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Glial fibrillary acidic protein (GFAP) is a type III intermediate filament protein found

in astrocytes in the brain. Damaged astrocytes release GFAP into cerebrospinal fluid

and blood. Thus, GFAP levels in these body fluids may reflect the disease state

of neuromyelitis optica spectrum disorder (NMOSD), which includes astrocytopathy,

characterized by pathogenic antibodies against aquaporin 4 located on astrocytes.

Recently, single-molecule array technology that can detect these synaptic proteins in

blood, even in the subfemtomolar range, has been developed. Emerging evidence

suggests that GFAP protein is a strong biomarker candidate for NMOSD. This mini-review

provides basic information about GFAP protein and innovative clinical data that show the

potential clinical value of blood GFAP levels as a biomarker for NMOSD.
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INTRODUCTION

Neuromyelitis optica spectrum disorder (NMOSD) is a chronic inflammatory disease of the
central nervous system (CNS) (1, 2). The main pathogenesis of NMOSD is autoimmune
channelopathy/astrocytopathy that targets the water channel aquaporin-4 (AQP4) on perivascular
astrocytic endfeet, and antibodies against AQP4 (AQP4-Ab) have been established as a diagnostic
biomarker (3–5). Because NMOSD is a lifelong disease characterized by unpredictable attacks,
subsequent severe neurological disability, and variable responses to treatments, blood biomarkers
for monitoring and predicting the course of the disease would be useful (6–8). Serum AQP4-Ab
titers may serve as such a disease biomarker; however, they have failed to show consistent results
regarding their correlations with disease activity, severity, outcome, or responses to therapy (9–14).
Currently, no blood biomarkers for monitoring are available in clinical practice.

Glial fibrillary acidic protein (GFAP) is the specific intermediate filament protein that constitutes
the cytoskeleton of astrocytes (15). Damaged astrocytes release GFAP into interstitial fluid,
cerebrospinal fluid (CSF), and finally the blood. Because NMOSD is an astrocytopathy, GFAP
blood levels may be a useful biomarker for NMOSD. The recent development of ultrasensitive
single-molecule array (Simoa) technology has expedited the realization of the potential of GFAP
as a biomarker for NMOSD (16, 17).
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In this review article, we will first briefly provide basic
information about GFAP protein and its function in the brain.
Then, we will review detection methods for GFAP protein in
the blood and the recent evidence for the potential of GFAP
as a blood biomarker for NMOSD. Finally, we will discuss
several considerations in using GFAP as a disease biomarker and
future directions.

GFAP

GFAP, a type III intermediate filament protein that was
discovered by Dr. Eng in 1969 (18, 19), is responsible for themain
cytoskeletal structure of astrocytes (19, 20). Apart from being
present in the CNS, GFAP is also present in non-myelinated
Schwann cells in the peripheral nervous system (PNS) and in
enteric glia cells, which constitute the enteric nervous system
(21, 22).

The human GFAP gene consists of nine exons and is located
on chromosome 17 (17q21), spanning 10 kb (23). Alternative
splicing occurs, and several GFAP isoforms have been identified
(Figure 1A) (24). The three major domains of GFAP protein
are the head, rod, and tail domains. The head domain is
followed by the rod domain, which is composed of four
α-helical coils. The N-terminal head domain is crucial for
filament assembly, the rod domain plays a role in filament
formation by coiling between polypeptides, and the C-terminal
tail domain is important for stabilizing intermediate filaments
(25). GFAP-α is the most abundant isoform in the brain
and spinal cord but is also present in the PNS (26). This
is the most commonly detected and analyzed isoform in
the literature (20). GFAP-β is primarily expressed in non-
myelinated Schwann cells in the PNS and has an alternate
N-terminal (27). GFAP-γ also has an alternative N-terminal
and is mainly located in the corpus callosum (28). GFAP-
δ/ε is specifically expressed in neurogenic niches, such as the
subventricular zone, and has an alternate C-terminal known
to interact with presenilin (29–31). In addition, GFAP-δ/ε
plays a role in modulating intermediate filament network
dynamics (24, 32). GFAP-κ and GFAP-ζ also have distinct
alternative C-terminals, which can modulate the properties of
intermediate filaments (31, 33). Furthermore, an additional four
isoforms of GFAP are collectively called GFAP+1, indicating
isoform formation by a single nucleotide frameshift. GFAP+1
is found in a limited number of astrocytes in patients with
Alzheimer’s disease, Down syndrome, and chronic epilepsy;
however, its implications remain to be elucidated (34–36).
Although the precise functions of the different isoforms are
not well-known, these isoforms seem to play a role in
modulating intermediate filament networks during physiological
and pathological states (37).

GFAP serves numerous pivotal functions in the CNS. GFAP is
important for maintaining the mechanical strength of astrocytes
and supporting neighboring neurons (38). In addition, GFAP
participates in astrocytic motility and mitosis (39–41), maintains
the integrity of the blood-brain barrier (BBB) and myelination
(42, 43), protects neurons against neurotransmitter excess (44,

45) and injury (46, 47), regulates vesicle trafficking and autophagy
(48, 49), and promotes synaptic plasticity (50, 51). Because GFAP
is a major structural scaffold of astrocytes, damaged astrocytes
release GFAP into their environment, e.g., interstitial fluid and
CSF. Such released GFAP finally reaches the blood through an
impaired BBB and/or glymphatic efflux (Figure 1B) (52–56).
As such, blood GFAP exhibits much potential as a biomarker
reflecting the state of NMOSD.

ULTRASENSITIVE DETECTION OF GFAP:
SINGLE-MOLECULE ARRAY

GFAP concentrations can be detected with immunoassays
such as enzyme-linked immunosorbent assay (ELISA)
(57, 58). Conventional ELISA typically measures proteins
at concentrations above 10−12 M (16). However, its sensitivity
may be insufficient to reliably measure GFAP in the blood,
of which concentrations in most patients with neurological
disorders range from 10−14 to 10−10 M (0.5–5,000 pg/mL)
(59–64). In patients with demyelinating diseases, the median
CSF GFAP level is 8,601 pg/mL and the median serum GFAP
level is 167 pg/mL from NMOSD and MS patient (59). The limit
of quantification of commercial ELISA varies from 62.5 pg/mL
(Eagle Biosciences, NH, USA) to 1,500 pg/mL (MilliporeSigma,
MA, USA). Accordingly, although conventional ELISAmeasured
CSF GFAP levels that showed promise as a potential biomarker
for NMOSD (65–67), the blood GFAP levels demonstrated
inconsistent results, indicating little clinical value for NMOSD
(68, 69).

Recently, an ultrasensitive digital ELISA technology, Simoa,
has been developed (16). The technique detects fluorescent
signals from each single protein molecule by using femtoliter-
volume chambers that isolate a single bead holding an immuno-
complex with an enzymatic reporter generating fluorescence.
High sensitivity to enzyme labeling and low background
signals due to digitizing the detection of proteins has enabled
the technology to detect blood proteins at subfemtomolar
concentrations (<10−15 M) (16). There are also other quantifying
methods for GFAP such as electrochemiluminescence-based
immunoassays and mass spectrometry (70). However, Simoa not
only requires the smallest amount (only femtoliters) of blood
for testing, but also shows the best analytical sensitivity with
the limit of quantification of serum GFAP of 0.467 pg/mL (71).
The reliability of Simoa for detecting blood neuronal and glial
proteins is also high, as shown by the strong correlations between
CSF and serum levels measured by Simoa technology (59, 72).

GFAP IN BLOOD AS A BIOMARKER FOR
NMOSD

Recently, several studies have demonstrated that blood
GFAP levels measured by Simoa have potential as a useful
NMOSD biomarker for (1) differentiating NMOSD from other
demyelinating diseases, (2) identifying and predicting clinical
attacks, (3) monitoring disease disability and progression, and
(4) evaluating treatment effects (59, 71, 73–78) (Table 1).
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FIGURE 1 | (A) Glial fibrillary acid protein (GFAP) isoforms and (B) release of GFAP after astrocyte injury in neuromyelitis optica spectrum disorder. (A) GFAP protein

consists of three domains: N-terminal head, central rod, and C-terminal tail. The head domain is crucial for filament assembly, the rod domain has a role in filament

formation by coiling between polypeptides, and the tail domain is important in stabilizing the intermediate filament. (B) Serum anti-aquaporin-4 antibodies (AQP4-Ab)

penetrate the blood-brain barrier and bind to aquaporin-4 (AQP4) on astrocyte endfeet. Antibody- and complement-dependent cellular cytotoxicity results in

inflammatory cell recruitment, astrocyte damage, demyelination, and neuronal loss. After astrocyte damage, GFAP, an astrocytic scaffold protein, is released into

interstitial and cerebrospinal fluid and finally reaches the blood through an impaired blood-brain barrier and/or glymphatic efflux.

TABLE 1 | GFAP in blood as a biomarker for NMOSD.

Author Comparison of levels* Attack vs.

remission*

Correlation with Prediction for

future attack

Treatment

effect

vs. HC vs. MS vs. MOGAD Age EDSS (Elevated vs.

non-elevated)

Watanabe et al. (59) ↑ (207.7 vs. 97.2) ↑ (207.7 vs. 121.1) N/A ↑ (540.9 vs. 152.9) NS + N/A N/A

Kim et al. (73) N/A N/A ↑ (123.1 vs. 90.2) ↑ (253.8 vs. 104.4) NS + N/A N/A

Aktas et al. (75) ↑ (128.3 vs. 71.3) ↑ (128.3 vs. 97.5) N/A ↑ (2,160 vs. 168.4) + N/A Hazard ratio 3.09 Inebilizumab†

Schindler et al. (76) NS (109.2 vs. 67.7) N/A NS (109.2 vs. 81.1) N/A + + Hazard ratio 11.6 N/A

Kim et al. (71) ↑ (154.1 vs. 98.9) N/A N/A ↑ (275.5 vs. 153.7) NS N/A N/A Rituximab¶

Chang et al. (77) ↑ (274.1 vs. 61.4) ↑ (274.1 vs. 66.5) NS (274.1 vs. 136.7) ↑ (284.4 vs. 147.1) NS + N/A N/A

Zhang et al. (78) ↑ (149.7 vs. 68.7) N/A N/A ↑ (2,691 vs. 114.0) NS + N/A Tocilizumab,

rituximab§

EDSS, expanded disability status scale; GFAP, glial fibrillary acidic protein; HC, healthy control; MOGAD, myelin oligodendrocyte glycoprotein antibody-associated disease; MS, multiple

sclerosis; N/A, not available; NMOSD, neuromyelitis optica spectrum disorder; NS, not significant.

*The unit for GFAP levels is pg/mL. The figures in parentheses are median level of blood GFAP of each group.
† Inebilizumab attenuated the attack-related increase in serum GFAP levels [inebilizumab, median fold change (FC): 1.1 vs. placebo, median FC: 20.2], and decreased serum GFAP levels

in patients who did not experience attacks (inebilizumab, −12.9% vs. placebo, +2.9% at week 16).
¶Rituximab-treated patients manifested stable serum GFAP levels over time, but other immunosuppressant-treated patients, treated with corticosteroids and/or immunosuppressants

(azathioprine, mycophenolate mofetil, or methotrexate), showed significantly increased serum GFAP levels over time (rituximab: baseline 145.6 pg/mL → follow-up 168.1 pg/mL, p =

0.433; immunosuppressant: baseline 128.6 pg/mL → follow-up 153.0 pg/mL, p < 0.001).
§Tocilizumab and rituximab decreased plasma GFAP levels by 36 and 23%, respectively, compared to the change between baseline and follow up of the prednisone-treated group.

Differentiating NMOSD From Other
Demyelinating Diseases
It is important in clinical practice to differentiate NMOSD from
other demyelinating diseases, including multiple sclerosis (MS)
and myelin oligodendrocyte glycoprotein antibody-associated
disease (MOGAD), because treatments for these diseases differ
considerably. Inappropriate treatments may result in poor
outcomes. For example, treating NMOSD patients with therapies

for MS could worsen the disease (79–81). Although the

testing of AQP4-Ab is essential for the diagnosis of NMOSD,

differentiation of the diseases remains crucial. Contrary to
the high specificity of the AQP4-Ab assay (96.6–99.8%), the

sensitivity of the AQP4-Ab assay (48.7–76.7%) varies according

to the assay methodology, indicating a high risk of false-negative
results (82). In addition, a patient’s treatment and clinical status
can affect the result of an antibody assay (83, 84).
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Serum GFAP levels could be used as a diagnostic marker for
NMOSD, as they are significantly higher in NMOSD patients
compared to those in healthy controls (59, 71, 75, 77, 78) and
patients with other demyelinating diseases (MS orMOGAD) (59,
73, 75, 77). These findings are in line with immunopathological
studies which showed that GFAP-positive astrocytes are highly
destroyed only in active lesions of NMOSD but not in those
of MS (85–90). Neurofilament light chain (NfL), a scaffolding
protein of the neuronal cytoskeleton that is released upon
axonal damage, may represent another diagnostic biomarker
because it is also elevated in the blood of NMOSD patients,
compared to healthy controls (59, 71, 75, 77, 78). However,
serum NfL levels do not differ between NMOSD patients and
MS or MOGAD patients (59, 73, 77), suggesting that NfL lacks
specificity as a biomarker for NMOSD. A recent study proposed
that the serum GFAP/NfL quotient at attack state could be a
useful biomarker that differentiates NMOSD from MS with a
sensitivity of 73.0% and a specificity of 75.8% (59). The serum
GFAP/NfL quotient also distinguished AQP4-Ab-seropositive
NMOSD fromMOGAD and MS (77).

Identifying and Predicting Clinical Attacks
Identifying and predicting clinical attacks in NMOSD patients
would be useful. Attack or relapse is defined as new or
worsening neurological symptoms with an objective sign on
neurological examination correlating with new or aggravating
magnetic resonance image (MRI) lesions (91). However, pseudo-
attacks or pseudo-relapses, i.e., clinical exacerbations with similar
symptoms and signs but without true lesions, also occur in
NMOSD patients, and clinically distinguishing between the two
conditions can be difficult (91). Furthermore, although currently
no method can predict future clinical attacks, a recent report
revealed that clinically silent MRI lesions may represent a high
risk of relapse (92). However, clinically silent brain or spinal cord
lesions are rare in NMOSD patients, and thus performing regular
MRI to predict future relapses would be inefficient.

Serum GFAP levels may help identify and predict clinical
attacks in NMOSD patients, as they are higher in the attack state
than in the remission state, and their elevation is associated with
recent relapses (59, 71, 73–75, 77, 78). In a longitudinal NMOSD
cohort (median follow up: 17 months), serum GFAP levels alone
successfully discriminated clinical attacks from remission with
a sensitivity of 94.7% and a specificity of 74.6% (area under
the receiver characteristic curve = 0.876). Remarkably, this
performance was better than that of other blood biomarkers, such
as NfL and the GFAP/NfL quotient (71). In line with this, another
study on a longitudinal NMOSD cohort (median follow up: 12
months) showed that plasmaGFAP levels were themost powerful
contributor in a random forest model to differentiate relapses
from remissions, compared to other biomarkers (NfL, GFAP,
and GFAP/NfL) and clinical variables [age, annual relapse rates,
expanded disability status scale (EDSS) score, disease duration,
and treatment status] (78). After relapse, serum GFAP levels
decrease over time, andmost patients show reduced serumGFAP
levels below the predefined cut-off value (≥3 standard deviations
of mean levels in age-/sex-matched healthy controls) within 3
months (71, 74).

Notably, increased serum GFAP levels may indicate
forthcoming clinical relapses. In a substudy of theN-MOmentum
study, significantly increased serum GFAP levels were already
observed 1 week before a clinical attack (93), and serum GFAP
levels were linearly correlated with the risk of an upcoming
attack (75). Additionally, patients with elevated serum GFAP
levels at baseline (≥2 standard deviations of the mean level
of healthy controls) showed a 3-fold higher risk of having
future NMOSD attacks than patients without elevated serum
GFAP levels at baseline (75). Similar results were shown by
another study on a prospective longitudinal cohort. NMOSD
patients with high serum GFAP levels (>90 pg/mL, the cut-off
value was derived from the 75th percentile of serum GFAP
levels in healthy controls) at baseline had a shorter time to a
future attack than those without [adjusted hazard ratio (95%
confidence interval):11.6 (1.3–105.6)] (76). Conversely, in the
same NMOSD cohort, baseline serum NfL levels were not
significantly associated with a risk of future attack (76).

Monitoring Disease Disability and
Progression
Monitoring disease disability is necessary to determine the
severity and track the progression of the disease, and to assess
treatment effectiveness (94). The most popular and widely used
instrument is the EDSS. However, considering that the inter-rater
variability of EDSS is as high as 30%, establishing an objective
and easily measurable biomarker would be preferable (95). Many
studies have demonstrated that blood GFAP concentration is
independently associated with EDSS score in NMOSD patients
(59, 73, 76–78, 96). Serum GFAP levels are also correlated
with other clinical disability parameters, including the MS
functional composite score, 9-Hole Peg Test, and paced auditory
serial addition test (76). Blood NfL levels also tend to increase
with EDSS score in NMOSD patients. However, the degree of
association is not as strong as that of blood GFAP levels; positive
correlations were significant in some studies (59, 77, 78, 96) but
not in others (73, 76).

Serum GFAP levels may also be useful to monitor disease
progression. NMOSD is considered to lack subclinical disease
activity, and all disabilities are related to attacks (97, 98).
Conversely, MS exhibits subclinical progression (99, 100).
However, recent optical coherent tomography and visual evoked
potential studies suggested subclinical neurodegeneration in
NMOSD patients (101, 102). More recently, silent progression
of brain atrophy was documented in NMOSD patients, even in
clinically inactive patients (103). Additional studies on blood
GFAP levels further support the concept of ongoing subclinical
neurodegeneration in NMOSD. First, median blood GFAP levels
during remission periods are significantly higher in NMOSD
patients than those in healthy controls (59, 71, 75, 77, 78).
Second, blood GFAP levels gradually increase over time even
in patients with no clinical relapse, and the rate of increase of
GFAP levels is faster than that related to normal aging (71).
Third, monoclonal antibody treatments such as inebilizumab,
tocilizumab, and rituximab decrease serum GFAP levels more
than treatments with placebo or prednisolone (75, 78). This
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indicates that gradual increases in GFAP levels may reflect
ongoing pathological processes and may be alleviated by active
treatment. However, it should be noted that most of these
findings have been derived from small studies conducted at single
centers or from substudies of clinical trials that may be different
from real clinical situations. Future larger studies are warranted
to confirm these findings.

Evaluating Treatment Effects
It would be useful to have blood markers as objective endpoints
in determining therapeutic effects, as shown in a recent clinical
trial (104), or as index markers for selecting optimal personalized
treatments (105). Recent data suggest that blood GFAP levels
may represent such markers. In a longitudinal follow-up study,
rituximab (anti-CD20 monoclonal antibody)-treated NMOSD
patients exhibited stable serum GFAP levels over time, in
contrast to patients with other immunosuppressant treatments
who showed significantly increased serum GFAP levels during
the same period (71). Inebilizumab, an anti-CD19 monoclonal
antibody, also prevented increases in serum GFAP levels. It
attenuated the attack-related increase in serum GFAP levels
(75) and significantly decreased serum GFAP levels in patients
who did not experience an attack, as compared to placebo
treatment (75). Tocilizumab, an anti-IL6 monoclonal antibody,
also significantly reduced plasma GFAP levels in NMOSD
patients, as compared to prednisolone (78). These findings
are remarkable because they indicate that blood GFAP levels
can reflect treatment responses during silent periods without
clinical relapses.

SPECIAL CONSIDERATIONS

Age
Physiological aging gradually affects the brain (106), and serum
GFAP levels increase with aging in healthy controls (59, 71, 75,
77). However, this positive association has not been consistently
demonstrated in NMOSD patients (59, 71, 73, 75–78). One
explanation for such inconsistent GFAP–age correlations could
be that NMOSD patients tend to have high serum GFAP levels
even at a young age. Furthermore, aging-related processes,
such as increased astrogliosis, also appear to affect the clinical
implication of GFAP in elderly patients. In a study that analyzed
the effect of age on serum biomarkers in NMOSD patients,
positive GFAP–EDSS correlations were distinctively stronger
in the youngest (≤45 years) compared to the oldest (≥55
years) group (96). The association between GFAP levels and
disease severity may have been compromised in elderly patients
due to increased astrogliosis following neurodegeneration (96).
Therefore, age should be considered when interpreting blood
levels of neuronal and glial proteins in NMOSD patients.

Temporal Trajectories
The temporal dynamics of GFAP and date of blood sampling are
also important. After brain injury, the serum GFAP levels peak
at 20 h and decline over 72 h, indicating estimated half-life as 24–
48 h (107, 108). It should also be noted that GFAP levels increases
from 1 week before the advent of clinical symptoms (75). Even

detected during the remission state, GFAP levels in NMOSD
patients are still higher than healthy controls (59, 77, 78). In
reflecting acute NMOSD attacks, GFAP may represent the event
most appropriately within 7 days after attack, since 92% samples
drawn within 1–7 days following attacks showed elevated level
of blood GFAP (≥2 standard deviations of mean level of healthy
controls) (75).

Specificity
Blood GFAP levels increase not only in NMOSD but in various
neurological diseases (109), thus the specificity of GFAP as an
NMOSD biomarker should be discussed. Blood GFAP levels
in patients with NMOSD, which often increase more than
1,000 pg/mL during relapses, tend to be higher than in patients
with other diseases such as relapsing remitting MS (59, 60, 77),
progressive MS (59–61), and even ischemic stroke (62). This
is because patients with NMOSD are accompanied by direct
damage of astrocytes. However, blood GFAP levels can also
increase very high in glioblastoma, traumatic brain injury, and
hemorrhagic stroke, as the level of NMOSD during relapses
(63, 64, 110, 111). Therefore, it is difficult to regard that
blood GFAP levels alone are a pathognomonic biomarker for
NMOSD. Another parameter like GFAP/NfL ratio may enhance
the specificity in terms of discriminating NMOSD from other
diseases (59). However, it should also be emphasized that GFAP
alone reflects well the longitudinal disease course of NMOSD
and may be the most appropriate marker to monitor the disease
changes within the NMOSD cohort (71).

NfL
As a representative biomarker of neuronal damage, serum NfL
has also demonstrated disease association with NMOSD as well
as MS (59, 71, 73, 76–78, 112, 113). However, serum NfL was not
useful to distinguish NMOSD from other demyelinating diseases,
and less sensitive and specific than serum GFAP in identifying
and predictingNMOSD relapses (59, 71, 76–78). The value of NfL
may bemore pronounced elsewhere. Given that NfL is a neuronal
structural component, serum NfL might be a better biomarker
for monitoring the degree of neurodegeneration of NMOSD
(101–103) and associated cognitive impairment (113) than serum
GFAP. This possibility should be elucidated in future studies.

OUTLOOK

For GFAP to be used as a biomarker in clinical practice,
several limitations that hinder the applicability of blood GFAP
in clinical settings should be addressed. First, standard protocols
and quality control criteria should be established across different
laboratories (113). In addition, age-specific and sex-specific
reference should also be developed. The dynamics of GFAP after
releases upon NMOSD attacks should be explored to determine
accurate blood GFAP half-life. This work should be paralleled
with unraveling mechanisms and pathways of GFAP released
from brain into the blood. Finally, the intervals for testing blood
GFAP levels and guidelines for biomarker-based decisionmaking
should also be established.
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Clinically, management strategies could be available by
stratifying the risk of future attack based on both age-adjusted
cut-off values and intraindividual changes in blood GFAP
levels. Based on an individual’s different strata of attack risk,
clinicians could decide treatment initiation, continuation, and
escalation/de-escalation of NMOSD patients. For example, it
could be possible to set a serum GFAP range for the treatment
response of patients and classify patients into treatment-
responsive and treatment-resistant groups. This classification
would enable precision treatment strategies that quickly change
from one option to another suitable before it is too late (e.g., the
advent of clinical relapses).

CONCLUSIONS

Although more than 50 years have passed since GFAP was
first discovered, only recently has GFAP been suggested as
a reliable blood biomarker in clinical practice. The role of
GFAP as a biomarker for NMOSD shows promise because

GFAP not only has pathophysiological specificity that can
reflect astrocytopathy as much as AQP4-Ab, but it also has the
advantage of being quantifiable with much more sensitivity than
AQP4-Ab. After several clinical and technical issues are resolved,
blood GFAP levels may expedite the process of personalized care
of NMOSD patients.
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