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Abstract
Background Acute kidney injury (AKI) is frequent among intensive care unit (ICU) patients and is linked with high mor-
bidity and mortality. In the absence of specific pharmacological treatments for AKI, continuous renal replacement therapy 
(CRRT) is a primary treatment option. This study aimed to develop and validate a predictive model for 90-day mortality in 
critically ill patients with AKI undergoing CRRT.
Methods Clinical data from DATADRYAD were used. We randomly divided 1121 adult patients receiving CRRT for AKI 
into training (80%, n = 897) and validation (20%, n = 224) cohorts. A nomogram prediction model was developed using Cox 
proportional hazards regression with the training set, and was validated internally. Model performance was evaluated based 
on calibration, discrimination, and clinical utility.
Results The model, incorporating seven predictors—SOFA score, serum creatinine, blood urea nitrogen, albumin levels, 
Charlson comorbidity index, mean arterial pressure at CRRT initiation, and phosphate levels 24 h after CRRT initiation—
demonstrated robust performance. It achieved a C-index of 0.810 in the training set and 0.794 in the validation set.
Conclusions We developed and validated a predictive model based on seven key clinical predictors, showing excellent per-
formance in identifying high-risk patients for 90-day mortality in AKI patients undergoing CRRT.
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Introduction

Acute kidney injury (AKI) is a global public health con-
cern, associated with significant morbidity, mortality, and 
healthcare costs [1]. Approximately 50% of intensive care 
unit (ICU) patients experience AKI [2]. Continuous renal 
replacement therapy (CRRT) is a primary treatment option 
for these patients. However, even with appropriate CRRT, 
morbidity and mortality rates remain alarmingly high [3, 4]. 
Therefore, early detection and identification of prognostic 
factors are crucial to improving the prognosis and preventing 
death in high-risk patients. Additionally, robust mortality 
risk prediction can enhance shared decision-making between 
clinicians and patients (and/or their families) during CRRT 
discussions.

Several tools are used to predict mortality in ICU 
patients, such as the Acute Physiology and Chronic Health 
Evaluation II (APACHE II), the Mortality Probability 
Model II, and the Simplified Acute Physiology Score II 
(SAPS II) [5–7]. Although various mortality prediction 
models have been developed [8, 9], they do not specifi-
cally target patients requiring CRRT for AKI. Traditional 
scoring systems like APACHE II and the Sequential Organ 
Failure Assessment (SOFA) score are generally effective 

for predicting ICU mortality [10, 11] but fall short in 
predictive power for AKI patients undergoing CRRT [8]. 
Therefore, there is a critical need to develop a new scoring 
model specifically tailored for these patients.

Given that delayed diagnosis significantly contributes 
to the high mortality rates among AKI patients undergoing 
CRRT in the ICU, early identification of these high-risk 
individuals is crucial. Timely recognition allows clinicians 
to implement effective interventions, thereby reducing 
mortality and improving overall quality of life. This study 
aims to develop and validate a user-friendly predictive 
model for accurately estimating 90-day mortality in AKI 
patients requiring CRRT, using data from a retrospective 
cohort. The internal validity of the model was rigorously 
assessed. By providing more personalized prognoses, this 
predictive tool is intended to help clinicians and patients 
make informed treatment and management decisions.



949Journal of Nephrology (2025) 38:947–957 

Methods

Data source and study population

Based on a retrospective cohort study [12], we accessed the 
original data from the DRYAD database (https:// doi. org/ 10. 
5061/ dryad. 6v0j9) and conducted a secondary analysis with 
a different hypothesis, ensuring no violation of the authors’ 
rights. Informed consent was waived due to the study's retro-
spective nature. All patients’ private information and identi-
ties were kept confidential in the database. Our findings were 
reported in accordance with the TRIPOD guidelines [13]. 
In this study, patients with a recorded time of death at day 
90 being 0 (n = 23) were excluded when utilizing Cox pro-
portional hazards regression to develop a prediction model. 
Ultimately, 1121 patients were included in the final analysis 
and randomly split into training (80%, n = 897) and valida-
tion (20%, n = 224) sets to evaluate the prognostic models. 
Figure S1 illustrates the patient selection process.

Study variables

Demographic and clinical data, such as age, sex, body mass 
index (BMI) at ICU admission, systolic blood pressure 
(SBP), diastolic blood pressure (DBP), mean arterial pres-
sure (MAP), comorbidities including hypertension (HTN), 
diabetes mellitus (DM), myocardial infarction (MI), con-
gestive heart failure (CHF), peripheral vascular disease 
(PVD), chronic obstructive pulmonary disease (COPD), and 
mechanical ventilation (MV), Charlson comorbidity index 
(CCI), cause of AKI and CRRT, CRRT dose at CRRT initia-
tion and urine output at 2 h after CRRT initiation (UO_2h) 
were collected. Biochemical laboratory data at CRRT initia-
tion, including data on hemoglobin (Hb) levels, white blood 
cell (WBC) counts, and levels of C-reactive protein (CRP), 
serum creatinine (Cr), blood urea nitrogen (BUN), albumin 
(ALB), bicarbonate, potassium (K), and serum phosphate 
at CRRT initiation (P_0 h) and at 24 h after CRRT initia-
tion (P_24 h) were collected. To evaluate disease severity 
and organ failure, Acute Kidney Injury Network (AKIN) 
stages, SOFA scores, and APACHE II scores were recorded 
at CRRT initiation. The primary outcome of this study was 
90-day mortality, with the secondary outcome being 28-day 
mortality.

Statistical analysis

Eligible patients were randomly divided into training and 
validation sets at a ratio of 8:2. Data from the training set 
were used to perform Cox regression analysis and con-
struct the nomogram, whereas data from the validation set 

were used to validate the model. Continuous variables are 
expressed as means with standard deviation (SD) or medians 
with interquartile range (IQR), and categorical variables are 
presented as counts with percentages. Student’s t-test and the 
Wilcoxon rank-sum test were used to compare continuous 
variables, and Pearson’s chi-square test was used for cat-
egorical variables. Univariate and multivariate Cox regres-
sion analyses of potential factors were performed to identify 
significant predictors. Variables exhibiting a P-value < 0.2 
in the univariate analysis, and those considered clinically 
relevant were entered into the multivariate Cox regression 
model. Following the identification of the associated risk 
factors using multivariate Cox regression analysis, a predic-
tive nomogram was developed using the BSR method. Inter-
nal validation was performed via bootstrap resampling using 
200 random samples drawn with replacements. Receiver 
operating characteristic (ROC) curves with area under the 
curve (AUC) values were used to determine the discrimina-
tive ability. A calibration curve was used to evaluate the 
agreement between actual and predicted survival probabili-
ties. We performed decision curve analysis to clarify the 
clinical usefulness of our risk stratification model. Statistical 
significance for all analyses was set at P < 0.05 (2-sided). All 
analyses were performed using R Statistical Software (http:// 
www.R- proje ct. org, The R Foundation) and Free Statistics 
software version 1.7.1.

The sample size for the prediction model was determined 
by ensuring a minimum ratio of 10 [14] between the number 
of observed events and the number of predictors that could 
be estimated.

Results

Baseline characteristics

Figure S1 shows the recruitment process. Inclusion crite-
ria were met by 1121 patients who were then enrolled into 
this study. Table 1 summarizes the characteristics of the 
patients in the training and validation sets. The training 
and validation sets had 897 (60.8% men) and 224 (64.3% 
men) patients with an average age of 63.6 ± 14.3 years and 
62.1 ± 14.4 years, respectively. The mortality rates at 90 days 
were 71.6% and 69.6% in the training and validation sets, 
respectively. No significant differences were observed in 
clinical characteristics between the two sets. Missing data 
were imputed using the multiple imputation chain equation 
method with five datasets. No substantial differences were 
found in the distribution of missing variables between the 
participants with observed data and those with imputed data 
(Table S1). Table S2 summarizes the differences in base-
line characteristics between survivors and non-survivors 
in the two sets. When the patients in the training set were 

https://doi.org/10.5061/dryad.6v0j9
https://doi.org/10.5061/dryad.6v0j9
http://www.R-project.org
http://www.R-project.org
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Table 1  Baseline patient 
characteristics in the training 
and validation sets

Abbreviations: HTN, hypertension; DM, diabetes mellitus; MI, myocardial infarction; HF, heart failure; 
CVD, cerebrovascular disease; COPD, chronic obstructive pulmonary disease; MV, mechanical ventila-
tion; CCI, Charlson Comorbidity Index; AKI, acute kidney injury; CRRT, continuous renal replacement 
therapy; AKIN, Acute Kidney Injury Network; BMI, body mass index; SOFA, Sequential Organ Failure 
Assessment; APACHE II, Acute Physiology and Chronic Health Evaluation II; SBP, systolic blood pres-
sure; DBP, diastolic blood pressure; MAP, mean arterial pressure; WBC, white blood cell count; BUN, 
blood urea nitrogen; CRP, C-reactive protein

Variables Training set
(n = 897)

Validation set
(n = 224)

P-value

Death_90 day, n (%) 0.569
 Survivors 255 (28.4) 68 (30.4)
 Non-survivors 642 (71.6) 156 (69.6)

Age (years) 63.6 ± 14.3 62.1 ± 14.4 0.159
Male 545 (60.8) 144 (64.3) 0.332
HTN (%) 476 (53.1) 116 (51.8) 0.731
DM (%) 318 (35.5) 73 (32.6) 0.56
MI (%) 93 (10.4) 18 (8) 0.296
HF (%) 154 (17.2) 32 (14.3) 0.3
CVD (%) 91 (10.1) 20 (8.9) 0.646
COPD (%) 63 (7) 16 (7.1) 0.95
MV (%) 698 (77.8) 179 (79.9) 0.497
CCI 3.0 (2.0, 5.0) 3.0 (2.0, 5.0) 0.757
Cause of AKI 0.613
 Sepsis 634 (70.7) 156 (69.6)
 Nephrotoxin 29 (3.2) 6 (2.7)
 Ischemia 76 (8.5) 15 (6.7)
 Surgery 74 (8.2) 19 (8.5)
 Others 84 (9.4) 28 (12.5)

Cause of CRRT 0.411
 Volume overload (%) 126 (14) 28 (12.5)
 Metabolic acidosis (%) 193 (21.5) 44 (19.6)
 Hyperkalemia (%) 48 (5.4) 7 (3.1)
 Uremia (%) 84 (9.4) 29 (12.9)
 Oliguria (%) 233 (26) 58 (25.9)
 Others (%) 213 (23.7) 58 (25.9)

AKIN stages 0.449
 Stage 2 (%) 230 (25.6) 63 (28.1)
 Stage 3 (%) 667 (74.4) 161 (71.9)

BMI (kg/m2) 23.8 ± 4.6 23.7 ± 4.1 0.716
SOFA score 12.0 ± 3.6 12.2 ± 3.4 0.531
APACHE II score 27.3 ± 7.9 26.7 ± 8.0 0.252
SBP (mmHg) 111.6 ± 21.1 114.8 ± 19.8 0.044
DBP (mmHg) 60.2 ± 14.2 61.5 ± 14.0 0.207
MAP (mmHg) 77.2 ± 14.5 79.4 ± 14.4 0.039
Hemoglobin (g/dL) 9.6 ± 2.2 9.7 ± 2.2 0.565
WBC (μL) 11,730.0 (6690.0, 18,620.0) 10,660.0 (5622.0, 18,880.0) 0.298
Albumin (g/dL) 2.6 ± 0.6 2.6 ± 0.6 0.899
Potassium (mEq/L) 4.7 ± 1.1 4.5 ± 1.0 0.008
Bicarbonate (mEq/L) 16.9 ± 5.7 17.0 ± 5.7 0.85
BUN (mg/dL) 50.0 (33.0, 74.0) 49.0 (35.0, 72.2) 0.883
Phosphate (mg/dL) 5.8 ± 2.5 5.6 ± 2.1 0.275
Creatinine (mg/dL) 2.7 ± 1.6 2.8 ± 1.9 0.676
CRRT dose (ml/kg) 36.7 ± 4.8 36.5 ± 4.8 0.476
CRP (mg/L) 72.5 (20.4, 168.0) 90.6 (28.0, 186.7) 0.102
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categorized according to 90-day mortality, most baseline 
variables differed between survivors and non-survivors. 
Compared with survivors in the two sets, non-survivors 
were more seriously ill, as indicated by lower ALB, SBP, 
DBP, and MAP and higher SOFA and APACHE II scores 
at CRRT initiation.

Development of mortality prediction model

Basic demographics, vital signs, and laboratory tests in the 
training set were further examined using univariate and mul-
tivariate Cox regression analyses to predict 90 day mortal-
ity (Table 2). Variables, encompassing comorbidities such 
as metabolic acidosis, diabetes mellitus, and hypertension, 
alongside biochemical markers indicative of disease severity 
including WBC counts, Cr levels, ALB levels, P_24 h, Hb 
levels, glomerular filtration rate (GFR), P_0 h, and severity 

indices such as CCI, APACHE II, SOFA as well as general 
conditions such as SBP, DBP, MAP, urine output, mechani-
cal ventilation, and BMI were identified as potential predic-
tors of 90-day mortality in the univariate analysis (p < 0.05). 
All candidate factors along with BUN that were considered 
clinically relevant were entered into a multivariate Cox 
regression model. The BSR method conferred significant 
advantages in variable selection, as it exhaustively computed 
all possible combinations of variables. The final selected 
combination was determined to be optimal based on the min-
imum Bayesian Information Criterion (BIC). As illustrated 
in Fig. 1, the selection process included all 7 parameters, 
resulting in a minimum Bayesian Information Criterion 
value of − 230. Consequently, the BSR method led to the 
selection of different variables for the final model: SOFA 
score, Cr, BUN, ALB, CCI, and MAP at CRRT initiation; 
and phosphate levels at 24 h after CRRT initiation (Fig. 1).

Table 2  Univariate and 
multivariate Cox regression 
analysis of selected clinical 
features in the training set

Note : Bolded indicate statistically significant results
Abbreviations: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, 
mean arterial pressure; MV, mechanical ventilation; UO, urine output at 2 h after CRRT initiation; WBC, 
white blood cell count; BUN, blood urea nitrogen; ALB, albumin; P_0h, serum phosphate at CRRT initia-
tion; P_24h, serum phosphate at 24 h after CRRT initiation; Hb, hemoglobin; GFR, glomerular filtration 
rate; PreCr, creatinine level before CRRT initiation; Cr, creatinine; DM, diabetes mellitus; HTN, hyperten-
sion; APACHE II, Acute Physiology and Chronic Health Evaluation II; CCI, Charlson Comorbidity Index; 
SOFA, Sequential Organ Failure Assessment

Variables Univariate analysis Multivariate analysis

HR (95%CI) P-value HR (95%CI) P-value

Age 1.00 (1.00 ~ 1.01) 0.32 1.01 (1.01 ~ 1.02)  < 0.001
Female 0.99 (0.84 ~ 1.156) 0.86 1.13 (0.95 ~ 1.35) 0.177
BMI 0.98 (0.96 ~ 1) 0.029 0.99 (0.97 ~ 1.01) 0.27
SBP 0.99 (0.98 ~ 0.99)  < 0.001 0.99 (0.99 ~ 1.00) 0.015
DBP 0.993 (0.988 ~ 0.999) 0.016 1.00 (0.99 ~ 1.02) 0.416
MAP 0.99 (0.98 ~ 0.99)  < 0.001 0.99 (0.99 ~ 1.00) 0.005
MV 1.64 (1.34 ~ 2.01)  < 0.001 0.80 (0.61 ~ 1.05) 0.102
UO 0.998 (0.997 ~ 0.999)  < 0.001 0.999 (0.998 ~ 0.999) 0.023
WBC 0.82 (0.77 ~ 0.88)  < 0.001 0.92 (0.86 ~ 0.98) 0.007
BUN 1.002 (0.999 ~ 1.004) 0.14 1.01 (1 ~ 1.01)  < 0.001
ALB 0.67 (0.59 ~ 0.76)  < 0.001 0.67 (0.58 ~ 0.77)  < 0.001
P_0h 1.06 (1.03 ~ 1.09)  < 0.001 1.14 (0.79 ~ 1.63) 0.488
P_24h 1.16 (1.13 ~ 1.19)  < 0.001 1.15 (1.1 ~ 1.19)  < 0.001
Hb 0.95 (0.91 ~ 0.98) 0.006 0.996 (0.957 ~ 1.037) 0.85
GFR 1.004(1.001 ~ 1.007) 0.012 1.000 (0.995 ~ 1.005) 0.995
PreCr 1.01 (1 ~ 1.03) 0.023 0.997 (0.983 ~ 1.010) 0.62
Cr 0.89 (0.84 ~ 0.94)  < 0.001 0.78 (0.71 ~ 0.85)  < 0.001
Metabolic acidosis 1.52 (1.16 ~ 1.99) 0.002 1.48 (1.12 ~ 1.96) 0.006
DM 0.02 (0.00 ~ 0.13)  < 0.001 0.01 (0.00 ~ 0.07)  < 0.001
HTN 0.74 (0.63 ~ 0.86)  < 0.001 0.83 (0.69 ~ 1.01) 0.056
APACHE II 1.04 (1.03 ~ 1.05)  < 0.001 1.02 (1.01 ~ 1.03) 0.002
CCI 1.08 (1.04 ~ 1.12)  < 0.001 1.08 (1.04 ~ 1.12)  < 0.001
SOFA 1.11 (1.09 ~ 1.14)  < 0.001 1.09 (1.06 ~ 1.12)  < 0.001
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Risk prediction nomogram development

A prognostic nomogram for 90-day mortality was estab-
lished using seven prognostic factors obtained from the 
multivariate Cox proportional hazards model  (R2 = 0.261, 
C-index = 0.695) (Fig. 2). The model’s predictive accuracy 
was further validated for 14-day and 28-day mortality, as 
shown in Fig. S2. For each patient, a higher total score indi-
cated a lower probability of 90-day survival.

Scores were assigned for serum phosphate level, CCI, 
MAP, levels of BUN, Cr and ALB, and SOFA by drawing 
a line upward from the corresponding values to the ‘score’ 
line. The sum of all these scores, plotted on the ‘Total score’ 
line, corresponds to predictions of 90-day survival probabil-
ity in ICU patients with AKI undergoing CRRT.

Based on the nomogram, predictor lines were drawn 
upward to confirm these points. The sum of these points 
was located on the ‘Total Points’ axis. A vertical line was 
drawn on the bottom scale to determine the likelihood of sur-
vival after 90 days. After the development of the prediction 

model, internal validation was conducted using data from 
the validation set.

Predictive accuracy and net benefit 
of the nomogram

The training set had an AUC of 0.810 (95% CI: 0.781–0.840, 
p < 0.001) (Fig. 3A), and the calibration curve was close 
to the ideal diagonal line (Fig. 4A). Furthermore, decision 
curve analysis showed a significantly better net benefit in the 
predictive model (Fig. 4C).

The nomogram was internally validated using 224 
patients from the validation set. The AUC value was 
0.794 (95% CI: 0.728–0.860, p < 0.001) (Fig. 3B), indi-
cating the high accuracy of the nomogram. The calibration 
curve was close to the ideal diagonal line, indicating the 
good consistency of the model (Fig. 4B). Furthermore, 
the decision curve analysis demonstrated significant net 
benefits for both the predictive model and the validation 

Fig. 1  Selection of variables using the BSR method. Abbreviations: 
DM, diabetes mellitus; P_0h, serum phosphate before CRRT, Contin-
uous Renal Replacement Therapy initiation; P_24h, serum phosphate 
at 24  h after CRRT initiation; CCI, Charlson Comorbidity Index; 

MAP, mean arterial pressure; WBC, white blood cell count; BUN, 
blood urea nitrogen; Cr, creatinine; ALB, albumin; UO, urine output 
at 2 h after CRRT initiation; SOFA, Sequential Organ Failure Assess-
ment score; AKI, acute kidney injury
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set (Fig. 4D). Based on these data, we conclude that our 
prediction model can contribute significantly to clinical 
decision-making. Additionally, we evaluated the model's 

predictive accuracy for 28-day mortality and found it to be 
as effective as for 90-day mortality. Details are presented 
in Supplementary Fig. S3 and S4.

Fig. 2  Nomogram to calculate risk score and predict the risk of 
90-day mortality. Abbreviations: Phosphate_24 h, serum phosphate 
at 24 h after CRRT, Continuous Renal Replacement Therapy initia-

tion; CCI, Charlson Comorbidity Index; MAP, mean arterial pressure; 
BUN, blood urea nitrogen; ALB, albumin; SOFA, Sequential Organ 
Failure Assessment

Fig. 3  ROC curve and AUC of the nomogram for 90-day mortality in the training set (A) and validation set (B). Abbreviations: ROC, receiver 
operating characteristic; AUC, area under the ROC curve
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Fig. 4  Calibration curves (A: Training set; B: Validation set) and 
Decision curves (C: Training set; D: Validation set) to predict 90-day 
mortality. The x-axis of the calibration curves represents the pre-
dicted probability calculated by the nomogram, and the y-axis is the 
observed actual probability of 90-day mortality. The clinodiagonal 
represents a perfect prediction by an ideal model. Decision curves 
showing the clinical usefulness of the Nomogram prediction model. 

The abscissa represents threshold probability, the ordinate represents 
net benefit for patients. The horizontal line (“None”) represents no 
clinical benefit for all patients without prediction and intervention. 
The gray line (“All”) represents the clinical benefit of intervention 
for all patients, and the black curve represents the clinical benefit of 
using the nomogram prediction model
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Discussion

In a cohort of critically ill patients with AKI, those requiring 
CRRT had 90-day mortality risks of 71.6% and 69.6% in 
the training and validation sets, respectively. Given the high 
mortality rate among these patients, it would be beneficial to 
develop better predictive tools to help reduce long-term mor-
tality rates. In the past few years, researchers have attempted 
to optimize prediction models for patients with AKI. Never-
theless, existing models either demonstrate limited predic-
tive efficacy for assessing the prognosis of patients undergo-
ing CRRT [15] or they fail to specifically address patients 
initiating CRRT for AKI [8, 9]. While some recent stud-
ies have identified risk factors associated with mortality in 
CRRT-treated patients [16, 17], the current utility of these 
variables in accurately predicting mortality within clinical 
practice remains insufficient. Consequently, there is a need 
to develop a multivariate mortality prediction model since 
a single clinical variable may not be sufficient to accurately 
predict patient outcomes.

In this study, we developed a simple and rapid risk model 
for predicting the 90-day mortality in critically ill patients 
with AKI undergoing CRRT. Our prediction model demon-
strated robust discrimination and calibration across both the 
training and validation sets, addressing the notable absence 
of reliable predictive models in the ICU setting, particularly 
given the high prevalence of AKI. The predicted probability 
of 90-day mortality based on the regression coefficient can 
be calculated using the formula, where LP (linear predic-
tor) is equal to 0.132 × P_24h + 0.069 × CCI − 0.009 × MA
P + 0.005 × BUN − 0.225 × Cr − 0.415 × ALB + 0.103 × SO
FA. Here, we described the use of the nomogram model. 
For example, we assumed that the patient had a P_24 h level 
of 4 mg/dL, CCI score of 4, MAP level of 60 mmHg, Cr 
level of 8 mg/dL, an ALB level of 2.5 mg/dL, BUN level of 
8 mg/dL, and a SOFA score of 14. As shown in Fig. 2, the 
score corresponding to each parameter was obtained from 
the first row (the “Point” axis). Finally, the overall score was 
calculated as the sum of the points for all parameters [15 
(P_24 h) + 8 (CCI) + 17.5 (MAP) + 50 (Cr) + 40 (ALB) + 15 
(BUN) + 40 (SOFA) = 185.5]. In this scenario, there is an 
approximately 45% chance of survival for 90 days.

Using this predictive model, we identified several main 
factors associated with mortality within 90 days of CRRT 
initiation. AKI is usually diagnosed based on BUN and 
serum Cr measurements. However, it is neither sensitive 
nor suboptimal for the diagnosis of AKI. Therefore, there 
is a need to explore other outcome predictors in critically 
ill patients with AKI treated with CRRT. In our study, the 
SOFA score and CCI at CRRT initiation were associated 
with an increased mortality risk, which is consistent with 
previous studies [18–20]. Our results are also in agreement 

with the findings of Jung et al. [12] who showed that among 
critically ill patients, phosphate is a good biomarker of dis-
ease severity and can predict adverse outcomes. Based on 
our findings, residual hyperphosphatemia remains a prog-
nostic factor. The survival rate of patients with reduced 
phosphate levels at 24 h after CRRT initiation was signifi-
cantly higher than those with stable or elevated levels. Inter-
estingly, we found that higher serum creatinine concentra-
tions were associated with a lower risk of mortality within 
90 days of CRRT initiation, which was confirmed in many 
other studies [21–24]. The correlation between elevated 
serum creatinine levels and improved survival may stem 
from factors such as enhanced nutritional status, reduced 
volume overload, or pre-existing CKD [24]. Regarding MAP 
and ALB, our nomogram showed that the lower the MAP 
and ALB at the time of CRRT initiation, the greater the mor-
tality risk. Previous studies [25] have shown that a low MAP 
at CRRT initiation is associated with a high risk of mortality, 
particularly when it is < 82.7 mmHg. This value can be used 
for risk classification and as a potential therapeutic target. 
In another study [26], Kim et al. evaluated ALB levels as a 
significant and independent prognostic factor for death at 28 
and 90 days among patients with sepsis and AKI undergo-
ing CRRT.

Our study highlighted the importance of early identifica-
tion of high-risk AKI patients to implement targeted thera-
pies that may improve survival rates. By identifying patients 
with higher SOFA scores, elevated serum creatinine levels, 
and other poor prognosis-associated risk factors, our model 
promotes preemptive clinical actions. For example, we can 
intensify monitoring and interventions for patients with ele-
vated SOFA scores, adjust renal support strategies based on 
serum creatinine levels and other renal function markers, and 
implement comprehensive management plans for patients 
with a high Charlson Comorbidity Index, addressing their 
multiple comorbidities. These proactive measures under-
score our commitment to not only predicting outcomes but 
also to informing clinical practices that can lead to tangible 
improvements in patient care and survival.

The inclusion of the 28-day mortality analysis dem-
onstrated trends consistent with the primary endpoint of 
90-day mortality, further validating the stability and reli-
ability of our prediction model. While the 28-day mortality 
reflects short-term outcomes, the 90-day mortality provides 
a broader perspective on long-term prognosis, making it 
a more comprehensive endpoint for critically ill patients 
undergoing CRRT. Our model exhibited good predictive 
performance at both time points, emphasizing its flexibil-
ity and effectiveness in clinical decision-making. This dual 
assessment at 28 days and 90 days not only reinforces the 
robustness of our model but also offers clinicians a nuanced 
understanding of patient risk at different stages of recovery.
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Our study has several advantages. First, the variables 
incorporated in the predictive model are easy to obtain in 
the clinical setting and can reflect the disease activity of 
patients, thereby providing clinically relevant information 
to help identify patients with AKI at a high risk of mor-
tality within the population of patients with AKI requiring 
CRRT. Second, the potential impact of missing data on our 
results was assessed using multiple imputations, as shown in 
Table S2. According to multiple imputations, the data were 
missing at random and did not show any significant biases. 
Moreover, we internally validated the prediction model for 
90-day mortality.

Our study has some limitations. First, due to its observa-
tional, retrospective, single-center design, generalizability 
and control over confounding factors are limited. We advise 
caution in broadly applying our results and suggest future 
multicenter studies for validation. Despite these limitations, 
our analysis provides valuable insights into CRRT mortal-
ity predictors. Second, this was a single center, retrospec-
tive study, and some data were missing. We supplemented 
the data through multiple imputation functions of statistical 
software to reduce the bias of research results. Third, our 
analysis relied on pre-existing data from an online reposi-
tory, which did not include key variables such as “AKI 
duration,” “the number of days on CRRT,” and “AKI stag-
ing according to KDIGO criteria,” nor did it include “ICU 
length of stay,” “post-ICU hemodialysis requirements,” and 
“recovery rates.” These variables, as highlighted in the study 
by Peerapornratana et al. [27] and Sean M. Bagshaw et al 
[28], are crucial for a comprehensive assessment of patient 
outcomes and survival post-AKI. Although their absence 
limits our analysis, our results still contribute meaningfully 
to the understanding of CRRT mortality predictors. We will 
strive to include these variables in future studies to offer a 
more holistic view of patient outcomes. Lastly, the predic-
tion model was not externally validated. In the future, studies 
should be conducted to externally validate the performance 
of our model using our databases.

Conclusions

In conclusion, we developed and internally validated a 
model for predicting 90-day mortality in ICU patients with 
AKI undergoing CRRT, using objective data routinely col-
lected in clinical practice. These included the SOFA score; 
levels of serum Cr, BUN, and ALB; CCI; MAP at CRRT 
initiation; and P_24 h. This predictive model performed well 
and may be helpful in risk stratification and decision-making 
in clinical situations.
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