic and transcriptomic level. 
However, the agreement between the mRNA-based and 
DNA-based classification is moderate, perhaps due to 
the differences in mechanisms of regulation at these two 
levels of molecular organization of gene expression.

The LGG and HGG grading classification is 
associated with the differential expression of 
stem cell genes

To relate the grading classification with tumor 
stemness, we investigated whether the genes associated 
with stem cells were enriched among DEG between HG1-
like and HG3-like samples. We used Cancer Genome 
Anatomy Project data, for which serial analysis of gene 
expression (SAGE) was used to study genes expressed 
in 21 embryonic stem cell lines. Interestingly, all gene 
lists related to the 21 stem cell were over-represented in 
the up-regulated genes in HG3-like tumors (Benjamini 
p-value <8.3 × 10−24, Supplementary Table S15A). 
Moreover, we checked the discriminative capability of the 
stemness-associated genes in the sub-classification of HG2 
samples. We extracted the common genes expressed in all 
21 stem cell lines independent from the grading associated 
genes. We obtained 106 genes that are expressed in all the 
studied 21 stem cell lines (Supplementary Table S15B). 
Subsequently, we used unsupervised hierarchical 
clustering on the TCGA gene expression profile of these 
genes using Euclidean distance for similarity measurement 
and average linkage as agglomerative method. The 
results showed a formation of two major clusters. We 
found strong correlation between these two clusters and 
the grading classifications of LGG and HGG (Cohenʼs 
Kappa correlation = 0.57, p = 3.3 × 10−31, Supplementary 
Table S16, Supplementary Figure S8). The concept of 
distinct precursors of LGG and HGG tumors provides a 
plausible explanation for these results.

DISCUSSION

Our integrative analysis and intrinsic subtype 
distributions within HG2 tumors demonstrate the strong 
molecular distinction between HG1-like and HG3-like 
tumors and their comparable genetic profiles with HG1 
and HG3 tumors, respectively. Based on these similarities, 
we considered HG1-like and HG1 tumors to be LGG 
tumors, and similarly, we considered HG3-like and HG3 
tumors to be HGG tumors. We tested the hypothesis that 
LGG and HGG tumors are the two major genetically 
predetermined classes of breast IDC and that they have 
independent oncogenic pathways. Similarly, the distinction 

between LGG and HGG tumors was supported based on 
integrative data analysis. We found 4,879 protein-coding 
genes that were differentially expressed between LGG and 
HGG tumors, which represent 23.2% of the total protein-
coding genes annotated in the genome. This systemic 
shift in the transcriptomic program implies that there are 
independent oncogenic pathways that dichotomize IDC 
tumors into these two subtypes. These two oncogenic 
pathways are distinguished primarily in cell proliferation 
and cell adherence phenotypes.

Because mRNA expression is temporally regulated 
during the cell cycle and differentiation, justifying molecular 
grading at the DNA level is an essential step to understanding 
tumor heterogeneity and the independence of LGG and HGG 
tumor progression. While an association between DNA copy 
number variation (CNV) and histological grades is expected 
because of the inclusion of the mitotic index and nuclear 
polymorphisms in histological grading systems [54], this 
association has not been explored using large cohorts and 
high-resolution techniques. DNA copy number variations 
and point mutations are the major genetic changes that drive 
tumor development. Generally, we show that the number of 
altered genes is much higher in HGG tumors than in LGG 
tumors. The DAGs discriminating between LGG and HGG 
tumors are enriched in specific chromosomes where chr16 
is the major contributor. Five major events were observed, 
16q loss, and 16p gain in LGG tumors and 8p, 17p loss 
and 8q gain in HGG tumors. Our gene-centric based copy 
number variation analysis helps to highlight candidate genes 
of which copy number alterations give a survival advantage 
to tumor cells during tumor evolution.

The frequent loss of 16q in LGG tumors is 
another line of evidence that supports the improbable 
progression between LGG and HGG tumors. Regaining 
lost genetic material is unlikely, and thus the inter-grades 
progression is improbable. However, it was reported that 
the loss of 16q in HG3 tumors is followed by mitotic 
recombination [18]. This recombination makes 16q 
loss ostensibly less frequent in high grades, especially 
when allelic imbalance is not taken into account during 
copy number variation analysis. However, a high allelic 
imbalance of 16q in low grade tumors was observed 
previously based on three microsatellite markers [55]. 
Moreover, we observed that 22q-related genes show an 
overall low copy number status in LGG tumors with 
respect to HGG tumors. This observation is similar to that 
observed in 16q and may act as a supporting evidence 
of the independent oncogenic pathways too. The strong 
correlation of the DAG with their gene expression, in 
contrast to the non-DAG, reflects the importance of CNVs 
in driving the distinction between LGG and HGG tumors. 
Therefore, the DAGs are a shortlist of candidate genes and 
genome loci associated with the independent oncogenic 
pathways in LGG and HGG tumors. Collectively, 
observed CNV alterations provide a genomic basis for 
future development of diagnostics and prognostic assays.
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For point mutations, general comparison of the 
number of point mutations in LGG and HGG tumors 
shows a significantly different mutation profile. Overall, 
LGG tumors have fewer mutations than HGG tumors. 
Specifically, the most mutated genes, TP53 and PIK3CA, 
have mutations counts positively and negatively correlated 
with genetic grades respectively. Our analysis demonstrated 
that a relatively higher count of PIK3CA mutations is 
associated with HG1-like tumors. As PIK3CA mutations 
frequently occurs in IDC and are known to activate the 
PI3K/AKT/mTOR pathway, these mutations could be 
considered as potential predictive biomarkers of HG1-like 
tumors. High mutation rate of PIK3CA in LGG with respect 
to HGG indicates that PIK3CA hotspot mutations could have 
the potential to predict intrinsic tamoxifen resistance in the 
adjuvant treatment of LGG ER+ BC patients. The testing of 
this hypothesis should be the interest of future studies. In 
addition, LGG and HGG showed differences in mutation 
counts of MAP3K1 and MAPK2K4 that are functionally 
linked with PIK3CA. Interestingly, 9 of 12 top frequently 
mutated genes, (PIK3CA, GATA3, MAP3K1, MAPK2K4, 
CBFB, DNAH1, CTCF, CHD8, and DYSF; Figure 3E), also 
demonstrated significantly higher mutation counts in LGG 
with respect to HGG IDC cells. These findings support the 
hypothesis of independence of the oncogenic pathways of 
LGG and HGG tumors.

We observed moderate but significant differences 
in CNV levels between HG3-like and HG3 tumors. 
These observations may be artificial because the multiple 
grading systems used to evaluate the histological grades 
of the TCGA cohort could introduce some bias into the 
quantitative determination of HG3 tumor classification in 
addition to the subjectivity of all these grading systems. 
Interestingly, these DNA variations do not result in any 
functional transcriptomic discrimination between HG3 
and HG3-like sub-classes of IDC. However, observed 
differences between HG3 and HG3-like IDC tumors could 
reflect actual patho biological differences which should be 
a topic of future studies.

The ongoing open question where the functional 
heterogeneity of IDC is due to the cell of origin or 
accumulation of mutational events is still unanswered 
[56, 57]. The measure of cell differentiation in grading 
systems makes the association of stem cells with histo-
pathological grades self-evident. However, this association 
has been studied in only a limited number of studies 
[58, 59]. An enrichment of cancer stem cells (CSC) in high 
histological grades has been shown with respect to low grade 
[59]. Several stem-cell-based models of cancer initiation 
and progression have been suggested for different intrinsic 
subtypes of IDC. However, data are controversial and further 
studies are needed for the specification and validation of 
these models [56, 57]. It was argued that good-prognosis ER+ 
tumors could initiate via clonal selection and have limited 
number or no CD44+/CD24− cells. However, poor-prognosis 
ER+ tumors could initiate from ER+ stem or progenitors 

cells and expand to have a mixture of ER−/CD44+/CD24− 
and ER+/CD44−/CD24+ cells [56]. Collectively, based on 
our observation of strong expression differences between 
LGG and HGG tumors for genes associated with embryonic 
stem cells, the different frequency of ER loss between LGG 
and HGG tumors (Table 1), and the distribution of intrinsic 
subtypes within them, it can be assumed that LGG tumors 
originate and progress depending on the clonal evolution of 
normal epithelial cells, whereas HGG tumors originate from 
stem/progenitor cells and progress via clonal evolution to 
multiple subtypes to include ER+ and ER− tumors.

Thus, we provided for the first time an integrative 
characterization of LGG and HGG classes of IDC tumors 
by gene expression, CNV and mutation data analyses. We 
presented several lines of evidences that support concept of 
independent origin and independent oncogenic pathways 
in LGG and HGG classes, as well as the improbability 
of inter-grade progression. The distinct molecular events 
leading to either LGG or HGG tumors are outlined in the 
tumor progression model shown in Figure 5.

Our 22g-TAG signature with known cell cycle 
function, clinical measures of cancer proliferative capacity 
such as Ki67 staining and pathological mitotic index, 
could be used in the parallel or single assays.

High tumor grade is associated with decreased 
overall survival [60], but it also known that it predicts 
increased response to neoadjuvant chemotherapy [61, 62]. 
Consequently, we can hypothesize that IDC with LGG and 
HGG would also show decreased and increased response 
rates to the chemotherapy respectively.

According to our classification, in HGG IDC many 
hundreds genes of cell cycle, mitosis and DNA replication 
are overexpressed which are typically associated with 
higher sensitivity to neoadjuvant anthracycline- and 
taxane-based chemotherapy in both ER-positive and 
ER-negative IDC subsets [63]. Consequently, we expect 
that HG3-like IDC in HG2 (and HGG tumors) would have 
high response to the conventional chemotherapy targeting 
the pathways related to rapidly proliferative epithelial 
cells.

In contrast LGG tumors are expected to be less 
suitable for treatment as high-aggressiveness tumors. 
Therefore, they could be more suitably treated with 
agents that target other growth-related requirements of 
tumors, such as the mTOR pathway that mediates mRNA 
translation and increase genome instability of tumor cells 
and initiate their apoptosis. Further examples include 
agents that mediate the growth of blood vessels that 
provide blood supply to tumors (such as bevacizumab) 
or hormone-related growth signaling pathways (estrogen 
signaling pathways in ER+ tumors) such as tamoxifen.

Among 22g-TAG genes, it is important to highlight 
NAT1 and MELK as ‘druggable’ targets which are highly 
expressed in LGG and HGG tumors, respectively, with 
respect to normal tissue. It was shown that NAT1 can be 
inhibited efficiently by Rhod-o-hp with minimal cell toxicity 
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or by iRNA to decrease cell growth and invasiveness [64, 
65]. In addition, MELK was successfully targeted by 
OTSSP167 compound and demonstrated a suppression of 
mammosphere formation in breast cancer cells and growth 
suppression of xenograft studied in multiple cancer types in 
mice [66–68]. Therefore, it should be important to consider 
NAT1 and MELK genes and their products as the targets in 
the therapeutic plans for LGG and HGG tumor separately.

Moreover, four genes of 22g-TAG (BUB1, KIF2C, 
UBE2C, and CENPN) in addition to CDC20 (from 
22g-TAG network) are among the 10 genes that determine 
the responsiveness of tumors to chemotherapy recently 
identified [69].

Neoadjuvant chemotherapy (NAC) can cause 
tumor shrinkage, which enables a proportion of patients 
with large tumors to be eligible for breast conservation 
surgery (BCS). This increases the BCS rate in comparison 
to adjuvant chemotherapy only [70]. In such cases, our 
genetic grading classification could potentially be useful 
for prediction of patients’ eligibility to NAC.

CONCLUSION

Our methodological approach of the integrative 
data analyses of histologic grads rejects the old 
hypothesis of the inter-grade progression from HG1 
toward HG3 tumors of IDC. Alternatively, the IDC 
patient population dichotomization based on the 

multiple key cancer-associated molecular factors 
and mechanisms, were characterized by the 5691 
DEGs and by the 1858 DAGs reported in this study. 
Collectively, this study strongly supports our hypothesis 
of the genetically-defined low- and high- grade tumors 
corresponding to two oncogenic pathways independently 
governing the progression of LGG and HGG IDCs. 
Our grading delineation could help to narrow the IDC 
biomarker space, specify essential characteristics of 
the two main IDC classes. Eventually, our concept and 
findings have the potential to impact on patient care, 
diagnostic and treatment decisions to develop rational 
strategies for future personalized molecular targeting 
of IDC.

MATERIALS AND METHODS

Data source and preprocessing

Clinical information and gene expression data for 
the Uppsala, Stockholm, Singapore and Marseille BC 
cohorts were obtained from the NCBI/GEO database 
series GSE4922, GSE1456, GSE4922 and GSE21653, 
respectively.

The Cancer Genome Atlas (TCGA) data is available 
at multiple levels of preprocessing steps for each data 
type. We used gene expression, DNA mutation, and DNA 
copy number variation (CNV) data for IDC. Each data 

Figure 5: progression model for LGG and HGG tumors. IDC tumors progression model shows the major genetic events that 
dichotomize and characterize each oncogenic pathway of LGG and HGG tumors. DEG: differentially expressed gene. CSC: Cancer Stem 
Cell. +: DNA copy number gain. −: DNA copy number loss. mut: DNA point mutation.
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type was downloaded at preprocessing level appropriate 
for our subsequent analysis [51].

Level 2 TCGA Gene expression data, profiled using 
Agilent Technologies G4502A, was downloaded. Data 
was already normalized against Stratagene Universal 
References RNA, and then Lowess normalization was 
applied for each probeset (n = 90,797). We restricted 
our analysis to Invasive Ductal Carcinoma (IDC) of no 
special type (NST), which constitutes 82% of the cohort 
(481 of 590 samples). Among the 481 samples, there 
are 48 normal samples from tumor adjacent tissues, and 
3 unknown histological grades. The distribution of the 
histological grades of the remaining 430 samples is uneven 
(HG1 = 32 (7.4%), HG2 = 183 (42.6%), HG3 = 215 (50%) 
samples). The information about histologic grades has 
been manually extracted from the available unanimous 
histologic reports of TCGA database.

Level 1 CNV data corresponding to our 430 IDC 
samples was downloaded from TCGA (upon General 
Research Use access approval). This subset of samples 
consists of 860 samples (430 tumor/normal pairs). CEL files 
were imported into Partek® Genomics Suite™ software for 
the extraction of aberrant genomic regions in any tumor 
sample with respect to its corresponding matched normal 
DNA sample extracted from blood (paired analysis). 
A circular binary segmentation algorithm was chosen to 
infer the regions with genomic aberrations using the default 
parameters (10 minimum markers in the detected region 
and t-test p-value < 0.001 between the altered region and its 
neighbor region). Genes included in each reported genomic 
region were extracted using Refseq data. The data was then 
converted into a two-dimensional matrix in which the rows 
represent the genes, the columns represent the samples, and 
the data values represent the mean value of CNV marker 
intensities of the reported aberrant region that harbors a 
given gene in a given sample.

Level 2 DNA somatic mutation data were downloaded 
from TCGA identified using exome sequencing. The 
mutation annotation file (MAF) contains information about 
the mutated genes, mutation genomic coordinates, type of 
mutation, and genotype calls of the tumor and reference 
normal samples for each patient. Only 418 samples are 
common with the chosen 430 IDC samples. Data were 
converted into a two-dimensional matrix in which the rows 
and columns represent the genes and samples, respectively, 
and the data points represent the number of distinct mutated 
sites of a given gene in a given sample.

Prediction analysis of microarray (PAM)

PAM is a modified nearest-centroid method used 
for features selection and class prediction analyses [34]. 
In this work, we used it for dimensionality reduction to 
obtain most informative and representative features from 
the entire set of microarray probesets that discriminate 

between HG1 and HG3 tumors. PAM was implemented 
via the “pamr” R package.

Statistically weighted syndrome (SWS)

SWS is a statistics-based voting class prediction 
and feature selection method. It selects the most 
informative variables (prediction features), categorizes 
them and tests the stability of the classification border of 
a feature domain of the training set based on sampling 
and a leave-one-out procedures [26, 35]. We used the 
features resulted from PAM analysis to sub-classify 
HG2 samples into HG1-like and HG3-like tumors 
based on SWS algorithm. SWS was implemented in 
Recognition software (http://www.solutions-center.ru/
index.php?sct=prod)

Normalization of probeset expression and 
identification of reference-deviated genes per 
sample (RDG)

For each TCGA IDC tumor sample, we normalize 
the expression of each probeset with respect to the 
reference normal expression for that same probeset. This 
reference is represented by its median expression in the 
48 normal samples. The normalized probeset expression 
relative to the reference normal dataset can be referred 
to as the fold-change. The data was already normalized 
by Lowess normalization for all chips. Variation of 
coefficients for 25%, 50% and 75% quartiles for all chips 
are 0.059, 0.014, and 0.054 respectively.

For each TCGA IDC tumor sample, to identify 
RDG, fold change criteria ≥ 1.25 or ≤ 0.75 were used. The 
number of RDG for each TCGA IDC tumor sample can be 
calculated independently and compared across the genetic 
grade subgroups.

Copy number variation visualization

Median values of the CNV intensities for LGG and 
HGG tumors and Wilcoxon test p-value for each gene were 
plotted against the genomic coordinates of its transcription 
start site. A chromosomal region is considered altered 
if the median values of its genes pass one of the global 
thresholds of loss or gain (i.e., greater than 50% of the 
patients undergo the CNV event).

Identification of differentially expressed genes

A two-tailed Wilcoxon test was used to assess the 
significance of the differential expression, and Benjamini-
Hochberg (FDR) correction was used for multiple 
hypothesis testing. Differentially expressed probesets were 
selected based on fold-changes (FC ≥ 1.5 or FC ≤ 0.75) 
and statistical significance (FDR < 0.01).
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Association analysis of gene expression and copy 
number variation

Kendall tau correlation was utilized to study the 
association of CNV and corresponding mRNA expression 
for each gene. CNV and mRNA expression data matching 
was performed using Agilent 244K Custom Gene 
Expression G4502A-07–3 annotation data provided by 
TCGA data portal.

Functional enrichment and gene ontology 
analysis

The Database for Annotation, Visualization and 
Integrated Discovery (DAVID) [71] tool was used to 
identify the top enriched biological processes among the 
differentially expressed genes through the Gene Ontology 
(GO) annotation database. Input of unique Entrez genes 
IDs was compared with a background gene list constitute 
all the genes in the genome using Hypergeometric test. 
Functional annotation chart constitutes of molecular 
functions, biological processes, cellular components, 
KEGG pathways, tissue expression, and chromosome 
number was reported.

Network analysis of 22g-TAG genes

The MetaCore tool (Thomson Reuters, 
St. Joseph, MI, USA) was used to build the genes 
network associated with 22g-TAG genes (https://portal.
genego.com/).

Hierarchical clustering (HC) and heatmap 
visualization

Multi-experiment viewer version 4.9.0 was utilized 
to conduct HC and heat map visualization of numerical 
matrices. Euclidian distance and average linkage 
agglomerative method were used to achieve HC.

Data-driven prognosis analysis based on gene 
expression profile

Survival analyses were conducted using a data-
driven grouping (DDG) algorithm which relies on Cox-
proportional hazard regression model to fit the patients’ 
survival times to gene expression data (see supplementary 
material in [73]). It searches for the best cutoff of the 
expression of a given gene that maximizes the separation 
of the survival curves of the patients into high- and low-
risk groups for each gene. DDG has been successfully 
used in prognosis of breast, glioblastoma and ovarian 
cancer patients [72, 73].

Univariate and Multivariate analyses were 
conducted using the “survival” R package version 2.37–7.

qPCR based validation of 22g-TAG genes

Total RNA samples of 84 IDC patients were obtained 
from OriGene (patients’ clinical parameters are summarized 
in Supplementary Table S17A). The concentration of 
the RNA was provided by OriGene, reconfirmed using a 
Nanodrop® spectrophotometer, and normalized. cDNA 
synthesis from 250 ng total RNA was conducted using a 
QuantiTect® Reverse Transcription Kit based on random 
hexamer and Oligo (dT) primers. qPCR experiments were 
conducted in 96-well plates using the QuantStudio™ 6 
Flex Real-Time PCR System. The KAPA SYBR® FAST 
qPCR Kit was used for qPCR experiments, and low 
Rox was used as a passive reference dye. Primers were 
designed using primer3 (v. 0.4.0) [74], and the specificities 
of obtained primer pairs were tested computationally 
using BLAT [75] and in-silico PCR on the UCSC genome 
browser [76]. The primer pair sequences for 22g-TAG are 
listed in Supplementary Table S17B. We used β-actin as an 
endogenous control. The obtained Ct values of all genes 
were analyzed using the 2−∆∆Ct method [50].
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