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Abstract: The cyclooxygenase-2 (COX-2)–prostaglandin E2 (PGE2) pathway has been implicated in
carcinogenesis, with BRAF mutation shown to promote PGE2 synthesis. This study was conducted to
evaluate COX-2 expression in a large cohort of Middle Eastern papillary thyroid carcinoma (PTC),
and further evaluate the prognostic significance of COX-2 expression in strata of BRAF mutation
status. BRAF mutation analysis was performed using Sanger sequencing, and COX-2 expression
was evaluated immunohistochemically using tissue microarray (TMA). COX-2 overexpression,
noted in 43.2% (567/1314) of cases, was significantly associated with poor prognostic markers such
as extra-thyroidal extension, lymph-node metastasis, and higher tumor stage. COX-2 was also an
independent predictor of poor disease-free survival (DFS). Most notably, the association of COX-2
expression with DFS differed by BRAF mutation status. COX-2 overexpression was associated with
poor DFS in BRAF-mutant but not BRAF wild-type PTCs, with a multivariate-adjusted hazard ratio
of 2.10 (95% CI = 1.52–2.92; p < 0.0001) for COX-2 overexpressed tumors in BRAF-mutant PTC.
In conclusion, the current study shows that COX-2 plays a key role in prognosis of PTC patients,
especially in BRAF-mutated tumors. Our data suggest the potential therapeutic role of COX-2
inhibition in patients with BRAF-mutated PTC.
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1. Introduction

Thyroid cancer is the most common endocrine malignancy. Its incidence is steadily rising
worldwide [1,2], with the most common histology being papillary thyroid carcinoma (PTC) [3].
The incidence of PTC in Saudi Arabia is high—it is the second most common cancer affecting Saudi
women, after breast cancer [4]. Although PTC is an indolent and slow-growing malignancy that can be
successfully treated, there are patients that progress to more aggressive disease, with recurrence and
metastasis [5–7]. It is critical to identify this subset of patients who might benefit from more aggressive
therapy. Therefore, identification of a molecular marker that can be useful for prognostication of PTC
patients is critically needed.
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Tumor-promoting inflammation is a promising target for cancer therapy [8] due to its role in
promoting cancer progression by increasing several growth, angiogenic, and immunosuppressive
factors [9]. One of the important processes causing cancer inflammation is the cyclooxygenase-2 (COX-2)
pathway. COX is a group of enzymes that are required for prostaglandin E2 (PGE2) synthesis [10].
In normal physiological status, COX-2 and PGE2 are upregulated and act as pro-inflammatory
factors [11]. Although COX-2 expression is usually undetectable in normal tissue, it has been observed
to be overexpressed in several human cancers [12–15]. Many studies have described the mechanisms
by which COX-2 can promote carcinogenesis, including inhibition of apoptosis, increase in cell
proliferation, stimulation of angiogenesis, and development of a tumor-promoting inflammatory
microenvironment [9,16–20].

COX-2 overexpression in different thyroid cancer histotypes has also been investigated in several
studies [21–23], the majority of which have been aimed at evaluation of its prognostic relevance
by correlating the expression levels with patients’ clinicopathological features. Other studies have
attempted to estimate the prognostic value of COX-2 expression in thyroid cancer [15,24]. Those studies
found that COX-2 overexpression in thyroid cancer is associated with aggressive clinical behavior and
tumor recurrence [15,25].

Another characteristic of PTC is that a single nucleotide mutation in the BRAF gene, V600E,
is detected in a majority of PTC patients [26,27], often associated with aggressive disease [7,28].
BRAFV600E mutations have been shown to induce oncogenic cellular proliferation by constitutively
activating the mitogen-activated protein (MAP) kinase pathway [29]. A recent study by Kosumin
et al. [30] showed the interactive role of BRAF mutation status and COX-2 overexpression in the
prognostication of colorectal cancer patients, suggesting that upregulation ofMAP kinase pathway
mediates overexpression of COX-2 in BRAFV600E tumor cells.

Therefore, we conducted this study to evaluate COX-2 overexpression in a large cohort (n = 1335)
of Middle Eastern PTC, and to analyze its correlation with clinicopathological parameters. Then we
further evaluated the prognostic significance of COX-2 expression in strata of BRAF mutation status.

2. Results

2.1. Patient Characteristics

The mean age of the study population was 40.4 years (SD = ±16.1 years), with a male-to-female
ratio of 1:3. A majority of the cases were of classical variant (67.1%) and Stage I tumors (83.4%).
A nearly equal proportion of tumors exhibited presence and absence of extra-thyroidal extension,
as well as multifocality (Table 1). Patient characteristics stratified by BRAF mutation status is presented
in Table 1.

Table 1. Patient characteristics according to BRAF mutation status.

Total BRAF Wild-Type BRAF Mutant

No. % No. % No. %

Total 1335 584 43.7 751 56.3

Age at surgery (years)
Mean ± SD 40.4 ± 16.1 36.6 ± 15.5 43.3 ± 15.9

<55 1087 81.4 509 87.2 578 77.0
≥55 248 18.6 75 12.8 173 23.0

Sex
Male 330 24.7 138 23.6 192 25.6

Female 1005 75.3 446 76.4 559 74.4
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Table 1. Cont.

Total BRAF Wild-Type BRAF Mutant

No. % No. % No. %

Histologic subtype
Classical variant 895 67.1 314 53.7 581 77.4
Follicular variant 232 17.4 185 31.7 47 6.3
Tall cell variant 118 8.8 21 3.6 97 12.9
Other variants 90 6.7 64 11.0 26 3.5

Extrathyroidal extension
Present 590 44.2 178 30.5 412 54.9
Absent 745 55.8 406 69.5 339 45.1

Multifocality
Yes 670 50.2 259 44.4 411 54.7
No 665 49.8 325 55.6 340 45.3

pT
T1 369 28.5 176 31.3 193 26.4
T2 266 20.6 138 24.6 128 17.5
T3 549 42.4 212 37.7 337 46.0
T4 110 8.5 36 6.4 74 10.1

pN
N0 527 39.5 280 48.0 247 32.9
N1 683 51.1 245 41.9 438 58.3
Nx 125 9.4 59 10.1 66 8.8

pM
M0 1205 95.4 518 93.7 687 96.8
M1 58 4.6 35 6.3 23 3.2

TNM Stage
I 1084 83.4 499 87.5 585 80.1
II 148 11.4 51 8.9 97 13.3
III 21 1.6 4 0.7 17 2.3

IV-A 17 1.3 2 0.4 15 2.1
IV-B 30 2.3 14 2.5 16 2.2

NRAS mutation
Present 85 6.4 83 14.3 2 0.3
Absent 1244 93.6 498 85.7 746 99.7

HRAS mutation
Present 30 2.3 28 4.2 2 0.3
Absent 1298 97.7 553 95.2 745 99.7

2.2. Clinicopathological Associations of COX-2 Expression in PTC

We performed immunohistochemical analysis to look for COX-2 protein expression in our cohort of
1335 PTC cases. Immunohistochemistry data were interpretable in 1314 cases, and cytoplasmic staining
was noted (Figure 1). COX-2 overexpression, noted in 43.2% (567/1314) of cases, was significantly
associated with older age (p < 0.0001), extra-thyroidal extension (p < 0.0001), T4 tumors (p = 0.0094),
lymph-node metastasis (p = 0.0003), and advanced stage (p < 0.0001) (Table 2). A significant association
was also observed between COX-2 overexpression and poor disease-free survival (DFS; p < 0.0001)
(Table 2; Figure 2A). Multivariate analysis using the Cox regression model, after adjusting for possible
confounding factors of survival, showed that COX-2 overexpression was an independent predictor of
poor DFS (HR = 1.57; 95% CI = 1.22–2.03; p = 0.0004) (Table 3).
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Figure 1. Cyclooxygenase-2 (COX-2) immunohistochemical staining in papillary thyroid carcinoma 
(PTC) tissue microarray (TMA). Representative examples of tumors showing (A) high expression and 
(B) low expression of COX-2 (20×/0.70 objective on an Olympus BX 51 microscope (Olympus America 
Inc., Center Valley, PA, USA), with the inset showing a 40×/0.85 aperture magnified view of the same 
TMA spot). 

Table 2. Association of clinicopathological characteristics with Cox-2 expression in PTC. 

 Total  Cox-2 Positive Cox-2 Negative p Value 
 No. % No. % No. %  

Total 1314  567 43.2 747 56.8  
Age at surgery (years)        

<55 1072 81.6 418 39.0 654 61.0 <0.0001 
≥55 242 18.4 149 61.6 93 38.4  
Sex        

Male 320 24.4 146 45.6 174 54.4 0.3049 
Female 994 75.6 421 42.4 174 57.6  

Histologic subtype        
Classical variant 879 66.9 394 44.8 485 55.2 0.1542 
Follicular variant 229 17.4 84 36.7 145 63.3  
Tall cell variant 116 8.8 52 44.8 64 55.2  
Other variants 90 6.9 37 41.1 53 58.9  

Extrathyroidal extension        
Present 579 44.1 291 50.3 288 49.7 <0.0001 
Absent 735 55.9 276 37.6 459 62.4  

Multifocality        
Yes 658 50.1 295 44.8 363 55.2 0.2175 
No 656 49.9 272 41.5 384 58.5  
pT        
T1 365 28.7 140 38.4 225 61.6 0.0094 
T2 265 20.8 101 38.1 164 61.9  
T3 538 42.2 253 47.0 285 53.0  
T4 106 8.3 53 50.0 53 50.0  
pN        
N0 516 43.3 194 37.6 322 62.4 0.0003 
N1 675 56.7 325 48.2 350 51.8  
pM        
M0 1186 95.4 509 42.9 677 57.1 0.3575 

Figure 1. Cyclooxygenase-2 (COX-2) immunohistochemical staining in papillary thyroid carcinoma
(PTC) tissue microarray (TMA). Representative examples of tumors showing (A) high expression and
(B) low expression of COX-2 (20×/0.70 objective on an Olympus BX 51 microscope (Olympus America
Inc., Center Valley, PA, USA), with the inset showing a 40×/0.85 aperture magnified view of the same
TMA spot).

Table 2. Association of clinicopathological characteristics with Cox-2 expression in PTC.

Total Cox-2 Positive Cox-2 Negative p Value

No. % No. % No. %

Total 1314 567 43.2 747 56.8

Age at surgery (years)
<55 1072 81.6 418 39.0 654 61.0 <0.0001
≥55 242 18.4 149 61.6 93 38.4

Sex
Male 320 24.4 146 45.6 174 54.4 0.3049

Female 994 75.6 421 42.4 174 57.6

Histologic subtype
Classical variant 879 66.9 394 44.8 485 55.2 0.1542
Follicular variant 229 17.4 84 36.7 145 63.3
Tall cell variant 116 8.8 52 44.8 64 55.2
Other variants 90 6.9 37 41.1 53 58.9

Extrathyroidal extension
Present 579 44.1 291 50.3 288 49.7 <0.0001
Absent 735 55.9 276 37.6 459 62.4

Multifocality
Yes 658 50.1 295 44.8 363 55.2 0.2175
No 656 49.9 272 41.5 384 58.5

pT
T1 365 28.7 140 38.4 225 61.6 0.0094
T2 265 20.8 101 38.1 164 61.9
T3 538 42.2 253 47.0 285 53.0
T4 106 8.3 53 50.0 53 50.0

pN
N0 516 43.3 194 37.6 322 62.4 0.0003
N1 675 56.7 325 48.2 350 51.8

pM
M0 1186 95.4 509 42.9 677 57.1 0.3575
M1 57 4.6 28 49.1 29 50.9

TNM Stage
I 1069 83.4 415 38.8 654 61.2 <0.0001
II 146 11.4 86 58.9 60 41.1
III 20 1.6 17 85.0 3 15.0

IV-A 17 1.3 10 58.8 7 41.2
IV-B 29 2.3 21 72.4 8 27.6

BRAF mutation
Present 740 56.3 344 46.5 396 53.5 0.0055
Absent 574 43.7 223 38.9 351 61.1

5-year disease-free survival 69.5 81.7 <0.0001
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Figure 2. Survival analyses of COX-2 protein expression in the overall cohort and based on BRAF 
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Kaplan–Meier survival plot showing no statistically significant difference in disease-free survival for 
COX-2 expression in BRAF wild-type PTC (p = 0.7675); (C) Kaplan–Meier survival plot showing 
statistically significant poor disease-free survival for cases with COX-2 overexpression in BRAF-
mutant PTC (p < 0.0001). 

  

Figure 2. Survival analyses of COX-2 protein expression in the overall cohort and based on BRAF
mutation status. (A) Kaplan–Meier survival plot showing statistically significant poor disease-free
survival in COX-2 high-expression cases compared to COX-2 low-expression cases (p < 0.0001);
(B) Kaplan–Meier survival plot showing no statistically significant difference in disease-free survival
for COX-2 expression in BRAF wild-type PTC (p = 0.7675); (C) Kaplan–Meier survival plot showing
statistically significant poor disease-free survival for cases with COX-2 overexpression in BRAF-mutant
PTC (p < 0.0001).

Table 3. Univariate and multivariate analysis of COX-2 expression using the Cox proportional-
hazards model.

Clinical Parameters
Univariate Multivariate

Hazard Ratio (95% CI) p-Value Hazard Ratio (95% CI) p-Value

Age
≥55 years (vs. <55 years) 2.82 (2.21–3.57) <0.0001 2.04 (1.51–2.76) <0.0001

Sex
Male (vs. Female) 0.59 (0.47–0.74) <0.0001 0.66 (0.51–0.85) 0.0016

Extrathyroidal extension
Present (vs. Absent) 2.89 (2.24–3.77) <0.0001 2.26 (1.72–2.99) <0.0001

pM
M1 (vs. M0) 4.52 (3.12–6.34) <0.0001 2.84 (1.74–4.63) <0.0001

Stage
IV (vs. I–III) 4.40 (2.84–6.52) <0.0001 0.83 (0.45–1.54) 0.5560

COX-2 IHC
Overexpression (vs. low expression) 1.66 (1.32–2.08) <0.0001 1.57 (1.22–2.03) 0.0004
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2.3. COX-2 Expression and BRAF Mutation in PTC

We found a significant association between COX-2 overexpression and BRAF mutation (p = 0.0055)
in our cohort. Next, we examined the prognostic association of COX-2 expression in the strata of BRAF
mutation status. Using Kaplan–Meier survival analyses, we found COX-2 expression was associated
with a significantly shorter DFS in BRAF-mutant PTC, but not in BRAF wild-type cases (Figure 2B,C).
Multivariate analysis showed COX-2 overexpression was associated with shorter DFS in BRAF-mutant
PTC cases (HR = 2.10; 95% CI = 1.52–2.92; p < 0.0001) (Table 4).

Table 4. Univariate and multivariate analysis of COX-2 expression in BRAF-mutant PTC using the Cox
proportional-hazards model.

Clinical Parameters
Univariate Multivariate

Risk Ratio (95% CI) p-Value Risk Ratio (95% CI) p-Value

Age
≥55 years (vs. <55 years) 2.45 (1.84–3.25) <0.0001 1.75 (1.22–2.48) 0.0020

Sex
Male (vs. Female) 0.55 (0.42–0.74) <0.0001 0.52 (0.39–0.72) <0.0001

Extrathyroidal extension
Present (vs. Absent) 2.77 (1.96–4.01) <0.0001 2.11 (1.46–3.10) <0.0001

pM
M1 (vs. M0) 4.69 (2.64–7.72) <0.0001 4.44 (1.61–11.71) 0.0036

Stage
IV (vs. I–III) 3.15 (1.77–5.16) <0.0001 0.49 (0.17–1.25) 0.1656

COX-2 IHC
Overexpression (vs. low expression) 2.10 (1.59–2.79) <0.0001 2.10 (1.52–2.92) <0.0001

3. Discussion

We conducted this study using a large cohort of more than 1300 Middle Eastern PTC tumors,
and found a frequency of COX-2 expression of 43.2%. There was a strong association of COX-2
expression with adverse markers of PTC prognosis, most notably extra-thyroidal extension, lymph-node
metastasis, and higher tumor stage. A recent study by Fu et al. [15] demonstrated a similar association
of COX-2 expression with aggressive clinicopathological features such as extra-thyroidal extension
and multifocality in 252 PTC samples. Several previous studies have explored the usefulness of COX-2
as a biomarker of thyroid malignancies and its potential role in PTC carcinogenesis [15,31–33], but the
prognostic role of COX-2 in PTC is still controversial [34,35]. Our current study shows that elevated
COX-2 expression is an independent predictor of poor DFS in patients with PTC.

COX-2 mainly generates prostaglandin E2 (PGE2). The COX-2–PGE2 pathway is known to play
an important role in tumor progression, and its oncogenic role has been shown in several tumor
types [36–39]. However, recent evidence shows that PGE2 is important in modifying the tumor
microenvironment to induce immune tolerance [40–42]. PGE2 induces alterations in cytokine balance
and causes suppression of lymphocyte proliferation following mitogen stimulation and inhibition of
dendritic cells [43–45]. Given the known function of PGE2 in modulating the tumor microenvironment
to suppress an immune response [46], our data clearly show the strong relationship among cancer
progression, aggressiveness, lymph-node metastasis, and COX-2 expression.

We observed a differential prognostic association of COX-2 expression according to BRAF mutation
status in our study. The prognostic association of COX-2 expression was significantly pronounced in
BRAF-mutated PTC compared to BRAF wild-type PTC. A similar observation has been documented
recently in CRC [30]. This further supports the role of BRAF mutation in the acceleration of the
production of PGE2 via COX-2 [41,47,48], and highlights how a subset of PTC might use increased
COX-2 activity as a possible pathway that affects the survival of patients with the BRAF mutation.
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Our study reveals the necessity for additional prognostic biomarkers for PTC, especially markers
of tumor-associated inflammation, which could be used to tailor therapeutic approaches and improve
patient survival. Although our findings suggest that inhibition of COX-2 in BRAF-mutated PTC might
be a good therapeutic strategy, clinical trials and further clinical research is needed to explore the
therapeutic advantage of adding COX-2 inhibitors to the current iodine therapy in BRAF-mutated PTC
patients. The findings of our study are summarized in Figure 3.
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4. Materials and Methods

4.1. Sample Selection

The study included 1335 PTC patients diagnosed between 1989 and 2018 at King Faisal
Specialist Hospital and Research Center (Riyadh, Saudi Arabia) with available archival tissue samples.
Clinicopathological data were collected from case records (Table 1). The hospital’s institutional review
board approved the collection of archival samples. For this study, since only archived paraffin tissue
blocks were used, a waiver of consent was obtained from the Research Advisory Council (RAC) under
project RAC# 2110 031.

4.2. DNA Isolation

DNA was extracted from PTC formalin-fixed and paraffin-embedded (FFPE) tumor tissues using
the Gentra DNA isolation kit (Gentra, Minneapolis, MN, USA) according to the manufacturer’s
protocols as elaborated in previous studies [49].

4.3. Sanger Sequencing Analysis

The sequencing of entire coding and splicing regions of exon 15 in BRAF genes, and exon 2
and 3 in HRAS and NRAS genes, in the 1335 PTC samples was carried out using Sanger sequencing
technology. Primer 3 online software was used to design the primers (available upon request). PCR and
Sanger sequencing analysis were conducted as described previously [50]. The reference sequence was
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downloaded from NCBI GenBank. The sequencing results were compared with the reference sequence
by Mutation Surveyor V4.04 (Soft Genetics, LLC, State College, PA, USA).

4.4. Tissue Microarray (TMA) Construction and Immunohistochemistry (IHC) Analysis

The tissue microarray (TMA) format was used for immunohistochemical analysis of the PTC
samples. TMA was constructed as previously described [51]. A modified semiautomatic robotic
precision instrument (Beecher Instruments, Woodland, WI, USA) was used to punch tissue cylinders
with a diameter of 0.6 mm from a representative tumor area of the donor tissue block into the recipient
paraffin block. Two 0.6 mm cores of PTC were arrayed from each case.

Tissue microarray slides were processed and stained manually as described previously [52], using a
primary antibody against COX-2 (ab15191, 1:1000 dilution, pH 6.0, Abcam, Cambridge, UK). The Dako
Envision Plus System kit was used as the secondary detection system with 3,30-diaminobenzidine
as chromogen. All slides were counterstained with hematoxylin, dehydrated, cleared, and mounted.
The negative controls included omission of the primary antibody. Normal tissues of different
organ system were also included in the TMA to serve as controls. Only fresh-cut slides were stained
simultaneously to minimize the influence of slide aging and maximize reproducibility of the experiment.

A cytoplasmic staining was observed and scored. COX-2 was scored as described previously [53]
using the H score. The intensity of staining was scored from 0–3 (0: absent, 1+: weak, 2+: moderate,
3+: strong), and the proportion of tumor-cell staining for a particular intensity was recorded in
5% increments in the range of 0–100. A final H score was assigned using the following formula:
H score = (1 × (% cells 1+) + 2 × (% cells 2+) + 3 × (% cells 3+)). This H score ranged from 0–300.
Two scores per tumor were analyzed to minimize the number of missing/uninterpretable spots.
However, the higher of the two scores was used as the final score. X-tile plots were constructed for
the assessment of biomarkers and the optimization of cut-off points based on an outcome described
earlier [54]. Based on X-tile plots, PTC cases were classified into two subgroups: those with an H score
of 0, defined as negative expression of COX-2, and those with an H score > 0, defined as overexpression.

4.5. Statistical Analysis

The associations between clinico-pathological variables and protein expression were derived using
contingency table analysis and Chi square tests. The Mantel–Cox log-rank test was used to evaluate
disease-free survival. Survival curves were generated using the Kaplan–Meier method. The Cox
proportional-hazards regression model was used for multivariate analysis. Two-sided tests were used
for statistical analyses, with a limit of significance defined as p value < 0.05. Data analyses were
performed using the JMP11.0 (SAS Institute, Inc., Cary, NC, USA) software package.

5. Conclusions

Recently, the possibility of combining different therapies, including biological therapies and
kinase inhibitors, has contributed to tailoring the treatment of cancer patients and improving their
survival. Our data show that COX-2 correlates with PTC disease-free survival in BRAF-mutated
tumors, representing a useful prognostic marker for risk stratification of thyroid cancer patients.
These findings have clinical relevance because they provide a rationale to test COX-2 inhibition as a
potential treatment to prevent PTC progression and enhance the antitumor activity of other cancer
therapies to treat patients with aggressive PTC and BRAF mutations.
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COX-2 Cyclooxygenase-2
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PTC Papillary thyroid carcinoma
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