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Management of acute liver failure (ALF) and acute on chronic liver failure (ACLF) in

the pediatric population can be challenging. Kidney manifestations of liver failure,

such as hepatorenal syndrome (HRS) and acute kidney injury (AKI), are increasingly

prevalent and may portend a poor prognosis. The overall incidence of AKI in children

with ALF has not been well-established, partially due to the difficulty of precisely

estimating kidney function in these patients. The true incidence of AKI in pediatric

patients may still be underestimated due to decreased creatinine production in patients

with advanced liver dysfunction and those with critical conditions including shock and

cardiovascular compromise with poor kidney perfusion. Current treatment for kidney

dysfunction secondary to liver failure include conservative management, intravenous

fluids, and kidney replacement therapy (KRT). Despite the paucity of evidence-based
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recommendations concerning the application of KRT in children with kidney dysfunction

in the setting of ALF, expert clinical opinions have been evaluated regarding the optimal

modalities and timing of KRT, dialysis/replacement solutions, blood and dialysate flow

rates and dialysis dose, and anticoagulation methods.

Keywords: pediatric, PALF, acute liver failure (ALF), acute kidney injury (AKI), ALF

INTRODUCTION

The management of acute kidney injury (AKI) in the setting
of acute liver failure (ALF) can be challenging, especially in
the pediatric population. Current guidelines in the treatment
of kidney dysfunction secondary to liver failure includes
conservative management, intravenous fluids, and kidney
replacement therapy (KRT), based primarily on adult literature
(1). There is a lack of randomized controlled trials in the
pediatric subset to design a diagnostic algorithm. Together,
the Pediatric Continuous Renal Replacement Therapy (PCRRT)
Workgroup and the International Collaboration of Nephrologists
and Intensivists for Critical Care Children (ICONIC) provide
clinical practice points for children with AKI in the setting
of ALF.

METHODOLOGY

PubMed, CINAHL, EMBASE, Cochrane, Web of Science, and
Google Scholar were used to search the literature based on
the PICO model regarding AKI in PALF. After screening, only
eight relevant studies (one prospective, one case-control, and six
retrospective studies) with 196 patients aged 0–18 years were
included (2–9). A quality assessment tool graded the literature.
Due to the paucity of literature regarding the treatment of AKI in
PALF, select manuscripts byHanudel et al. and Spinale et al. in the
treatment of neonatal hyperammonemia were also referenced.
After rigorous Delphi surveys, educated consensus statements
were then formulated to guide the clinician in the management
of AKI in PALF (Table 1). These practice points have been
developed in conjunction with the PCRRT workgroup and are
designed to provide provisional, time-sensitive answers, based
on the best available evidence to questions related to AKI in
PALF. The comprehensive methodology can be referenced in
Supplementary Materials 1–6.

DEFINITION

The Pediatric ALF Study Group (PALFSG) defines ALF in the
pediatric population as (1) biochemical evidence of liver injury,
(2) absence of known pre-existing chronic liver disease, (3)
coagulopathy not corrected by vitamin K administration, and (4)
an International Normalized Ratio (INR) >1.5 if the patient has
encephalopathy or >2.0 if the patient does not (1, 10).

Abbreviations: ACLF, acute on chronic liver failure; AKI, Acute kidney injury;
ALF, Acute liver failure; CKRT, Continuous kidney replacement therapy; HRS,
Hepato-renal syndrome; KRT, Kidney replacement therapy; SPAD, Single pass
albumin dialysis; TPE, Therapeutic plasma exchange.

An increase in SCr ≥0.3 mg/dl (≥26.5 µmol/L) over a 48-h
period or a percentage increase in SCr ≥50% from baseline over
a 7-day period is indicative of AKI in ALF (11–13). AKI can be
based on the pRIFLE (Pediatric Risk, Injury, Failure, Loss, End
Stage Renal Disease) and KDIGO (Kidney Disease Improving
Global Outcomes) criteria (Supplementary Material 7). The
etiology of AKI in ALF can be classified into (A) functional
(pre-renal) causes; (B) intrinsic causes including acute tubular
necrosis; or (C) Hepatic Renal Syndrome (HRS) (14). Clinical
indications for HRS includes an absolute increase in SCr.
≥0.3 mg/dl within 48 h, urinary output ≤0.5 ml/, or a
percent increase in SCr ≥50% using the last available value
of outpatient SCr within 3 months as the baseline value. The
2015 International Club of Ascites consensus definition of AKI
in patients with cirrhosis or HRS uses the KDIGO criteria
(Supplementary Material 8).

INCIDENCE AND MORTALITY OF AKI IN
ALF

In our analysis, a total of 5 studies were included that provided
information on AKI epidemiology in pediatric ALF (Table 2).
The pooled proportion (95% CI) of AKI incidence among
ALF patients was 36.23% (18.76–55.82%) [I2: 97.14% (95.30–
98.25%); p < 0.0001; random effect model; 5 studies; n = 1,144]
(Supplementary Materials 9, 10) (19–23). Among AKI patients
with ALF, the pooled proportion (95% CI) of mortality was
28.86% (8.10–56.00%) [I2: 83.93% (51.70–94.65%); p = 0.0020;
random effect model; 3 studies; n = 203] (Table 3) (19, 21, 22).
Visual inspection of the funnel plot and Egger test show a
symmetrical distribution indicating no evidence of publication
bias (Supplementary Materials 11, 12). Factors for AKI in
ALF include decreased cardiac output, loss of intravascular
volume, reduced afterload, inflammation, non-selective beta-
blockers, vasodilators, non-steroidal anti-inflammatory drugs, or
angiotensin-converting enzyme inhibitors (16).

CONSERVATIVE MANAGEMENT OF AKI IN
ALF

Conservative interventions include use of albumin,
vasoconstrictors, and vaptans (24).

Albumin levels indicate the staging of fibrosis and prognosis
in chronic liver disease in children via the ischemia-modified
albumin (IMAR) (25). Evidence suggests that albumin levels
should be monitored in pediatric patients since it’s effective
in reducing post-paracentesis, circulatory dysfunction, and
mortality from AKI in adults (16, 26–28). However, there is lack
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TABLE 1 | Summary and practice points.

Summary and practice points Grading

Introduction 1 ALF is defined by biochemical evidence of liver injury, absence of known pre-existing chronic liver disease,

coagulopathy unable to be corrected by Vitamin K administration, and an INR >1.5 if the patient is

encephalopathic, or INR >2 if not.

2C

AKI in liver failure is indicated by an increase in SCr of ≥0.3 mg/dl (≥26.5 µmol/L) over a 48-h period or a

percentage increase in SCr of ≥50% from baseline over a 7-day period.

2C

Diagnosis of HRS is indicated by an absolute increase in SCr. ≥0.3 mg/dl within 48 h, urinary output ≤0.5 ml/kg,

or a percent increase in SCr ≥50% using the last available value of outpatient SCr within 3 months as the baseline

value.

2C

We suggest patients be referred to critical care when (1) any grade of encephalopathy is reached, (2) oliguria,

hypotension, respiratory distress, or extra-hepatic organ failure occurs, (3) INR>4.0 which requires exchange

transfusion.

2C

Conservative management of

AKI in ALF

5 There are limited studies on albumin, vasoconstrictors, and vaptans in the pediatric population, but literature

regarding their proven efficacy in adults is applicable.

3B

Albumin infusions at have shown to be potentially effective in volume expansion in AKI. 3B

The panel suggests that a vasopressin infusion should be considered if noradrenaline >1 mcg/kg/min. 3C

Large-volume paracentesis in the setting of respiratory compromise or fluid overload may be followed by an

albumin infusion.

3C

If patient is in need of ongoing resuscitation with fluids, inotropes, and/or vasopressors, the panel suggests a 1–2

mg/kg/dose of hydrocortisone administered every 6 h. It is recommended in ALF in multi-organ failure with relative

adrenal insufficiency.

3C

A urine output >1 ml/kg/h should be maintained with a mean blood pressure stabilized >50th percentile. 3B

The panel suggests that ventilation pressures and FiO2 should be adjusted to stabilize PaCO2 levels between 4.5

and 5.2 Kpa and mean arterial saturations at more than 96%.

3C

Suggested nutritional requirements:

• Non-ventilated patients are suggested to have a caloric intake of 120–150% of the recommended allowance.

Ventilated patients should refer to the Schofield equation with parameters outlined by age and sex.

• Carbohydrate, fat, and protein intake is suggested to be based on age, ranging from 6 to 13 g/kg/day, 1–4

g/kg/day, and 1–2 g/kg/day, respectively.

3C

The panel suggests the administration of 100 mg/kg/day of N-acetyl cysteine in all patients as a continuous

infusion.

3C

KRT indications 6 Cystatin-C estimates of eGFR are the most accurate in pediatric ALF with AKI. 3C

KRT is suggested to be initiated in children with the following conditions:

• Electrolyte and Metabolic abnormalities (resistant to fluid therapy)

§ Metabolic acidosis

§ Hyponatremia (<130 meq/L), Hyperkalemia,

Hypermagnesemia, Hyperphosphatemia

§ Uremia with bleeding

§ Elevated lactate level

• Hepatic encephalopathy (Grade 3–4)

• Ammonia >150 µmol/L and uncontrolled or >200 µmol/L

• Fluid overload o Severe hemodynamic instability o Pericarditis

• Increased ICP following the failure of mannitol and hypertonic saline treatment

3C

KRT can be initiated in AKI with associated multi-organ dysfunction as well as low Pediatric Risk of Mortality

(PRISM) scores

3C

We suggest using CKRT, rather than IHD, for AKI patients with acute brain injury due increased intracranial

pressure or generalized brain edema.

3C

Patients with liver and kidney dysfunction are more susceptible to hyperammonemia which may ultimately lead to

cerebral edema.

3B

EEG may be used to assess neurological statis and subclinical seizures in PALF. 3C

Modalities of kidney replacement

therapy

7 The literature on the use of CKRT’s in PALF with AKI is limited, but positive. 3B

CKRT is suggested over IHD due to the slower rate of solute removal, gradual correction of hyponatremia,

hemodynamic stability, and risk in increasing intracranial pressure.

3C

Machines and circuits for KRT S18 CKRT machines may be able to modify blood and dialysate flow rates according to the child’s weight. 3C

In neonates, the total extracorporeal blood volume may exceed 10% (unlike pediatrics) with the use of crystalloids,

colloids, or packed RBCs to prime the circuit.

3C

High flux dialyzers can be applied if administering hemofiltration and should account for the body weight and

surface area of the patient.

3C

Vascular access S18 In pediatric patients undergoing KRT, the right internal jugular vein is the ideal catheter insertion site for children

<20 kg or if the catheter is <10 F.

3C

(Continued)
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TABLE 1 | Continued

Summary and practice points Grading

Large diameter catheters should be utilized for safety and efficiency with a reduced risk of complications. 3C

Dialysis/replacement solution 9 Lactate free dialysate solution may be utilized in the pediatric population with ALF. 3C

The dialysis fluid contents can be modified to benefit the patient’s needs. 3C

Increased concentration of calcium and sodium can support hemodynamic stability. 3C

Blood and dialysate flow rate

and dialysis dose

9 The rate of blood flow in children ≤30 kg undergoing KRT should be within 3-5 ml/kg/min. For neonates, a blood

flow rate of 50–80 ml/min should be utilized. For patients >30 kg, the blood flow rate is suggested to be gradually

increased to 150–200 ml/min and dialysate flow rate set at 500 ml/min. The dialysis flow rate can increase to

double the blood flow rate, but the dialysis flow rate may not be >300 ml/min when administering IHD.

3C

The panel suggests using high-volume CKRT between 60 and 120 mL/kg/h, depending on ammonia clearance as

well as the clinical and biochemical response.

3C

Anticoagulation 9 In children with ALF requiring KRT, the decision to use anticoagulation can be determined by an individual’s risk

assessment. For patients with no contraindications to RCA, its use in ALF is recommended over unfractionated

heparin.

3C

The panel suggests that a patient’s platelet count should be stabilized above 50,000/ml, especially in patients on

CKRT.

3C

The panel suggests that coagulopathies should not be corrected unless the patient is actively bleeding or an

invasive procedure has be conducted.

3C

Use of heparin, prostacyclin, citrate, or no anticoagulants are all potential options dependent on drug availability,

cost, and trained manpower—specifically when using regional citrate anticoagulation.

3C

The panel suggests that a thromboelastography should be performed on patients with refractory bleed. 3C

The panel suggests 40 mcg/kg of Recombinant Factor VII be administered if bleeding is unable to be controlled by

FFP, platelets, and/or cryoprecipitate.

3C

Anticoagulant administration requires monitoring of the activated partial thromboplastin time or Activated Clotting

Time (ACT) with a target ACT of 180–220 s. The ideal APTT is 10 s over the baseline to 1.5 times the regular value.

3C

Initiation, duration, and

monitoring

10 Early initiation of KRT is suggested, especially as a bridge to liver transplantation in critically ill pediatric patients

with ALF.

3C

The length and frequency of a dialysis session depends on the volumetric needs of the patient and hemodynamic

stability.

3C

Non-invasive monitoring of blood pressure and regular assessment of serum B.U.N./creatinine, intake and output,

daily weight change, and extended serum electrolytes are essential in caring for pediatric patients with AKI and

underlying ALF.

3C

A combination of CKRT, MARS, and TPE may be used for treatment in AKI with ALF 3C

A combination of CKRT, MARS, and TPE may be used for treatment in AKI with ALF o High-volume CKRT is

suggested for treating ALF, maintaining fluid balance, recovering metabolic function, and removing water soluble

toxins. o MARS is suggested for hepatic encephalopathy o TPE is suggested for coagulopathy

3C

of data on the efficacy of albumin in specifically pediatric AKI and
this topic should be further studied in the pediatric population to
recognize the utility of albumin infusions in children.

The synthetic vasopressin analog terlipressin has shown
potential as an ideal V1-receptor mediated vasoconstrictor
capable of decreasing portal blood flow and therefore, increasing
blood flow to the kidney. Its use in pediatrics was evaluated (n
= 16) and an improvement in SCr at 24 h (p = 0.386) with an
increase in urine output in the HRS-AKI subgroup was observed
(29). Unfortunately, terlipressin is currently not available in the
United States or Canada and data on the use of other vasopressors
such as octreotide are not available.

Vaptans such as Tolvaptan have an agonist effect on V1
receptors, causing an increase in plasma vasopressin levels
which can lead to vasoconstriction. The efficacy and safety of
Tolvaptan in refractory ascites and LVP in adults is applicable
to pediatrics. Practice points regarding conservativemanagement
for pediatrics are provided in Table 1, section Conservative
management of AKI in ALF.

KIDNEY REPLACEMENT THERAPY
INDICATIONS

The indications for the use of KRT in PALF (n = 45) have been
reported as oligo-anuria (31%), hyperammonemia (29%), hepatic
encephalopathy (27%), high lactate (22%), fluid overload (13%),
resistant metabolic acidosis (7%), resistant hyperkalemia (2%),
and hyponatremia (2%) (2). The baseline characteristics of PALF
with AKI (n = 19) compared to just PALF (n = 65) shows a
correlation with: (1) higher baseline bilirubin (mean difference
(MD) AKI vs. no AKI: 8.5 mg/dl, 95% CI 3.3–13.8, p = 0.002),
(2) higher INR (MD AKI vs. no AKI: 0.98, 95% CI: 0.1–1.8, p =

0.029), (3) higher Model for (Pediatric) End-Stage Liver Disease
(M(P)ELD) (MD AKI vs. no AKI: 5.9, 95% CI: 1.5–10.3, p =

0.009), (4) higher incidence of systemic inflammatory response
(OR 10.4, 95% CI: 2.7–39.6, p < 0.0005) and (5) higher incidence
of spontaneous bacterial peritonitis (OR 8.4, 95%CI: 1.4–50.2, p
= 0.022) (19). The risk factors for AKI in pediatrics is a baseline
bilirubin >17.7 mg/dL (adjusted OR: 1.07; 95% CI: 1.008–1.135,
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TABLE 2 | Meta-analysis of proportion of AKI among ALF patients across different

studies.

Study Event/sample

size

Estimate

(95% CI) %

Random

weight (%)

Pediatric incidence of AKI in ALF

Bluhme et al. (15) 9/51 17.65 (8.40–30.87) 19.3

Deep et al. (16) 19/84 22.62 (14.20–33.05) 20.1

Spinale et al. (8) 29/34 85.29 (68.94–95.05) 18.5

Gonwa and Wadei (17) 175/392 44.64 (39.65–49.72) 21.0

Lahmer et al. (18) 102/583 17.50 (14.50–20.83) 21.1

Total (random effects) 334/1,144 36.23 (18.76–55.82) 100

The analysis included AKI incidence among AKI patients with ALF across different studies.

Heterogeneity across studies was quantified using the I2 statistic, and the I2 > 50 %

indicated significant heterogeneity. The fixed-effect analytical model was used to pool the

results of studies with acceptable or no heterogeneity, while the random-effect model for

results of studies with significant heterogeneity. A total of 5 studies were included. The

pooled proportion (95% CI) of AKI incidence among ALF patients was 36.23% (18.76–

55.82%) [I2: 97.14% (95.30–98.25%); p < 0.0001; random effect model; 5 studies;

number of patients = 1,144].

TABLE 3 | Meta-analysis of proportion of mortality among AKI patients with ALF

across different studies.

Study Event/sample

size

Estimate

(95% CI) %

Random

weight (%)

Pediatric mortality of AKI in ALF

Bluhme et al. (15) 2/9 22.22 (2.81–60.01) 27.2

Deep et al. (16) 10/19 52.63 (28.86–75.55) 32.8

Gonwa and Wadei (17) 26/175 14.86 (9.94–21.01) 40.0

Total (random effects) 38/203 28.86 (8.10–56.00) 100

The analysis included AKI mortality among AKI patients with ALF across different studies.

Heterogeneity across studies was quantified using the I2 statistic, and the I2 > 50 %

indicated significant heterogeneity. The fixed-effect analytical model was used to pool the

results of studies with acceptable or no heterogeneity, while the random-effect model for

results of studies with significant heterogeneity. Among AKI patients with ALF, the pooled

proportion (95% CI) of mortality was 28.86% (8.10–56.00%) [I2: 83.93% (51.70–94.65%);

p = 0.0020; random effect model; 3 studies; number of patients = 203].

p = 0.025) in combination with systemic inflammatory response
syndrome (adjusted OR: 8.659; 95% CI: 2.18–34.37, p = 0.002)
(19). These findings are supported with a case-control study on
KRT in pediatric liver transplant patients (n= 32) (3). At listing,
KRT recipients (n = 8) were found to have greater M(P)LED
scores (26 vs. 16, p = 0.02), increased bilirubin (31.8 vs. 9.4, p =
0.006), increased creatinine (2.55 vs. 0.36, p = 0.01), decreased
glomerular filtration rate (GFR: 21 vs. 102, p < 0.001), and
decreased platelets (53 vs. 128, p = 0.001) (3). 100% of the
patients (p = 0.03) had ascites, spontaneous bacterial peritonitis
in 50% (p = 0.02), gastrointestinal bleeding in 100% (p = 0.01),
infections in 88% (p = 0.01), and toxic levels of vancomycin in
38% (p= 0.01) (3). Although the KRT group had lower liver and
kidney function at baseline, the long-term kidney function was
comparable between the patients with HRS receiving KRT and
the control group without HRS. It was concluded that pediatric
patients with HRS, including infants, benefited from KRT (p <

0.05) (3).

Hyperammonemia is the strongest indicator for the
use of KRT in PALF. Pediatric patients with ALF and/or
AKI are prone to hyperammonemia due to their impaired
metabolism and/or excretive processes. The primary distinction
of hyperammonemia in infants and children involves urea cycle
disorders (UCDs) and organic acidemias, also referred to as
inborn errors of metabolism. Hyperammonemia is defined as
>100 µmol/l (170 µg/dl) in neonates or ≥50 µmol/l (85 µg/dl)
in term infants, and children (7). Ammonia levels >150 µmol/L
should be promptly evaluated as an increased risk of morbidity
and mortality is present, especially if elevated levels of ammonia
(>800 µmol/L) persist for >24 h. Hanudel et al. and Spinale
et al. each assessed two cases of pediatric hyperammonemia
and found such elevated levels (∼800 µmol/L) required CKRT
(8, 9). Patients with ALF have also reported cases of cerebral
edema where hyperammonemia is thought to be the primary
pathogenic driver (4). Increased intracranial pressure in ALF
with early neurocritical care has been observed to drastically
reduce mortality (5). Cerebral edema in ALF can also worsen
during seizures where cerebral oxygen requirements exacerbate
its condition. Continuous forms of veno-venous hemofiltration
and/or dialysis, such as CKRT, can cause a more gradual
change in plasma osmolarity while maintaining cardiovascular
stability (6).

The accurate monitoring of GFR, especially in PALF, is
important in detecting a decline in renal function and promptly
initiating treatment. GFR can bemeasured by s-creatinine and/or
p-cystatin C or by inulin and or/iohexol clearances (15). A
comparison of all variations of GFRmeasurements in 91 children
found that p-cystatin C-based formulas as well as s-creatinine-
based formulas were the most accurate at 84–87.5%, least bias
at 0.19–4.0 ml/min/1.73 m2, and least misclassified at 24.7–25%
(15). Cystatin-C based formulas were even more accurate and
less biased than creatinine-based formulas in patients with renal
function <75 ml/min/1.73 m2 (15). Practice points can be found
in Table 1, section Kidney Replacement Therapy Indications.

MODALITIES OF KIDNEY REPLACEMENT
THERAPY

Initiation of KRT is needed when conservative management fails
to achieve the desired outcomes in AKI patients. The use of
CKRT or intermittent hemodialysis (IHD) is considered based
on the patient’s hemodynamic condition. Due to constant fluid
shifts with ALF, CKRT is superior due to slower solute removal,
better hemodynamic stability, a more gradual correction of
hyponatremia, and a lower likelihood in worsening intracranial
pressure (17). CKRT is also effective in maintaining fluid
balance, recovering metabolic function, and removing water
soluble toxins associated with the development of AKI, HRS,
and an exacerbated of hepatic injury (18). CKRT is also able
to remove inflammatory cytokines, which have been associated
with the development of AKI, HRS, and ALF (18). Alternatively,
successful usage of sustained low efficiency dialysis (SLED) in
place of CKRT has been reported in adults (30). In cases where
CKRT is not available or where vascular access is not possible,
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PD may be used as a last resort. When considering the modality
of KRT, hemodynamic stability, severity of illness, and patient
preferences should be considered.

In a study by Deep et al., PALF patients with AKI (n
= 45) who were treated with CKRT observed a 58% (n =

26) survival rate, 42% (n = 19) successfully bridged to liver
transplantation, and 17% (n = 7) spontaneously recovered
(2). Even among PALF patients who did not receive a liver
transplant, CKRT significantly improved survival (HR: 4; 95%
CI: 1.5–11.6; p = 0.006) (2). Overall, the use of CKRT in
reducing hyperammonemia by 48 h after initiation drastically
increased survival (HR, 1.04; 95% CI, 1.013–1.073; p = 0.004)
(2). A similar cohort of PALF with AKI (n = 344) also
found that an overall survival rate of 58% for those on
CKRT (31). Significant improvements in hemodynamic stability
and neurological status in children with ALF on high-volume
CKRT was also reported (32). Practice points are provided in
Table 1, section Modalities of Kidney Replacement Therapy.
Additional background information regarding the machines and
circuits for KRT and optimal vascular access can be found in
Supplementary Material 13.

EXTRACORPOREAL LIVER SUPPORT
DEVICES (ECLADS)

Monitoring patients with ECLADs, such as the Molecular
Adsorbents Recirculation System (MARS) and Single-Pass
Albumin Dialysis (SPAD), are necessary to optimize a
patient’s condition before transplantation. Both techniques
mimic excretory, synthetic, and metabolic functions of the
liver, allowing for removal of water insoluble/protein-bound
substances via high-flux membranes using an albumin rich
dialysate (17, 18).

MARS technology combines CKRT with the removal of large
protein-bound particles via albumin dialysis. Used in tandem,
MARS is able to remove albumin-bound substances which
accumulate during liver failure via recirculated album-enriched
dialysate combined with a charcoal filter and an ion exchange
resin. MARS is used as bridging procedure to transplantation if
the patient’s INR >3 and for one of the following conditions:
(1) hepatic encephalopathy≥ grade II, (2) creatinine values >3.5
mg/dl and oliguria <0.5 ml/kg body weight/h or (3) Hepatorenal
syndrome (HRS) (33). Nadlin et al. observed a pediatric cohort (n
= 5) who were initiated onMARS as a bridging procedure to liver
transplantation (33). All 5 patients had poor prognostic factors, 4
had hepatic encephalopathy ≥3 and needed ventilation support,
3 were on vasopressive agents, and 2 had cerebral edema (33).
Patient survival and graft survival were 100 and 80%, respectively,
without sequelae (33).

Prometheus is a form of albumin dialysis and combines
fractionated plasma separation, adsorption, and hemodialysis
(34). It differs from MARS as it enables the direct contact of the
patient’s albumin with the adsorbing materials through filtration
of the albumin fraction and sent through a secondary circuit
containing two adsorber columns. Its primary advantage is that
it relies on endogenous over exogenous albumin.

SPAD is a form of hemodiafiltration with non-recirculated
albumin dialysis, which uses a filter identical to MARS to
eliminate albumin-bound toxins. However, MARS is safer due
to the removal of the stabilizers and higher clearances for water-
soluble substances such as ammonia, cytokines, creatinine, and
urea because of the high dialysate flow rates (35). It should be
noted that MARS is also preferred due to financial constraints as
the albumin in SPADmay not always be economically accessible;
SPAD requires large amounts of albumin which is often wasted
whereas MARS recirculates and recycles albumin. The key
differences are highlighted in Supplementary Material 14 with
the corresponding circuits in Supplementary Materials 15–18.
Despite the limited data, MARS shows promise in pediatric ALF
for the removal of bilirubin and bile acids which CKRT fails
to remove.

Therapeutic plasma exchange (TPE) in ALF patients removes
protein bound toxins and corrects coagulopathies (36). It can
work better than blood products, such as fresh frozen plasma
(FFP), which carry a risk of volume overload, worsening hepatic
encephalopathy, and hypocalcemia. TPE is fluid neutral and
avoids an exogenous protein load (36). An improved clinical
response has been anecdotal at best, but no significant survival
rates have been reported.

PRESCRIPTION OF KIDNEY
REPLACEMENT THERAPY IN LIVER
FAILURE

Dialysis/Replacement Solution
Dialysate or replacement solution that are conventionally
used typically contains sodium, potassium, calcium, chloride,
magnesium, bicarbonate, and glucose (37). Lactate containing
solutions are not recommended in patients with liver dysfunction
because the liver is not able to metabolize it resulting in
hyperlactemia and high anion gap metabolic acidosis (38).

In a study by Deep et al., a lactate-free electrolyte predilution
replacement, Accusol 35, was used in all filtration episodes
(2). The solution components had a pH of 7.0–7.5 and
contained glucose (5 mmol/L), sodium (140 mmol/L), calcium
(1.75 mmol/L), magnesium (0.5 mmol/L), and bicarbonate (35
mmol/L). The osmolality of the solution was 300 mmol/L (2).
Chevret et al. used the commercially available bicarbonate-
buffered replacement fluid with a similar composition: sodium
(140 mmol/L), chloride (109.5 mmol/L), bicarbonate (32
mmol/L), and calcium (1.75 mmol/L) (32). Additional potassium
(3.5 mmol/L) was administered in replacement fluid to prevent
hypokalemia (32). We have provided practice points in Table 1,
section Prescription of Kidney Replacement Therapy in Liver
Failure regarding replacement solutions.

Blood and Dialysate Flow Rate and Dialysis
Dose
A marginally increased survival rate in PALF patients was
observed where a high dose of CKRT was initiated (HR, 0.96,
95%CI, 0.916–1.007; p = 0.095) (2). Children receiving high
flow hemofiltration with blood flow rates of 100–300 mL/min
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(dependent on the dialysis catheter size) succeeded in achieving
a filtration fraction of 20–25% without premature clotting of the
dialysis circuit (32). A target blood flow rate of 3–5 ml/min/kg
body weight in children with AKI and end-stage liver disease
was also documented (39). It should be noted that for neonates,
a blood flow rate of 50–80 ml/min should be utilized (40). The
blood flow rates applied by Deep et al. ranged from 50 to 250
mL/min according to weight (Supplementary Material 19) (41).
Similarly, in IHD for <6 h, the blood flow rate is suggested
to begin at 3 ml/kg/min and progress to 5 ml/kg/min in the
following sessions. Modifications may be necessary in order
to prevent a sudden decrease in plasma urea, avoiding large
disturbances in osmolality, and preventing cerebral edema (42).

Spinale et al. and Hanudel et al. each examined the use
of high-dose CKRT to treat neonates with hyperammonemia
(8, 9). Spinale et al. utilized a dialysis flow rate of 8,000
ml/h/1.73 m2 and observed a decrease in ammonia levels to
<400 µmol/L within 3 h then to <100 µmol/L within 10 h (8).
Hanudel et al. utilized a preliminary dialysate flow rate of 40,000
ml/hr/1.73 m2 to rapidly decrease ammonia levels before shifting
to 4,000 ml/h/1.73 m2 to prevent a rebound in ammonia levels.
Both reports found that rapid ammonia reduction, without any
rebounds, was accomplished in a single run of CKRT.

In a study by Kreuzer et al., it was found that a dialysis
post-filter infusion rate of 1,00 ml/1.73 m2/h during CVVH
was associated with enhanced efficacy and decreased mortality
in children undergoing orthotopic liver transplant (39). PALF
was suggested to be treated with high volume CKRT at
60–120 mL/kg/h, depending on the ammonia clearance and
clinical status (43). A linear correlation in ammonia clearance
was observed when comparing the CVVH hemodiafiltration
(CVVHDF) doses of 35 and 90 ml/kg/h. The limited data
currently shows that the higher the dose of CKRT, the better the
ammonia clearance in patients with liver failure (44).

High-volume hemofiltration (HVHF) in children is defined
as ultrafiltrate flow >80 mL/kg/h (32). HVHF was initiated in
patients with grade III hepatic encephalopathy with a median
flow of 119 mL/kg/h (range, 80–384). After 24 h of HVHF
treatment, an increase in mean arterial pressure (p = 0.0002),
decrease in serum creatinine (p = 0.0002), and a decline in the
grade of hepatic encephalopathy was observed (32). Additionally,
HVHF promoted clearance of all inotropic and vasopressor
medications, highlighting the need for special attention toward
these patients. Total mortality was 45.4% (n = 22) with
8 pediatric patients requiring an emergency liver transplant
and 5 spontaneously recovering their liver function. Overall,
neurologic function and patient hemodynamics were improved
in PALF prior to liver transplant (32). Various practice points
have been provided in Table 1, section Prescription of Kidney
Replacement Therapy in Liver Failure.

Anticoagulation
Heparin
Heparin is the most commonly used anticoagulant in ALF
patients receiving KRT. Kreuzer et al. documented the use of 5–
25 IU/kg/h unfractionated heparin for anticoagulation without
an initial heparin bolus in children undergoing dialysis prior to

liver transplantation (39). Abstaining from the administration
from an initial heparin bolus allowed for tight control on
the activated coagulation time (ACT) for the patients on
CVVH which led to no severe complications being caused by
heparin (39).

Prostacyclin
Prostacyclin is a platelet inhibitor often used as an anticoagulant
in CRRT. Goonasekera et al. found an extended duration of
mean circuit life of 53 h with no complications in 31 PALF
cases who received prostacyclin as an anticoagulant in 62 of 98
filtration episodes (45). The remaining 36 of 98 filtration episodes
were either with heparin or with no anticoagulant. Therefore,
prostacyclin may be used for bleeding or where heparin is
contraindicated; it can be used alone or in combination with
heparin (43, 45).

Citrate
Citrate is another commonly used anticoagulant as the absence of
systemic anticoagulation, prolonged filter life, and a significant
reduction in the risk of bleeding makes it an advantageous
anticoagulant (46). Since ALF is associated with impaired citrate
metabolism, it is pertinent that the rate of the calcium infusion
matches the citrate dosing to prevent toxicity. Chadha et al.
applied citrate in 5 pediatric patients undergoing CKRT and
observed no bleeding incidents with all patients recovering
kidney function (20). They concluded that citrate in children is a
feasible, effective, and safe form of anticoagulation and corrective
clearance (CVVH) alone is sufficient to provide citrate clearance
and prevent its toxic accumulation (20). Similarly, Rodriguez
et al. evaluated CKRT in 51 pediatric liver failure patients and
found that regional citrate anticoagulation was effective through
its long filter lives and low incidence of clotting. However, adverse
events and toxicity should be carefully monitored, particularly
in liver failure patients (47). Practice points are provided in
Table 1, section Prescription of Kidney Replacement Therapy in
Liver Failure.

INITIATION, DURATION, AND
MONITORING

Due to high-risk complications of ALF and the excellent
tolerability of the procedures, early initiation is recommended,
particularly in patients exhibiting rapid disease progression. Deep
et al., analyzed the use of CKRT in 45 critically ill children with
ALF and found that the time to initiate CKRT from the PICU
admission was lower in survivors compared to non-survivors
(HR: 0.96; 95% CI: 0.916–1.007; p = 0.095) (2). When coupled
with high-dose CKRT, an increased rate of survival was seen
within 14 days (HR: 3; 95% CI: 1.0–10.3; p = 0.063). Deep et al.
found that the median time to initiate CKRT in pediatric ALF
survivors was lower in comparison to non-survivors (15.8 ± 3.0
vs. 32.4 ± 6.9 h; p = 0.023), which favored early initiation of
KRT (2).

The duration of therapy can be guided by ammonia
clearance, improvement of hepatic encephalopathy, or raised
intracranial pressure. The goal to reduce ammonia within 48 h

Frontiers in Pediatrics | www.frontiersin.org 7 February 2022 | Volume 9 | Article 833205

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Raina et al. Prescribing KRT in Pediatric ALF

should be set. For cases involving a bridge to transplantation
therapy, the duration may be guided by allograft availability.
However, children may transition to IHD if the hemodynamic
status permits.

Non-invasive intravascular monitoring has been shown to be
effective in reducing dialysis associated morbidity in comparison
to a control population (48). Electrolyte abnormalities may also
occur due to the continuous mechanism of CKRT. Notably,
decreased potassium, phosphate, and magnesium levels can
lead to alterations in neuromuscular physiology and subsequent
difficulty in weaning patients off the ventilator (48).

A combination of techniques may be used to target the water
soluble and protein bound toxins of AKI in PALF, A pediatric
study by Arikan et al. achieved an overall survival/discharge
rate from the hospital in 73% of patients (n = 15) utilizing
a combination of high-flux CKRT for hyperammonemia,
MARS for hepatic encephalopathy, and TPE for coagulopathy
(Supplementary Material 20) (49). Practice points are provided
in Table 1, section Initiation, Duration, and monitoring.

DRUG DOSING ADJUSTMENTS

Adjustment in drug dosages based on individual needs is a crucial
aspect of providing efficient KRT. However, since data on drug
doses adjusted to the modality in use (HD or CKRT) are lacking,
dosage should be decided in accordance with GFR. The dose in
HD is usually adjusted to a GFR <10 ml/min/1.73 m2 and is
administered after dialysis, while those undergoing CKRT are
adjusted to a GFR of 10–50 ml/min/1.73 m2. Extracorporeal
clearance should be considered regarding the type of membrane,
protein binding, and residual kidney function when calculating

dosage. The fractional extracorporeal clearance should also
account for hepatic, metabolic, and residual kidney clearance
(50). Reviewing current medications and/or therapeutic drug
monitoring to determine individualized treatment goals is
essential (7). Current methods heavily rely on drug monitoring
and close observation on serum concentrations, response to
therapy, and toxicity.

CONCLUSION

The application of CKRT in the pediatric population suffering
from ALF is growing and may be valuable in patients with
AKI and underlying liver failure. The available evidence
forms a significant limitation for the provision of evidence-
based guidelines; however, current expert recommendations can
provide clinicians with valuable information on approaching
pediatric patients with AKI and underlying ALF. Table 1

provides a summary of recommendations, which can be
beneficial to future researchers of CKRT in pediatric patients
with ALF.
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