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Accumulating evidence indicates that ferroptosis is an iron-dependent form of regulated
cell death. This type of iron-dependent programmed cell death is different from
traditional forms of regulated cell death, such as apoptosis and autophagy. However,
the role of ferroptosis in porcine oocyte maturation and the associated mechanism
remain unclear. In the present research, we investigated the effects of ferric ammonium
citrate (FAC), a specific ferroptosis inducer, on porcine oocyte meiotic maturation and
quality and subsequent embryonic developmental competence. FAC treatment caused
obvious accumulation of intracellular ferrous ions in porcine oocytes. At the end of the
in vitro maturation (IVM) period, there was a significant decrease in the polar body
(PB) extrusion rate and an increase in the percentage of abnormal oocytes in the
FAC treatment groups, indicating that iron overload-induced ferroptosis may suppress
the meiotic process during porcine oocyte maturation. We also found that after FAC
treatment, the subsequent two-cell rate, four-cell rate and blastocyst formation rate were
significantly decreased in porcine parthenogenetic activation (PA) embryos, indicating
that iron overload-induced ferroptosis decreased porcine oocyte quality. Further analysis
revealed that FAC treatment not only enhanced intracellular reactive oxygen species
(ROS) generation, decreased intracellular free thiol levels and induced mitochondrial
dysfunction but also triggered autophagy in porcine oocytes. Taken together, these
findings suggest that iron overload-induced ferroptosis impairs porcine oocyte meiosis
and decreases porcine oocyte quality, possibly by increasing oxidative stress, inducing
mitochondrial dysfunction and triggering autophagy.

Keywords: iron overload, ferroptosis, porcine oocyte, oxidative stress, mitochondrial function

INTRODUCTION

With the development of livestock husbandry, an increasing number of assisted reproduction
technologies, such as in vitro fertilization (IVF), somatic cell nuclear transfer (SCNT), and
intracytoplasmic sperm injection (ICSI), have been widely used in the production of domestic
animals. The implementation of these techniques needs to be accompanied by the use of high-
quality in vitro- or in vivo-derived oocytes to be fully effective. Compared with in vivo-matured
oocytes, in vitro-matured oocytes are easier to obtain. However, in vitro-matured oocytes are lower
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in quality and have a lower developmental potential than
in vivo-matured oocytes. Oocyte in vitro maturation (IVM) is
a complex process regulated by a large number of internal and
external factors (Grupen, 2014). Any changes in this process
lead to changes in oocyte quality, which affect the subsequent
developmental capacity of preimplantation embryos (Koyama
et al., 2014; Ahmed et al., 2017; Ferrer-Vaquer et al., 2019).
Therefore, identifying the changes that occur in oocytes under
stress conditions can help find potential solutions to reduce the
corresponding negative effects.

Iron is a trace metal that is very important in mammalian
physiological processes, such as DNA synthesis, energy
generation, and oxygen transport, which rely on the existence
of iron in variable and interconvertible oxidation states.
However, dysregulation of iron homeostasis can lead to iron
overload disorders, eventually resulting in excessive reactive
oxygen species (ROS) generation and DNA damage and lipid
peroxidation (Totsuka et al., 2019; Han et al., 2020; Tian et al.,
2020). These events were defined as a form of programmed cell
death called ferroptosis by Brent R. Stockwell’s team in 2012
(Dixon et al., 2012). Ferroptosis is a unique iron-dependent form
of cell death (Xie et al., 2016; Tang et al., 2018) that is different
from the traditional modes of cell death, such as necrosis
(Pasparakis and Vandenabeele, 2015), autophagy (Glick et al.,
2010), and apoptosis (Peña-Blanco and García-Sáez, 2018), in
terms of cell morphology, biochemical characteristics and gene
levels. Another characteristic of ferroptosis is the accumulation
of ROS in cells (Sui et al., 2018). A large number of experiments
have shown that ferroptosis occurs in neurodegenerative diseases
(Abdalkader et al., 2018), infectious diseases (Matsushita et al.,
2015), cancer (Chen et al., 2020), etc. Previous studies have
found that under physiological and pathological conditions, a
variety of hormonal (Belavgeni et al., 2019; Wang et al., 2019)
and metabolic abnormalities (Stockwell et al., 2017; Wang
et al., 2017) can trigger different types of cell death, including
ferroptosis. Data from Zhang et al. (2020) showed that when
the uterus and placenta of a female rat were dysfunctional,
ferroptosis was triggered, and iron deposition occurred in the
uterus. Furthermore, previous studies have also shown that the
accumulation of iron and ferroptosis may occur in the early stage
of follicular atresia (Zhang et al., 2018).

In the present research, a highly selective inducer of iron
overload, ferric ammonium citrate (FAC), was used to establish
an iron overload model in porcine oocytes. FAC, a trivalent iron
salt, is absorbed in vivo by reducing trivalent iron to divalent
ferrous iron (Cotticelli et al., 2019; Yao et al., 2021). It has
been shown that FAC-induced intracellular iron overload causes
ferroptosis (Fang et al., 2018). The aim of the present research was
to determine whether iron overload-induced ferroptosis during
IVM impairs meiotic maturation and developmental competence
of porcine oocytes.

MATERIALS AND METHODS

All chemicals used in this research were obtained from Sigma-
Aldrich (St. Louis, MO, United States) unless otherwise noted.

Oocyte Collection and IVM
Porcine ovaries were obtained from a local slaughterhouse and
transported to the laboratory in sterile 0.9% saline at 30–35◦C.
Cumulus-oocyte complexes (COCs) were obtained by aspirating
3∼8 mm antral follicles with a syringe. COCs with at least three or
more layers of uniformly distributed cumulus cells were collected
using Tyrode’s lactate-hydroxyethylpiperazine ethane sulfonic
acid (HEPES) medium supplemented with 0.1% polyvinyl alcohol
(PVA, w/v) and 0.05 g/L gentamycin under a stereomicroscope
(S22-LGB, Nikon). The IVM medium consisted of tissue culture
medium 199 (TCM-199, Invitrogen, Carlsbad, CA, United States)
supplemented with 10% (v/v) porcine follicular fluid, 10 IU/mL
follicle stimulating hormone (Ningbo No. 2 Hormone Factory,
China), 10 IU/mL luteinizing hormone (Ningbo No. 2 Hormone
Factory, China), 0.91 mM Na pyruvate, 10 ng/mL EGF, and
75 mg/mL kanamycin. The IVM medium was completely covered
with mineral oil and cultured in an incubator containing 5% CO2
at 100% humidity at 38.5◦C for 42 h.

For FAC treatment, FAC powder was dissolved in IVM
medium at a concentration of 20 µM in the dark, and then 20 µM
FAC solution was diluted in IVM medium to obtain 5 µM and
10 µM FAC solutions.

Parthenogenetic Activation (PA) and
In vitro Culture (IVC)
Porcine oocyte PA was induced according to our previously
described procedures (Qi et al., 2020). Briefly, cumulus cells
were removed from COCs with cumulus cells expanded by 0.1%
hyaluronidase at the end of the IVM period. Polar body (PB)
extrusion of oocytes was examined under a stereomicroscope.
The denuded oocytes were then subjected to electrical activation
[300 mM mannitol containing 0.1 mM CaCl2, 0.05 mM MgSO4,
0.01% PVA (w/v), and 0.5 mM HEPES] at 110 V and 60 µs
twice. After that, these oocytes were transferred to IVC medium
[bicarbonate-buffered porcine zygote medium (PZM)-5 (Suzuki
et al., 2007) comprising 4 mg/mL BSA] supplemented with
7.5 µg/mL cytochalasin B and cultured for 3 h to suppress
extrusion of the pseudo-second PB. Next, the oocytes were
thoroughly washed and cultured in IVC medium in four-well
plates covered with mineral oil and cultured for 6.5 days at
38.5◦C under 100% humidity and an atmosphere of 5% CO2
without changing the medium. Two-cell, four-cell and blastocyst
formation rates were analyzed under a stereomicroscope at
24 h, 48 h, and 6.5 days. The two-cell, four-cell, and blastocyst
formation rates were calculated by the number of examined
embryos to the total embryos in each group.

Ferrous Ion Staining
Intracellular Fe2+ levels were examined at the end of the IVM
period. The oocytes in each group were thoroughly washed in
prewarmed PBS-PVA medium and assessed using the fluorescent
probe Ferro Orange (Dojindo, F374) for 30 min. Images of
the fluorescence signals were captured as TIFF files using a
digital camera connected to a fluorescence microscope. The same
procedures were followed for all groups of oocytes, including
incubation, rinsing, mounting, and imaging. The fluorescence
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FIGURE 1 | Effects of FAC on intracellular Fe2+ accumulation in porcine oocytes during IVM. (A) Representative images of the fluorescent probe FerroOrange
showing intracellular Fe2+ levels in porcine oocytes. Scale bar = 100 µm. (B) Quantification of the relative intracellular Fe2+ levels in porcine oocytes from the
different FAC treatment groups. The number of oocytes examined from each experimental group is indicated by the bars. Statistically significant differences are
represented by different letters (p < 0.05).

FIGURE 2 | FAC treatment impairs the porcine oocyte maturation process. (A) Representative images of porcine oocytes treated with different concentrations of
FAC at the end of the IVM period are shown. Porcine oocytes with morphological abnormalities as examined by optical microscopy are indicated by arrows. Scale
bar = 100 µm. (B) Oocyte PB extrusion rate in each experimental group. (C) Percentage of abnormal oocytes in each experimental group. The number of oocytes
examined from each experimental group is indicated by the bars. Statistically significant differences are represented by different letters (p < 0.05).
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signal intensities of the oocytes in each group were analyzed
via National Institutes of Health (NIH) ImageJ software (NIH,
Bethesda, MD, United States).

Intracellular ROS Levels, Free Thiol
Levels
Intracellular ROS levels and free thiol levels in oocytes were
measured with an ROS detection kit (Thermo Fisher Scientific,
C400) and free thiol level detection kit (Thermo Fisher
Scientific, C12881). To determine intracellular ROS levels,
oocytes were incubated for 15 min in PBS-PVA medium
containing 10 µM 2′,7′-dichlorodihydrofluorescein diacetate. To
determine intracellular free thiol levels, oocytes were incubated
for 30 min in PBS-PVA medium containing 10 µM CMF2HC.
Fluorescent signals were captured as a TIFF file using a digital
camera connected to a fluorescence microscope. The same
procedures were followed for all groups of oocytes, including
incubation, rinsing, mounting, and imaging. The fluorescence
signal intensities of the oocytes in each group were analyzed via
NIH ImageJ software.

Mitochondrial Membrane Potential
(MitoMP) Assessment
Mitochondrial membrane potential in oocytes was measured
with a JC-1 MitoMP detection kit (Dojindo, MT09). Briefly,
oocytes were incubated in PBS-PVA containing 2 µM JC-1 for
30 min. The MitoMP was calculated as a ratio of red florescence
(J-aggregates; corresponding to activated mitochondria) to
green fluorescence (J-monomers; corresponding to less active
mitochondria). Images of the fluorescence signals were captured
as TIFF files using a digital camera connected to a fluorescence
microscope. The same procedures were followed for all groups of
oocytes, including incubation, rinsing, mounting, and imaging.
The fluorescence signal intensities of the oocytes in each group
were analyzed via NIH ImageJ software.

Intracellular ATP Level Measurement
Intracellular ATP levels were measured using an ATP Detection
Kit (Beyotime, S0027). Briefly, porcine oocytes from each group
were collected and lysed with 200 µL of lysis buffer at the end
of the IVM period. Next, the cell lysates were centrifuged at

FIGURE 3 | Developmental competence of porcine oocytes after FAC treatment. (A) Development of PA embryos from the control and FAC treatment groups at
different time points. Scale bar = 100 µm. (B) Two-cell rate of PA embryos from the control and FAC treatment groups. (C) Four-cell rate of PA embryos from the
control and FAC treatment groups. (D) Blastocyst formation rate of PA embryos from the control and FAC treatment groups. The number of embryos examined from
each experimental group is indicated by the bars. Statistically significant differences are represented by different letters (p < 0.05).
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12000 rpm at 4◦C for 5 min, and the supernatant was taken for
subsequent analysis. Then, 100 µL of ATP working solution and
20 µL of supernatant were added to 96-well opaque plates, which
were analyzed with a luminometer (Tecan, Infinite M200 Pro).

Western Blotting Analysis
For Western blotting, 100 oocytes from each group were
collected and fully lysed at 95◦C in lysis buffer comprising
10% Tris–HCl, 40% DDH2O, 50% glycerol, 0.5 mM Tris–
HCl, β-mercaptoethanol, and bromophenol blue. The protein
samples were then loaded in a 10% polyacrylamide gel containing
0.1% SDS, and the separated proteins were transferred to
polyvinylidene fluoride (PVDF) membranes (Millipore). The
PVDF membranes were blocked in 5% BSA at room temperature
for 2 h and then incubated with primary antibodies against
GAPDH (CST, #2118S), β-tubulin (Proteintech, 10094-1-AP),
caspase-3 (Wanleibio, WL02117), Bcl-2 (Wanleibio, WL01556),
Bax (Wanleibio, WL01637), GPX4 (BOSTER, BM5231), and
LC-3 (CST, #11972S). After being washed with 1x TBST for
5 min each four times, the membranes were incubated at room
temperature for 1 h with horseradish peroxidase-conjugated goat

anti-rabbit IgG (Bioworld Technology, Inc., Louis Park, MN,
United States, BS13278). The blots were visualized and analyzed
by using a Tanon 5200 Image Analyzer (Tanon, Shanghai, China)
and NIH ImageJ software, respectively.

Statistical Analysis
SPSS software version 11.0 (IBM, United States) was used to
analyze all the data collected. Comparisons of data among groups
were performed using one-way ANOVA or Student’s t-test. The
results are presented as the mean ± standard error of mean
(SEM) of the mean. Significant differences are indicated by
different letters (p < 0.05).

RESULTS

FAC Treatment Results in Intracellular
Fe2+ Accumulation and Deterioration of
Porcine Oocyte Quality
To investigate the potential involvement of ferroptosis in oocyte
quality during IVM, porcine oocytes were treated with increasing

FIGURE 4 | Effects of FAC treatment on intracellular ROS generation in porcine oocytes during IVM. (A) Representative fluorescence images showing intracellular
ROS levels in porcine oocytes. Scale bar = 100 µm. (B) Quantification of relative intracellular ROS levels in porcine oocytes from the control and FAC treatment
groups. The number of oocytes examined from each experimental group is indicated by the bars. Statistically significant differences are represented by different
letters (p < 0.05).
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concentrations of FAC (5 µM, 10 µM, and 20 µM), and
intracellular Fe2+ levels, the rate of PB extrusion and the
percentage of abnormal oocytes (Supplementary Figure 1) were
analyzed. Analysis with the fluorescence probe FerroOrange
revealed that the relative intracellular Fe2+ levels in oocytes
increased in a concentration-dependent manner (Figures 1A,B).
Further analysis revealed that FAC treatment decreased the rate
of maturation (85.74 ± 2.69%, 70.86 ± 2.11%, 61.58 ± 2.66%,
36.27 ± 3.02%; p < <0.05) and increased the percentage of
abnormal oocytes (4.80 ± 0.32%, 34.05 ± 3.19%, 44.84 ± 2.20%,
62.62 ± 5.75%; p < <0.05) in a dose-dependent manner
(Figures 2A–C). In addition, FAC treatment impaired cumulus
cell expansion capacity in porcine oocytes (Supplementary
Figure 2). Western blotting analysis showed that the expression
of the key ferroptosis factor GPX4 was upregulated, but there
was no statistical significance in the expression of the apoptosis-
related factors cleaved-caspase-3, BCL-2 and BAX in oocytes
treated with FAC compared with oocytes in the control group
(Supplementary Figures 3, 4). These results suggest that iron

overload-induced ferroptosis has a direct negative effect on
the porcine oocyte maturation process. According to our pre-
experiment, 10 µM FAC was used for all subsequent experiments.

Effects of FAC Treatment During IVM on
Subsequent In vitro Embryo
Development After PA
Since the quality of an oocyte directly affects its developmental
potential, we next assessed whether FAC treatment during the
IVM period decreased the developmental competence of porcine
PA embryos. The results showed that FAC treatment had a
negative effect on porcine embryo developmental competence
(Figure 3A). The two-cell rates (Figure 3B; 98.00 ± 1.41% vs.
14.50 ± 0.96% at 24 h; p < 0.05), four-cell rates (Figure 3C;
90.00± 3.16% vs. 3.50± 0.96% at 48 h; p < 0.05), and blastocyst
formation rates (Figure 3D; 66.50 ± 1.71% vs. 1.50 ± 0.96% on
day 6.5; p < 0.05) of the PA embryos generated from mature
oocytes from the FAC-treated group were significantly lower

FIGURE 5 | Effects of FAC treatment on intracellular free thiol levels in porcine oocytes during IVM. (A) Representative fluorescence images showing intracellular free
thiol levels in porcine oocytes. Scale bar = 100 µm. (B) Quantification of relative intracellular free thiol levels in porcine oocytes from the control and FAC treatment
groups. The number of oocytes examined from each experimental group is indicated by the bars. Statistically significant differences are represented by different
letters (p < 0.05).
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FIGURE 6 | Effects of FAC treatment on mitochondrial function in porcine oocytes during IVM. (A) Representative fluorescence images of JC-1-stained porcine
oocytes. Scale bar = 100 µm. (B) Quantification of the relative JC-1 fluorescence intensity in porcine oocytes from the control and FAC treatment groups.
(C) Quantification of relative intracellular ATP levels in porcine oocytes from the control and FAC treatment groups. The number of oocytes examined from each
experimental group is indicated by the bars. Statistically significant differences are represented by different letters (p < 0.05).

FIGURE 7 | Effects of FAC treatment on autophagy in porcine oocytes during IVM. (A) Western blotting analysis of LC3 expression in porcine oocytes.
(B) Quantitative LC3-I and LC3-II levels in porcine oocytes. Statistically significant differences are represented by different letters (p < 0.05).
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than those of PA embryos generated from mature oocytes from
the control group.

Effects of FAC Treatment During IVM on
the Oxidative Resistance of Porcine
Oocytes
To analyze the mechanism through which FAC-induced
ferroptosis affects porcine oocyte maturation, intracellular ROS
and free thiol levels in FAC-treated oocytes were measured.
Intracellular ROS levels were measured by assessing DCFH
fluorescence (Figure 4A). Quantitative analysis showed that
the relative intracellular ROS levels in porcine oocytes were
significantly increased in the FAC treatment group compared
with the control group (Figure 4B; p < 0.05). Next, the
intracellular free thiol levels in porcine oocytes were measured
(Figure 5A). As shown in Figure 5B, quantitative analysis
showed that the relative intracellular free thiol levels were
significantly lower in the FAC treatment group than in the
control group (p < 0.05), suggesting that iron overload-induced
ferroptosis can lead to oxidative stress and decrease the oxidative
resistance of porcine oocytes.

Effects of FAC Treatment During IVM on
Mitochondrial Function in Porcine
Oocytes
As the source of energy for cells, mitochondria play a vital role
in the oocyte maturation process. Therefore, the intracellular
MitoMP and ATP levels in porcine oocytes were analyzed. The
intracellular MitoMP of porcine oocytes was evaluated using
JC-1 fluorescent dye (Figure 6A). Quantitative analysis showed
that the relative intracellular MitoMP of porcine oocytes was
decreased in the FAC treatment group compared with the control
group (Figure 6B; p < 0.05). Further analysis showed that
the relative intracellular ATP levels in porcine oocytes were
significantly lower in the FAC treatment group than in the control
group (Figure 6C; p < 0.05). These results indicate that iron
overload-induced ferroptosis can impair mitochondrial function
in porcine oocytes.

Effects of FAC Treatment During IVM on
Autophagy in Porcine Oocytes
To evaluate whether FAC-induced ferroptosis can induce
autophagy in porcine oocytes, the protein expression of LC3,
which is associated with autophagy, in porcine oocytes was
analyzed after FAC treatment. Western blotting analysis showed
that LC3-II protein expression was upregulated in oocytes treated
with FAC compared with oocytes in the control group (Figure 7).
This result indicates that iron overload is related to the induction
of autophagy in porcine oocytes.

DISCUSSION

The present research suggested that iron overload disorders
induced by FAC decreased porcine oocyte quality by increasing
intracellular ROS generation, decreasing intracellular free thiol

levels, and inducing mitochondrial dysfunction during IVM.
Importantly, subsequent embryonic developmental potential was
markedly decreased following iron overload during IVM of
porcine oocytes. These results suggest that dysregulation of iron
homeostasis decreases porcine oocyte quality and subsequent
embryonic developmental competence.

Iron overload induces ferroptosis characterized by
phospholipid peroxidation of plasma membranes caused by
ROS generated during iron-mediated Fenton reactions (Dixon
et al., 2012). A previous study showed that iron overload induces
ferroptosis in cells and a loss of antioxidant defense (Chen
et al., 2021). Porcine oocytes have relatively higher intracellular
lipid levels than oocytes of other species, making them highly
sensitive to ROS-induced impairments (Gajda, 2009). A previous
study suggested that excessive intracellular ROS accumulation
can induce cell cycle arrest and apoptosis in oocytes (Tripathi
et al., 2009; Tiwari et al., 2017). It was found that oxidative
stress can lead to a decrease in oocyte quality and reduce
subsequent embryonic developmental competence (Yu et al.,
2019; Zhou et al., 2019). In the present study, we found that
FAC-induced iron overload led to intracellular ROS generation in
porcine oocytes. To further evaluate the underlying process and
mechanism through which FAC-induced iron overload decreases
the quality and developmental potential of porcine oocytes, we
examined intracellular free thiol levels. The levels of intracellular
free thiols are regarded as important indicators of cytoplasmic
maturation of oocytes at the end of the IVM period (Liang et al.,
2018; Zhang et al., 2019). Several studies have shown that oocytes
with higher intracellular ROS levels have lower intracellular free
thiol levels and insufficient embryonic developmental potential
(Nabenishi et al., 2012; Liang et al., 2017b; Li and Zhao, 2019).
In the present study, FAC-induced iron overload during IVM
decreased intracellular free thiol levels in the cytoplasm. These
results are consistent with our hypothesis that FAC-induced
iron overload decreases porcine oocyte quality by consuming
intracellular free thiols and inducing the accumulation of
intracellular ROS.

Mitochondria are a site of energy metabolism and are
involved in cell apoptosis and death. Several studies have shown
that mitochondrial function influences oocyte developmental
potential and is associated with subsequent embryonic
development, such as that of PA, IVF, and SCNT embryos
(Liang et al., 2018; An et al., 2019; Hu et al., 2020; Nie
et al., 2020). Recent research has suggested that ferroptosis
can lead to mitochondrial dysfunction, including loss of the
MitoMP, enhanced mitochondrial fragmentation, and reduced
mitochondrial respiration, in neuronal HT22 cells and mouse
embryonic fibroblasts (Jelinek et al., 2018). In addition, in vivo
studies have suggested that excessive iron accumulation induces
ferroptosis, not only exacerbating mitochondrial dysfunction
but also increasing intracellular ROS and malondialdehyde
levels (Kumfu et al., 2016, 2018; Wongjaikam et al., 2016, 2017;
Khamseekaew et al., 2017; Sumneang et al., 2020). Abdalkader
et al. (2018) also found that the characteristics of many
neurodegenerative diseases are similar to those of ferroptosis-
associated conditions, such as iron accumulation disorders and
mitochondrial dysfunction. The MitoMP is commonly used
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as an indicator of mitochondrial function in oocytes (Liang
et al., 2018) and is the driving force behind intracellular ATP
synthesis (Dimroth et al., 2000). There is increasing evidence
that oocytes with a higher MitoMP have better developmental
potential (Liang et al., 2017a; An et al., 2019; Nie et al., 2020; Niu
et al., 2020). Previous studies have suggested that iron overload
could induce apoptosis through mitochondrial dysfunction,
which increased mitochondrial oxidative stress and activated the
caspase-dependent apoptotic pathway (Khamseekaew et al., 2017;
Kumfu et al., 2018). Therefore, we analyzed intracellular MitoMP
and ATP production in porcine oocytes after FAC treatment.
Mitochondrial functional assays revealed that intracellular
MitoMP and ATP production exhibited significant decreasing
trends. These changes may account for the decrease in the
quality of porcine oocytes after FAC-induced iron overload
as well as the reduction in oocyte developmental potential.
A similar study of mouse spermatozoa revealed that iron overload
significantly decreases motility, viability, MitoMP, and GPX
activity and increases the generation of ROS (Mojica-Villegas
et al., 2014). Further studies, including studies on mitochondrial
dysfunction and transmission electron microscopy results of
mitochondria, are needed to further investigate the mechanism
by which iron overload decreases the developmental competence
of oocytes in pigs.

Autophagy is an intracellular process of self-degradation
that occurs in abnormal physiological processes. LC3 is an
autophagosome-labeling protein. LC3I exists in two forms: LC3I
is lipidated and ubiquitylated into LC3II, which is ultimately
targeted to the autophagosome or its precursor (Kabeya et al.,
2000). It has been suggested that the modification of LC3I
to LC3II is a sign of autophagy (Kabeya et al., 2004). In
the present research, FAC-induced iron overload upregulated
the expression of LC3II in porcine oocytes. This result was
consistent with previous studies showing that iron overload-
induced ferroptosis triggers autophagy in L6 skeletal muscle cells
(Jahng et al., 2019) and murine preosteoblast cells (Cen et al.,
2018). Thus, iron overload-induced ferroptosis might trigger
autophagy to affect porcine oocyte meiotic maturation and block
further development.

CONCLUSION

Taken together, the present research demonstrated that iron
overload-induced ferroptosis might decrease porcine oocyte

quality by inducing intracellular ROS generation and decreasing
intracellular free thiol levels and mitochondrial dysfunction.
These findings provide novel insights into the mechanisms
underlying iron overload-induced ferroptosis in oocytes. In the
future, in vivo experiments should be carried out to confirm
the effect of iron overload-induced ferroptosis on porcine
oocyte maturation and reduce the limitations of in vitro-
matured oocyte tests.
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