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Antioxidative capacity is highly 
associated with the storage 
property of tuberous roots in 
different sweetpotato cultivars
Jun Tang1, Si-Qi Wang2, Kang-Di Hu2, Zhong-Qin Huang1, Yan-Hong Li2, Zhuo Han2,  
Xiao-Yan Chen2, Lan-Ying Hu2,3, Gai-Fang Yao2 & Hua Zhang   2

The activities and gene expression of antioxidative enzymes and the ROS content were analyzed 
in two typical storage-tolerant cultivars (Xushu 32 and Shangshu 19) and another two storage-
sensitive cultivars (Yanshu 25 and Sushu 16) to explore the association between the storage capacity 
of sweetpotato (Ipomoea batatas (L.) Lam) and ROS scavenging capability. The storage roots of 
the storage-tolerant cultivars maintained higher activities and expression levels of antioxidative 
enzymes, including ascorbate peroxidase (APX), peroxidase (POD), catalase (CAT), and superoxide 
dismutase (SOD); lower activity and expression of lipoxygenase (LOX); and lower accumulation of 
ROS metabolites compared with the storage-sensitive cultivars. The antioxidative capability and ROS 
parameters of leaves were positively correlated with those of storage roots. Our results provide valuable 
insight for evaluating the storability of sweetpotato cultivars by analyzing the capabilities of the 
antioxidative system and the contents of ROS metabolites.

Sweetpotato (Ipomoea batatas (L.) Lam.) is an important crop cultivated in 100 countries around the world1. 
Sweetpotatoes are rich in dietary fibers, vitamins, carotenoids, anthocyanins, flavonoids, etc.2,3. During storage, 
sweetpotato is susceptible to physiological damage, including vacuolar membrane degradation, mitochondrial 
membrane swelling and fungal infections4. A previous study showed that the optimal storage temperature for 
sweetpotato is 10–15 °C5. However, due to the lack of sophisticated facilities, enormous loss of sweetpotato yield 
happened in China due to chilling stress, highlighting the importance of breeding storage-tolerant sweetpotato 
cultivars6.

Postharvest storage of fruits and vegetables is accompanied by the programmed senescence of plant cells, 
resulting in visual and textural changes and loss in nutrient etc. Many environmental and internal factors includ-
ing storage temperature, humidity, and phytohormones affect postharvest senescence and decay7–10. Among the 
stress signals, reactive oxygen species (ROS), particularly H2O2 and O2

− accumulation are closely related to plant 
senescence11. Oxidative damages caused by excessive ROS result in mitochondria dysfunction, enzyme inactiva-
tion and lipid peroxidation12. Thus ROS detoxification is crucial for the balance of ROS accumulation. Plants have 
evolved non-enzymatic and enzymatic antioxidant systems to scavenge excessive ROS, and the enzymatic antiox-
idant system includes multiple components, such as ascorbate peroxidase (APX), superoxide dismutase (SOD), 
catalase (CAT) and peroxidase (POD)11,13. Accumulating studies demonstrated that the enhancement of cellular 
antioxidant system could delay senescence by removing excess ROS in different plants14,15. Therefore, an increased 
ROS scavenging capacity is positively correlated with the prevention of postharvest senescence.

Although previous studies reported progresses in optimizing the storage conditions during postharvest 
sweetpotato storage, what endogenous factors contribute to the storage properties of different cultivars are still 
unclear4,6,16. As ROS is an elicitor of postharvest senescence, we hypothesized that increased antioxidative enzymes 
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could be positively associated with the storage property of sweetpotatoes. In our recent report, low-temperature 
storage was found to induce ROS accumulation and antioxidant enzymes were rapidly enhanced by chilling 
stress17. However, whether the ability of ROS scavenging is associated with storage ability is still unclear. Besides, 
the antioxidative capability in leaves might be positively correlated with those in tuberous roots, but this hypoth-
esis still needs more investigation. In this research, a sweetpotato cultivar with a rot rate of less than 75% after 290 
days of storage at 11–15 °C was classified as a storage-tolerant cultivar. A lower rot rate indicates a higher storage 
property. A sweetpotato cultivar with a rot rate of more than 75% was classified in the storage-sensitive varieties. 
The activities and gene expression of antioxidative enzymes and the ROS contents were investigated in the storage 
roots and leaves of two typical storage-tolerant cultivars (Xushu 32 and Shangshu 19) and two storage-sensitive 
cultivars (Yanshu 25 and Sushu 16), thereby exploring the relationship between storage behavior and antioxida-
tive capability in sweetpotato. Furthermore, the correlation and principal component analyses were processed to 
reveal the correlation between antioxidative parameters and the clustering of sweetpotato cultivars, respectively.

Results
Enzymatic activities of APX, POD, CAT, SOD, PPO and LOX in the storage roots of sweetpo-
tato cultivars.  The sweetpotato cultivars Yanshu 25 and Sushu 16 with lower storage properties and two 
typical storage-tolerant cultivars, Shangshu 19 and Xushu 32, were selected to study the possible relationships 
between the ROS scavenging capability and the storage properties of sweetpotato. The activities of the antioxida-
tive enzymes and lipid peroxidation-related enzyme, LOX, were analyzed in the storage roots of the four sweet-
potato cultivars. As shown in Fig. 1A, APX activities in the storage-tolerant cultivars Xushu 32 and Shangshu 19 
were maintained at a higher level than those in Yanshu 25 and Sushu 16. In addition, a lower level of APX activity 

Figure 1.  Activities of ascorbate peroxidase (APX) (A), peroxidase (POD) (B), catalase (CAT) (C), superoxide 
dismutase (SOD) (D), polyphenol oxidase (PPO) (E) and lipoxygenase (LOX) (F) in tuberous roots of the 
sweetpotato cultivars Yanshu 25, Sushu 16, Shangshu 19 and Xushu 32. Data are presented as the means ± SD 
(n = 3). Different letters indicate significant differences (p < 0.05) according to t-tests. Native polyacrylamide 
gel electrophoresis (PAGE) of the isozyme profile of ascorbate peroxidase (APX) (G), peroxidase (POD) (H), 
catalase (CAT) (I), and superoxide dismutase (SOD) (J) in the tuberous roots of sweetpotato cultivars Yanshu 
25, Sushu 16, Shangshu 19 and Xushu 32.
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was observed in Shangshu 19 compared with Xushu 32 and in Yanshu 25 compared with Sushu 16. POD activity 
in sweetpotato roots is shown in Fig. 1B. Yanshu 25 and Sushu 16 maintained lower POD activities compared 
with Xushu 32 and Shangshu 19, but a 13% higher POD activity appeared in Yanshu 25 compared to Sushu 16. 
Figure 1C–E shows similar results in the activities of CAT, SOD and PPO in sweetpotato roots. The activities of 
CAT, SOD and PPO in the storage-tolerant cultivars Xushu 32 and Shangshu 19 were always higher than those of 
Yanshu 25 and Sushu 16. CAT, SOD and PPO activities in Xushu 32 were higher than those in Shangshu 19. Those 
in Sushu 16 were higher than those in Yanshu 25. LOXs belong to a large family of plant enzymes that catalyze the 
hydroperoxidation of polyunsaturated fatty acids18. Figure 1F shows that the storage-tolerant cultivars Shangshu 
19 and Xushu 32 sustained a lower level of LOX compared to Yanshu 25 and Sushu 16. Xushu 32 showed only 
approximately half the LOX activity shown by Shangshu 19. These results suggest that the activities of antioxi-
dative enzymes in storage roots were maintained at higher levels in the storage-tolerant cultivars Xushu 32 and 
Shangshu 19 in comparison to the storage-sensitive cultivars Yanshu 25 and Sushu 16. Similarly, LOX activity was 
opposite to the pattern of antioxidant enzymes in the four sweetpotato cultivars.

Isoenzyme analysis of APX, POD, CAT and SOD in the storage roots of sweetpotato.  To gain 
insight into the isoenzyme changes in the antioxidant enzymes in sweetpotato roots, the activities of the anti-
oxidant enzymes were investigated by native PAGE. Figure 1G–J shows that the reaction bands of APX, POD, 
CAT and SOD in the storage roots of storage-tolerant cultivars Xushu 32 and Shangshu 19 were significantly 
brighter (more intense) than those of the storage-sensitive cultivars Yanshu 25 and Sushu 16, suggesting that 
higher antioxidative enzyme activities exist in the storage roots of Xushu 32 and Shangshu 19 compared with 
Yanshu 25 and Sushu 16. As shown in Fig. 1G, the APX isoforms APX I and APX II showed increased activity in 
the two storage-tolerant cultivars Xushu 32 and Shangshu 19 compared with the other two cultivars. POD I and 
POD II showed higher band intensities in the roots of the two storage-tolerant cultivars (Fig. 1H). An increase 
in POD III was observed in the most storage-tolerant cultivar, Xushu 32. Additionally, Xushu 32 and Shangshu 
19 showed higher CAT activities compared with the two storage-sensitive cultivars (Fig. 1I). SOD I and SOD II 
displayed increased activity in storage-tolerant Xushu 32 and Shangshu 19 in comparison to the storage-sensitive 
cultivars (Fig. 1J). Furthermore, the activities of SOD I and SOD II were higher in Sushu 16 than in the most 
storage-sensitive cultivar, Yanshu 25. Thus, the results of the native PAGE were consistent with the spectrophoto-
metric activity analysis of the antioxidative enzymes.

Contents of hydrogen peroxide and malondialdehyde and the production of superoxide anion 
in sweetpotato roots.  Accumulated ROS induce oxidative damage and are implicated in the postharvest 
senescence process, and MDA is an index of lipid peroxidation12,19,20. Thus, the contents of H2O2 and MDA and 
the production of ⋅O2

− in sweetpotato roots were analyzed and shown in Fig. 2A–C. As shown in Fig. 2A, the 
storage-tolerant cultivars Xushu 32 and Shangshu 19 maintained lower H2O2 contents compared with Yanshu 25 
and Sushu 16, and Xushu 32 had the lowest level. Figure 2B,C illustrate similar patterns for ⋅O2

− production and 
MDA content as for the H2O2 content. The generation of ⋅O2

− and MDA in storage-sensitive Yanshu 25 and Sushu 
16 was significantly higher compared with Xushu 32 and Shangshu 19. In addition, the most storage-tolerant 
cultivar, Xushu 32, also contained the lowest level of ROS metabolites compared with the other three cultivars.

Antioxidative enzyme activities and ROS metabolites analysis in sweetpotato leaves.  To 
explore whether similar ROS metabolism existed in sweetpotato leaves as in storage roots, antioxidative enzyme 
activities and ROS metabolites were analyzed in sweetpotato leaves. As shown in Fig. 3A–E, the activities of 
APX, POD, CAT, SOD and PPO in the leaves of the storage-tolerant cultivars Xushu 32 and Shangshu 19 were 
always higher than those of storage-sensitive Yanshu 25 and Sushu 16. In addition, the activities in the native 
PAGE showed consistent results with the activity determination data (Fig. 3G–J). Figure 3F shows that the 
storage-tolerant cultivars Shangshu 19 and Xushu 32 sustained a significantly lower level of LOX compared with 
Yanshu 25 and Sushu 16. Figure 2D–F showed that the ROS metabolites and MDA content in the leaves of the 
storage-sensitive cultivars Yanshu 25 and Sushu 16 were significantly higher than those in the two storage-tolerant 
cultivars Shangshu 19 and Xushu 32, which were similar to the results in sweetpotato roots except for the insignif-
icant MDA values between Sushu 16 and Shangshu 19. In addition, Pearson correlation analysis was performed 
among the antioxidative enzyme activities and ROS metabolites in the roots and leaves of the four sweetpotato 
cultivars (Fig. 4). A perusal of the data revealed that the activities of antioxidative enzymes and ROS metabolites 
in the sweetpotato roots had a highly significant and positive correlation with the corresponding parameters 
in the leaves, such as APX activity (r = 0.910), POD activity (r = 0.834), CAT activity (r = 0.430), SOD activity 
(r = 0.940), LOX activity (r = 0.943), H2O2 content (r = 0.758), ⋅O2

− production (r = 0.912) and MDA content 
(r = 0.934), suggesting that similar ROS scavenging capacity and ROS metabolites existed in sweetpotato leaves 
and roots. In addition, the data of ROS metabolites, H2O2, ⋅O2

− and MDA were negatively correlated with the 
activities of ROS scavenging enzymes and positively correlated with LOX.

Relative gene expression of antioxidative enzyme genes and LOX in sweetpotato roots and leaves.  
To investigate the transcription levels of the genes encoding antioxidative enzymes in sweetpotato, their relative 
gene expression in sweetpotato roots and leaves was assayed by quantitative PCR. As shown in Fig. 5, the expres-
sion of IbAPX in the roots of storage-tolerant Xushu 32 and Shangshu 19 was significantly higher compared with 
Yanshu 25 and Sushu 16 and was nearly 4-fold higher than Yanshu 25. IbSOD, IbPOD and IbCAT3 in sweetpotato 
roots showed similar gene expression patterns among the four cultivars to the data of IbAPX in roots. However, the 
IbLOX1 gene was expressed at higher levels in the storage roots of storage-sensitive Yanshu 25 and Sushu 16 than 
in the other two storage-tolerant cultivars. In addition, the relative gene expression in sweetpotato leaves showed a 
similar expression pattern to the root data. Generally, the genes encoding ROS scavenging enzymes were expressed 
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at higher levels in the storage-tolerant cultivars, whereas IbLOX1 expression was lower in comparison to the data in 
the leaves of the storage-sensitive varieties. Meanwhile, the correlation among the antioxidative enzyme activities 
and the corresponding gene expression in sweetpotato roots and leaves were analyzed and are presented in Fig. 6. 
The data show that the activities of antioxidant enzymes in sweetpotato roots and leaves had highly significant and 
positive correlations with their corresponding genes, and the correlation coefficients ranged from 0.517 to 0.958. In 
addition, the gene expression in sweetpotato roots had a highly significant and positive correlation with the corre-
sponding genes in the leaves, such as IbAPX (r = 0.991), IbSOD (r = 0.969), IbPOD (r = 0.647), IbCAT3 (r = 0.798) 
and IbLOX1 (r = 0.845), suggesting that similar gene expression exists in the roots and leaves of sweetpotato.

Antioxidative enzymes and related gene expression analysis in four other sweetpotato cultivars.  
To verify the association between higher antioxidative capability and better storage properties, four other 
sweetpotato cultivars with different storabilities, Jishu 26, Guangshu 87, Zhezi 3 and Yushu, were selected. As 
shown in Fig. S1, the results of native PAGE of the antioxidative enzymes in the roots and leaves showed that 
the storage-tolerant cultivars Jishu 26 and Guangshu 87 maintained higher APX and CAT activities compared 
with the storage-sensitive cultivars Zhezi 3 and Yushu, which is similar to the activity assay of APX and CAT in 
Fig. S2. The storage-tolerant cultivars Jishu 26 and Guangshu 87 maintained higher IbAPX gene expression. The 
storage-sensitive cultivars Zhezi 3 and Yushu showed higher LOX activity and higher H2O2 content compared 
with the storage-tolerant cultivars Jishu 26 and Guangshu 87. Meanwhile, correlations among APX, CAT, and 
LOX activities and the content of H2O2 and APX gene expression in the four sweetpotato cultivars of were ana-
lyzed and are presented in Fig. S3. The correlation data showed that the activities of APX, CAT, and LOX and 
the content of H2O2 and APX gene expression had a positive correlation in sweetpotato roots and leaves, and the 
correlation coefficients ranged from 0.67 to 0.99. The principal component (PC) analysis in Fig. S4 shows that 
PC 1 and 2 explained 79.898% and 16.357% of the variability in the data. There is a clear separation between the 
storage-tolerant cultivars and storage-sensitive cultivars in PC1 according to the above measured parameters. 
In addition, the cultivar displaying the highest positive loading value in the direction of PC1 was Xushu 32, and 
Sushu 16 on PC2 exhibited the lowest negative loading score, suggesting a correlation with storage. Thus, the 
positive association between antioxidative capabilities and storage properties might be universal in sweetpotato 
cultivars with different storabilities.

Figure 2.  Hydrogen peroxide (H2O2) content (A,D), production of superoxide anions (⋅O2
−) (B,E) and content 

of malondialdehyde (MDA) (C,F) in the tuberous roots and leaves of sweetpotato cultivars Yanshu 25, Sushu 16, 
Shangshu 19 and Xushu 32. Data are presented as the means ± SD (n = 3). Different letters indicate significant 
differences (p < 0.05) according to t-test.
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Discussion
Senescence greatly impacts fruit or crop postharvest quality and resistance to pathogen attack12. Oxidative dam-
age caused by ROS is one of the most important factors that cause plant senescence14. The induction of cellular 
antioxidant machinery has been applied to protect plants from oxidative stress and to alleviate postharvest senes-
cence21,22. Thus, we propose the hypothesis that the innate ROS scavenging capability is positively associated with 
the storage property of sweetpotatoes. Studies have shown that chilling stress, disease and lack of oxygen strongly 
affect the storage of sweetpotatoes23. Sweetpotatoes stored in developing countries is more susceptible to chilling 
damage due to equipment problems16. Considering the future demand for food, species of sweetpotato that are 
resistant to low temperatures, salinity, and water stress will expand the crop area and production24. Therefore, it is 
necessary to explore the relationship between the storage of sweetpotato and its antioxidant capacity.

Storage-tolerant cultivars Xushu 32 and Shangshu 19 maintained higher antioxidant enzyme activities for APX, 
POD, CAT, and SOD and lower LOX activity in comparison to the storage-sensitive cultivars Yanshu 25 and Sushu 
16 in sweetpotato roots, as shown in Fig. 1. Lower contents of ROS metabolites, including H2O2, ⋅O2

− and MDA, are 
observed in the roots of storable cultivars, Xushu 32 and Shangshu 19, in comparison to Yanshu 25 and Sushu 16. 
LOXs are a large family of plant enzymes that catalyze the hydroperoxidation of polyunsaturated fatty acids and lead 
to the production of MDA. The above results suggest that antioxidative enzyme activities have a significant positive 
correlation with the storability of sweetpotato, while the contents of ROS metabolites and LOX activity show a 
negative correlation. Our results are consistent with data showing that storage-tolerant soybeans maintain a higher 
level of antioxidant enzyme activities25. Accumulation of ROS can cause plant tissue damage and reduce the storage 
quality of fruits and vegetables19,26. In sweetpotato, transcriptome profiling of storage roots during low-temperature 
storage shows that the gene expression of SOD and CAT is downregulated with a concurrent increase in H2O2 and 
MDA, emphasizing the key role of the ROS scavenging capability in sweetpotato storage16. Plants have evolved an 
efficient antioxidant system that includes enzymes such as SOD, CAT, POD and APX to scavenge ROS to avoid 

Figure 3.  Activities of ascorbate peroxidase (APX) (A), peroxidase (POD) (B), catalase (CAT) (C), superoxide 
dismutase (SOD) (D), polyphenol oxidase (PPO) (E) and lipoxygenase (LOX) (F) in leaves of sweetpotato 
cultivars Yanshu 25, Sushu 16, Shangshu 19 and Xushu 32. Data are presented as the means ± SD (n = 3). 
Different letters indicate significant differences (p < 0.05) according to t-tests. Native polyacrylamide gel 
electrophoresis (PAGE) of the isozyme profile of ascorbate peroxidase (APX) (G), peroxidase (POD) (H), 
catalase (CAT) (I), and superoxide dismutase (SOD) (J) in the leaves of sweetpotato cultivars Yanshu 25, Sushu 
16, Shangshu 19 and Xushu 32.
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oxidative damage caused by accumulated ROS27. Among them, two major antioxidant enzymes in plants provide 
the primary defense against ROS: SOD catalyzes the conversion of ⋅O2

− into H2O2, and CAT removes the result-
ant H2O2. APX and POD are the key enzymes responsible for H2O2 scavenging during oxidative stress in plants. 
However, oxidative stress may still occur during postharvest storage due to the gradual loss of ROS scavenging 
enzymes despite such an efficient defense system28. Studies have revealed that tomato and guava cultivars with 
longer shelf lives exhibit higher activities of ROS scavenging enzymes and thus experience less oxidative stress28,29. 
Thus, an efficient antioxidative system at the beginning of storage can protect postharvest crops or fruits from the 
deleterious effects of ROS. Antioxidative capability is positively correlated with storage in sweetpotato.

A similar pattern of antioxidant enzyme activities and ROS metabolite contents is observed in sweetpotato 
leaves as in storage roots, as shown in Figs 2 and 3. Correlation among the data in sweetpotato roots and leaves 
(Fig. 4) also suggests that the activities of antioxidative enzymes and ROS metabolites in sweetpotato roots have 
a positive correlation with the corresponding parameters in leaves. The positive correlation of data between roots 
and leaves suggests that the antioxidative capability determined in leaves can be associated with the storage prop-
erties of storage roots. Consistent with the results of the enzyme activity assay, the antioxidant enzyme genes 
expression IbAPX, IbSOD, IbPOD and IbCAT3 were expressed at higher levels in the roots and leaves of the 
storage-tolerant cultivars Xushu 32 and Shangshu 19 than in the two storage-sensitive cultivars, whereas IbLOX1 
showed the opposite expression pattern (Fig. 5). There is a highly positive correlation between antioxidative 
enzyme activities and corresponding gene expression in sweetpotato (Fig. 6).

To examine associations between higher antioxidative capabilities and better storage properties, some param-
eters were analyzed in four other sweetpotato cultivars with different storabilities: Jishu 26, Guangshu 87, Zhezi 3 
and Yushu. Storage-tolerant Jishu 26 and Guangshu 87 maintained higher APX and CAT activities and higher gene 
expression compared with the storage-sensitive cultivars Zhezi 3 and Yushu in both roots and leaves, while the 
storage-sensitive cultivars Zhezi 3 and Yushu contained higher LOX activity and H2O2 content. Thus, the positive 
association between antioxidative capabilities and storage properties might be universal in sweetpotato cultivars.

Figure 4.  Correlation analysis among the parameters of ascorbate peroxidase (APX), peroxidase (POD), 
superoxide dismutase (SOD), catalase (CAT) and lipoxygenase (LOX) and the data of hydrogen peroxide 
(H2O2), production of superoxide anion (⋅O2

−) and content of malondialdehyde (MDA) in tuberous roots and 
leaves of sweetpotato cultivars Yanshu 25, Sushu 16, Shangshu 19 and Xushu 32. Pearson’s correlation coefficient 
among data was analyzed using R scripts. R, the abbreviation of root; L, the abbreviation of leave.
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In conclusion, our results indicate that the storage-tolerant sweetpotato cultivars maintained higher anti-
oxidant enzyme activities and gene expression and lower levels of ROS metabolites compared with the 
storage-sensitive cultivars. Meanwhile, the data for antioxidative enzyme activities, gene expression and ROS 
metabolites in storage roots showed a correlation with those in leaves, which provides valuable markers for the 
breeding of sweetpotatoes. The significant positive correlation between enzyme activities and corresponding 
gene expression suggests that the transcription levels of antioxidant genes could reflect antioxidative capacities in 
leaves and storage roots. Thus, this new strategy of storability evaluation will facilitate and shorten the breeding 
cycle of sweetpotato varieties with higher storage properties.

Materials and Methods
Plant materials and sample preparation.  The sweetpotato stem cuttings (I. batatas cv. Xushu 32, Shangshu 
19, Yanshu 25, Sushu 16, Yushu, Zhezi 3, Guangshu 87, and Jishu 26) were carried out in May 2017 at the National 
Sweet Potato Improvement Center, Xuzhou, Jiangsu Province, China. The second-to-last through the fifth-to-last 
leaves of each sweetpotato cultivar were sampled immediately upon arrival. The leaves of each cultivar were pre-
cooled with liquid nitrogen, mixed, ground, and then stored in a −80 °C freezer until experimental assay. The 
corresponding storage roots of the eight cultivars were harvested in October 2017 from the National Sweet Potato 
Improvement Center. Five unblemished and disease-free storage roots were selected for each cultivar. Five roots of 
individual cultivars were cut into small pieces, and 100 g of each root was sampled and mixed to eliminate the effects 
of individual variance, immediately frozen in liquid nitrogen and stored in the −80 °C freezer. The cultivars with a 
rot rate of less than 75% after 290 days of sweetpotato root storage at 11−15 °C were defined as a storage-tolerant 
species. A lower rot rate indicates a higher storage property. A plant with a rot rate of more than 75% was defined 
as a storage-sensitive cultivar. Eight sweetpotato varieties were stored at 11–15 °C at 80–90% humidity for 290 days 
in an air-conditioned room, and their storage properties were determined via the rot rate of the roots. After storage 
for 290 days, Yanshu 25 was fully rotten, while the rot rate of Yushu was 95%, Zhezi 3 was 80%, Sushu 16 was 75%, 
Guangshu 87 was 72%, Shangshu 19 was 70%, Jishu was 67%, and Xushu 32 was 65%. The storage property was also 
studied of the sweet potato cultivars in the year of 2015 and 2016 and similar results were obtained. All samples 
were prepared in three biological replicates taken from the mixed leaves and the same five pooled roots.

Activity assay of antioxidative enzymes and lipoxygenase.  Ascorbate peroxidase (EC 1.11.1.11), per-
oxidase (EC 1.11.1.7), catalase (EC 1.11.1.6) and superoxide dismutase (EC 1.15.1.1) activities were determined 

Figure 5.  Relative gene expression levels of itf09g09790 (IbAPX) (A), itf09g09800 (IbPOD) (B), itf07g00160 
(IbCAT3) (C), itf13g19030 (IbSOD) (D), itf15g12180 (IbLOX1) (E) in the tuberous roots and leaves of 
sweetpotato cultivars Yanshu 25, Sushu 16, Shangshu 19 and Xushu 32.
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according to the method of Garcı́a-Limones et al.30. The enzymes in sweetpotato leaves and storage roots were 
sampled and extracted according to the method in Wang et al.17. The content of soluble protein in the samples was 
determined by the method described by Bradford31. The activity was expressed on a protein basis as U·g−1.

The activities of LOX (EC 1.13.11.12) were determined by the procedures described by Surrey32. One unit of 
LOX was defined as a decrease of 0.01 OD value in absorbance per minute, and the results were expressed on a 
protein basis as U·g−1.

Electrophoretic analysis of APX, POD, CAT and SOD.  The APX, POD, CAT and SOD isoenzymes 
were separated by native polyacrylamide gel electrophoresis (PAGE)33 using a Mini-Protein II electrophoresis 
system (Bio-Rad Laboratories, CA). Equal amounts of protein (16 μg) were loaded and under electrophoresis for 
4 h using a 25 mA current.

The isozymes of APX were stained according to the method described by Mittler and Zilinskas34, which is 
based on the inhibition of NBT reduction by ascorbate. The isozymes of POD were detected based on the method 
of Guikema and Sherman35. CAT activity was shown according to the descriptions of Clare, et al.36. The SOD 
activity were stained following the method of Beauchamp and Fridovich37.

Determination of the contents of hydrogen peroxide and malondialdehyde and production 
of superoxide anions in sweetpotato tubers and leaves.  The contents of H2O2 and malondialdehyde 
(MDA) and the production of ⋅O2

− were assayed as described by Ge et al.38 and Hu et al.19. The ROS metabolites in 
sweetpotato leaves and storage roots were sampled, extracted and calculated according to the method in Wang et al.17.

Quantitative reverse transcription PCR analysis.  Sweetpotato leaves and storage root samples (0.2 g) 
were ground in liquid nitrogen, and the total RNA was extracted using a TRNzol RNA Reagent kit (Tiangen, 

Figure 6.  Correlation analysis among the parameters of ascorbate peroxidase (APX), peroxidase (POD), 
superoxide dismutase (SOD), catalase (CAT) and lipoxygenase (LOX) and gene expression of itf09g09790 
(IbAPX), itf13g19030 (IbSOD), itf09g09800 (IbPOD), itf07g00160 (IbCAT3), itf15g12180 (IbLOX1) in tuberous 
roots and leaves of sweetpotato cultivars Yanshu 25, Sushu 16, Shangshu 19 and Xushu 32. Pearson’s correlation 
coefficient among data was analyzed using R scripts. R, abbreviation of root; L, abbreviation of leave; Ex, 
abbreviation of gene expression.
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Beijing, China) following the manufacturer’s instructions and used for cDNA synthesis by a reverse transcription 
kit (PrimeScript RT Master Mix, Takara, Kyoto, Japan). Quantitative PCR was carried out in three replicates 
using an iQTM5 PCR System with SYBR Premix Ex Taq (Takara, Kyoto, Japan). The following genes itf09g09790 
(IbAPX), itf13g19030 (IbSOD), itf09g09800 (IbPOD), itf07g00160 (IbCAT3), and itf15g12180 (IbLOX1) and the 
housekeeping gene itf04g29110 (IbTubulin, reference gene) were obtained following the method in Wang et al.17. 
The primers used for quantitative PCR are shown in Table S1.

Statistical analysis.  Statistical significance was analyzed with t-tests that were conducted using IBM SPSS 
Statistics (SPSS version 22.0; Armonk, NY), and the results were expressed as the means ± SD (standard devi-
ation). Native PAGE analysis of APX, CAT, POD and SOD was repeated three times, and similar results were 
obtained. The Pearson correlation coefficient (R) was used to show the correlation among enzyme activities, gene 
expression, and ROS metabolites in the storage roots and leaves of the sweetpotato cultivars. Principal component 
(PC) analysis was performed using IBM SPSS Statistics.

Data Availability
All materials, data and associated protocols are available upon request.
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