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Abstract: In the last decade, adsorption has exhibited promising and effective outcomes as a treatment
technique for wastewater contaminated with many types of pollutants such as heavy metals, dyes,
pharmaceuticals, and bacteria. To achieve such effectiveness, a number of potential adsorbents
have been synthesized and applied for water remediation and antimicrobial activities. Among these
inorganic adsorbents (INAD), activated carbon, silica, metal oxide, metal nanoparticles, metal–organic
fibers, and graphene oxide have been evaluated. In recent years, significant efforts have been made
in the development of highly efficient adsorbent materials for gas and liquid phases. For gas capture
and water decontamination, the most popular and known functionalization strategy is the chemical
grafting of amine, due to its low cost, ecofriendliness, and effectiveness. In this context, various
amines such as 3-aminopropyltriethoxysilane (APTES), diethanolamine (DEA), dendrimer-based
polyamidoamine (PAMAM), branched polyethyleneimine (PEI), and others are employed for the
surface modification of INADs to constitute a large panel of resource and low-cost materials usable
as an alternative to conventional treatments aimed at removing organic and inorganic pollutants
and pathogenic bacteria. Amine-grafted INAD has long been considered as a promising approach
for the adsorption of both inorganic and organic pollutants. The goal of this review is to provide
an overview of surface modifications through amine grafting and their adsorption behavior under
diverse conditions. Amine grafting strategies are investigated in terms of the effects of the solvent,
temperature, and the concentration precursor. The literature survey presented in this work provides
evidence of the significant potential of amine-grafted INAD to remove not only various contaminants
separately from polluted water, but also to remove pollutant mixtures and bacteria.

Keywords: inorganic adsorbent; surface functionalization; water treatment; amine grafting; toxic
molecules; antibacterial

1. Introduction

The ever-increasing manufacturing industry and the huge range of resulting hazardous
pollutants have considerably decreased the available amounts of drinking water [1–3]. This
can have a dangerous effect not only on biological activities but also on human safety. For
example, owing to incomplete use and washing operations, textile and other industries
often discharge harmful dye effluents into water systems. Serious environmental pollution
problems are caused by the high amount of heavy metals released in soil and water. In
addition, the pharmaceutical industry widely discharges non-ecofriendly chemicals that
may remain in spent water, which results in polluted effluents [4]. Toxic dyes in drinking
water also pose a life threat to humans [5,6]. To solve these problems, several studies have
focused on water treatment technologies [7–9]. Researchers recently focused on adsorption
techniques to reduce water pollution [10–12]. Adsorption is commonly one of the best
methods for reducing or removing hazardous pollutants and transforming them into safe
inorganic compounds such as aminophenol [13–16]. In this context, many adsorbents
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have been applied to adsorb contaminants from water, e.g., metal oxide nanoparticles
(MOx), activated carbon, biomass, graphene oxide, textile, polymers, clay, and many
other sophisticated porous materials [7–16]. According to their main composition, the
sophisticated porous materials can be classified as metal oxides/hydroxides, carbon-based
materials, organic polymers, fibrous materials, and agricultural waste. Scheme 1 presents a
view of the most effective and recently employed adsorbents for removing contaminants
from liquid solution.
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Despite the interesting properties and results on water treatment, the majority of these
adsorbents showed a visible weakening in the continuous removal of toxic pollutants, poor
reusability, and low adsorption capacity due to their surface properties. However, inorganic
adsorbents (INADs) have attracted more interest in comparison to the other categories
of adsorbents. This was explained by their surface properties and adsorptive characters:
INADs lose their efficiency on water treatment because they are not stable enough. In this
regard, techniques for surface modification and activation have been envisaged as effective
pathways to enhance the separation and the effectiveness of INAD adsorbents [17–23].
Many works have been conducted to functionalize the porous materials and add more
activated sites at the adsorbent surface. In order to improve the surface properties of these
INADs, numerous organic molecules have been used to add new activated sites at the
INAD surface [19–23]. Synthetic and natural organic compounds have demonstrated many
advantages onto various materials, i.e., a simpler preparation technique, a lower cost, and
effective strategies for the preparation of advanced composites. Among these organic
molecules, amines are considered as the smart molecules with high values because they
can increase both the adsorptive and antibacterial properties. Both natural and synthetic
amines have a great effect on INAD stability and a great efficiency during environmental
application. More particularly, 3-aminopropyltriethoxysilane (APTES), diethanolamine
(DEA), dendrimer-based polyamidoamine PAMAM, and branched polyethyleneimine (PEI)
are extensively employed for INAD functionalization and applications in microbiological
and environmental catalysis, gas capture, and medical applications (Scheme 2) [17–23].
INAD functionalization via the chemical grafting of amines has increased the number of
useful activated sites for adsorption and capture of toxic molecules. Metal oxides based on
copper oxide (CuO), zinc oxide (ZnO), and tin oxide (SnO2) modified via chemical grafting
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of amines possess superior electrical, optical, catalytic, and antibacterial properties not
attainable via their metallic alloy and monometallic counterparts [17,21,24–26].
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Scheme 2. Amine and its multiple applications.

Chemical grafting of amine at the INAD surface occurs via a covalent interaction
in which the molecules can persist for a long time. Covalent grafting of amine is one of
the most sustainable and successful methods; it slightly decreases the surface area, while
it increases the adsorption capacity. This method is regarded as a more efficient way of
altering the specific properties of INAD and as a straightforward modification approach
while significantly improving INAD properties. The existence of a positively charged
amine group facilitates the attachment of many hazardous pollutants such as negatively
charged bacterial cells, negative toxic molecules, and cationic and anionic dyes in liquid
solution [27–32]. In other works, immobilized amine has been used to design and manufac-
ture highly advanced materials such as 2D and 3D composites. Amine is employed as a
link between the core and the shell for the synthesis of core–shell materials where amine
plays a key role in the stabilization and sustainability properties of the resulting materials.
The enhanced stability and surface compatibility of amine with porous materials can be
achieved through the kinetic trapping of amines surrounding the porous materials. How-
ever, further efforts are still required to fully elucidate the intimate relationship between
amine-modified INAD structures and their adsorption of wastewater pollutants and their
antibacterial properties [19–32]. The goal of this review is to provide a view of the surface
functionalization via grafting of amines and their adsorption behavior in water treatment.
The strategies utilized for the grafting of amine at the INAD surface are established and
compared in terms of concentration, temperature, and solvent. In addition, the reactions
and interactions are investigated. The literature survey presented in this paper provides
evidence of the good potential of amine-grafted INAD materials for removing several
contaminants from aqueous solution through adsorption. The contents of this review are
illustrated in Scheme 3.
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2. Amine for Surface Functionalization of Adsorbents

The surface properties of INAD play an important role on the extent of the interaction
between adsorbents and adsorbates. Consequently, surface modification and functional-
ization have been targeted to improve the stability and adsorptive properties of porous
materials for water treatment and to increase their adsorption capacity, as well as reduc-
ing toxicity. INAD adsorbents generally have a negatively charged surface coming from
the hydroxyl groups (-OH) and saturated oxygens. As a result, INADs become unsta-
ble and their efficiency can be highly reduced. Consequently, in most cases, INADs lose
their adsorptive properties. This can be explained by the competitive interaction between
the negatively charged elements (i.e., the OH groups and unsaturated oxygen) and the
adsorbates [18,33–35]. INAD based on metal-loaded biomass and hydrochar has been
functionalized by APTES grafting to lower the number of OH groups present at the INAD
surface. Hydroxyl groups have been found necessary for the grafting of high amounts
of amine onto the INAD surface (Scheme 4). By comparing the adsorption capacity of an
unmodified adsorbent with a negatively charged surface and its modified counterpart, it
is clear that hydroxyl groups destabilize the materials involving a competition between
adsorbents/adsorbate. The adsorption capacity of unmodified adsorbents is lower than
that of their modified counterparts. Amine-modified adsorbents visibly increase the ad-
sorption uptake of various toxic molecules and improve the reutilization of the materials,
suggesting their high stability. Despite its low adsorption efficiency, it is important to
note that negative surface charge can be advantageously used for subsequent surface
modifications via covalent coupling using silane chemistry or via physical adsorption or
electrostatic interactions.
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Surface functionalization of INADs can be carried out by distinct strategies involving
both chemical and physical interactions. For amine grafting, the relevant interactions
likely involved during the reaction process are covalent interactions, hydrogen bonding,
and electrostatic interactions. Most of these interactions enhance the surface properties,
particularly surface activation and the adsorptive character. Covalent functionalization at
the INAD surface based on silica is made possible by the well-established silane chemistry,
which mediates strong linkages between the INAD surface and aminosilane. Despite being
well established, silane chemistry can present drawbacks that result in steric hindrance
and/or uneven reactivity depending on the coupling agents, and limitation to molecules
with reactive groups for the covalent linking step. However, hydrogen bonding is widely
used for adsorbing gas molecules, which is beneficial for the reversible reaction between
gas release and adsorption. For example, the grafting of amine based on APTES at the
metal-loaded biochar and metal oxide demonstrated that amine could involve interactions
between the gas molecules and aminosilane via both hydrogen bonding and electrostatic
interactions, as supported in Scheme 5.
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Until now, hydrogen bonding and electrostatic interactions have been the most com-
monly used strategies for the preparation and functionalization of adsorbents for reversible
gas adsorption. However, amine grafting via covalent interactions has played a key role
in the improvement of adsorptive properties and recyclability, particularly for wastewa-
ter treatment. Table 1 reports different amine-modified INAD adsorbents employed for
removing various pollutants from water. Bouazizi et al. employed several types of amine
such as APTES, PAMAM, DEA, and others for the surface functionalization of porous
materials [18,20,22,24]. Results obtained in water treatment showed that covalent grafting
of amine onto the adsorbent is of great interest to increase the adsorption uptake and the
number of recycling cycles. Most of these amine molecules have been commonly used as
stabilizing and coupling agents because they promote strong covalent linkages onto the
INAD. For example, surface functionalization with PAMAM has been extensively used
and is another example of such a type of surface modification. PAMAM with terminal NH2
groups is a dendrimer with amine terminal groups that acts as a protective layer around
the adsorbent surface in these situations. This method has quite often been used to attach
microorganisms such as Gram+ and Gram− bacterial strains Staphylococcus epidermidis and
Escherichia coli and organic pollutants (nitrophenols and dyes). Due to its opposite charges,
PAMAM interacts with the surface of colloidal nanoparticles [18,19]. While these grafting
methods are efficient for the adsorption application, the grafting strategies depend on the
solvent, the concentration, and the temperature of the media.

Table 1. Summarized inorganic adsorbents (INADs) functionalized by amine grafting for environ-
mental applications.

INAD Amines Potential Application Reference

Coconut coir pith Amine-modified polyacrylamide Removal of Cr(VI) [36]

Coconut coir pith Amino-functionalized polyacrylamide Removal of phosphate [37]

Microspheres
(Fe3O4@mesoporous SiO2
core–shell composite
microspheres)

Polyethyleneimine Adsoption of humic acid (HA)
Removal of heavy metals [38,39]

Kaolin composite Acrylamide Removal of cesium and cobalt [40]

Montmorillonite Quarternized poly
vinylpyridinium-co-styrene

Removal of selenate, potassium
arsenate, methyl blue, eosin-Y, atrazine,
and sulfentrazone

[41]

Polymer clay Starch with quaternary ammonium
groups Removal of pharmaceuticals [42]

Montmorillonite Quarternized poly
vinylpyridinium-co-styrene

Removal of the anionic pharmaceutical
diclofenac (DCF) [43]

Clay (heulandite) Chitosan Removal of Cu(II) and As(V) [44]

Chitosan/PVA/PES Fe3O4–NH2 Removal of Cr(VI) [45]

Magnetic graphene composite 1,2-ethylenediamine Removal of Cr(VI), Pb(II), Hg(II), Cd(II),
and Ni(II) [46]

Fe3O4 1,6-hexanediamine Removal of Cr(VI) and Ni(II) ions [47]

Magnesium ferrite
nanoparticles (MgFe2O4) Mesoporous amine NH2 Removal of Pb(II) [48]

Fe3O4/NaP zeolite
nanocomposite 3-aminopropyltrimethoxysilane Removal of Pb(II), Cd(II), and bacteria [49]

Magnetic illite–smectite clay 3-aminopropyltriethoxysilane Adsorption of Pb(II) ions [50]

Magnetite nanocomposites Chitosan nanoparticles and
polythiophene Removal of Hg(II) [51]
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Table 1. Cont.

INAD Amines Potential Application Reference

Core–shell magnetic
nanoparticles

3-aminopropyltriethoxysilane and
nitrilotriacetic acid Removal of Cu(II) and Sb(III) [52]

Chitosan-coated magnetite Hydrazinyl amine Removal of Ni(II) and Pb(II) [53]

Maghemite nanoparticles Glycine Removal of Cu(II) [54]

Magnetic nanoparticles Dioctylphthalate triethylenetetraamine Removal of Zn ions [55]

Magnetic nanoparticles
Fe3O4@SiO2

3-aminopropyltriethoxysilane Removal of Zn(II) ions [56]

Bentonite/CoFe2O4@MnO2
magnetite 3-aminopropyltriethoxysilane Removal of Cd2+ [57]

Activated carbon, derived from
waste rubber tires Diethylenetriamine Removal of phenol [58]

Magnetic bamboo-based
activated carbon Ethylenediamine Removal of ciprofloxacin and

norfloxacin [59]

Cocoa shell Aminosilane Reversible CO2 capture [35]

Graphene oxide 3-aminopropyltriethoxysilane Reduction in 4-nitrophenol [23]

Copper oxide (CuO) nanosheets P-aminothiophenol and
diethanolamine

Potential uses in catalysis and
biomedical applications [21]

Polyester fabrics (PET) 3-aminopropyl triethoxysilane Degradation of 4-nitrophenol (4-NP)
and methylene blue [60]

Cocoa shell 3-aminopropyltriethoxysilane Removal of chromate and nitrate

Cocoa shell 3-aminopropyltriethoxysilane Desorption of CO2 [34]

Activated carbon pentaethylenehexamine Removal of lanthanum [61]

3. Effect of the Solvent

The solvent is an essential parameter for the grafting of amines at the surface of INADs,
and can have a great influence on the effectiveness of the reaction and the rate of grafted
amines (Table 2). The solvent affects the surface and the wetting properties of the material,
and this favors the control of the grafting process at the surface or the inner material.
Researchers recently studied the functionalization of mineral-clay-based INADs by using
3-aminopropyltriethoxysilane (APTES) in the presence of various solvents such as distilled
water, tetrahydrofuran, toluene, and ethylene glycol. The solvents with a low surface
energy wetted the adsorbent easily and thereby made it possible for silane to interact
with the -OH groups present at the INAD surface. However, the wetting process was
lower for the solvents with a higher surface energy for water, and this relatively decreased
surface adsorption. In other works, ethylene glycol was used as a solvent for chemical
grafting of amines which indicated a low amount of aminosilane incorporated onto the
INAD [62]. When organic solvents such as cyclohexane and toluene are used as anhydrous
products, the evaluation of amine grafting at the INAD surface takes a long time (20 h) for
the 3-aminopropyltetraethoxysilane using the reflux method [63]. The obtained adsorbent
shows a visible change of the structure materials, with an expanded or distorted molecular
structure (Table 2). In summary, the presence of water facilitates the initial hydrolysis
of amines on the INAD surface, depending on the volume of water [64,65]. Results of
the degradation of toxic pollutants by various INADs reported in literature show that
APTES grafting has a superior adsorption capacity of toxic molecules in the presence of
H2O/amine as compared with the anhydrous or hydrated solvent. In detail, when water
is absent from the synthesis protocol, amines bind directly to the hydroxyl group at the
surface of the INAD. However, excess water in the medium promotes the polymerization
of amines during the functionalization process.
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The nature of the dispersant medium has been pointed out too: protic solvents are not
favorable to the grafting process because of potential competition reactions. A competitive
interaction is indeed involved between the alkyl siloxane and hydroxyl groups of the
solvent, and it allows H-bonding rather than hydroxyl group bonding. Aprotic solvent
has been used to enhance favorable solvent–surface interactions [66,67]. To explain the
mechanism occurring during the grafting onto silica-based INAD, the following steps
are the main reactions involved in the process. Firstly, amine enters a hydrogen bonding
interaction: the hydroxyl groups at the surface or the basic amine function inter-react
with a proton from a hydroxyl group and produce an ionic bond. Due to the last type
of interaction, which is more stable than the first one, the hydrogen-bonded molecules
self-catalyze the condensation on the silicon side of the silane molecule, and a covalent
bond is formed. Upon condensation on the silicon side, the amine group loses its interaction
with the surface and the amine points away from the surface. The higher number of ethoxy
groups on the APTES molecule leads to a much faster stabilization. Thus, the aminosilane
molecule turns from the original amine-down position to an amine-up position.

Table 2. Summary of the solvent, temperature, and grafting methods of various amines.

Amine Precursors Solvents Temperature (◦C) Grafting Strategies Reference

APTES Water Room temperature Conventional synthesis [66]

APTES Toluene 45; 120 Reflux [65,68]

APTES N,N-Dimethylformamide 175 Microwave-assisted
synthesis [68]

APTES Water–ethanol mixture (25:75 vol.) 80 Conventional heating,
reflux [69]

APTES Cyclohexane 60 Reflux [70]

DEA Ethanol 70 Reflux [71]

DEA Sodium carbonate solution 80 Conventional heating [72]

2-AEAPS Hexane (not mentioned) Reflux [73]

PAMAM Hydroalcohol 70 Conventional heating [18]

HMD Water–ethanol mixture (25:75 vol.) 80 Conventional heating [26]

DAN Hydroalcohol 80 Conventional heating [74]

APTMS Toluene/water 85 Reflux [75]

DETA Epoxy Chloropropane/dimethylformamide 95 Conventional heating [76]

ATP Dichloromethane 0 Conventional cooling [77]

TEA Trimethylamine Room temperature Conventional synthesis [78]

4. Effect of Temperature

An increase or decrease in the synthesis temperature can influence the resulting
products, but also play a crucial role in the amine grafting at the INAD surface. Various
synthesis temperatures have been used for grafting amines onto INAD (Table 2). In most
cases, the temperature rise is typically going along with an increase in the interactions
between the amine molecules and the surface hydroxyl groups. Xue et al. [65,79] studied
the role of temperature on the grafting of APTES in the presence of toluene as a solvent for
a series of temperatures (15 ◦C, 30 ◦C, 45 ◦C, 60 ◦C, and 75 ◦C). The results showed that
chemical grafting of APTES was promoted by increased temperature. Bouazizi et al. and
Bertuoli [17,35,80] investigated the grafting of APTES at the INAD surface in ethanol/water
(75:25, v/v) at 50 ◦C and 80 ◦C. The temperature increase allowed for a high interaction of
the amine groups with the adsorbent. High temperature (220 ◦C) was also found to be the
favorite pathway for the diffusion of amines onto the adsorbent [81]. Based on the above
findings, elevating the concentration of amines such as 3-aminopropylphosphonic acid
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(3APPA) or 3-propylphosphonic acid (3PPA) and high temperature results in an increased
modification degree.

5. Effect of the Concentration

In order to ensure effective grafting of amines at the INAD surface, the amine concen-
tration plays a crucial role in the preparation of advanced functional adsorbent materials.
Considering the weight of amines, high amounts of amine can affect the properties of the
support used for post treatment. On the one hand, increases in the amine concentration can
mean that more active terminal groups such as -NH2 have interacted with the adsorbent
surface via -OH groups. In this way, the high amount of amine can increase the terminal
target of the functional groups on INAD as a support. Xue et al. [65] investigated the
grafting of aminosilane with different ratios, and the results showed an improvement of the
adsorption capacity for dye removal when the ratio is increased. On the other hand, in this
context, the adsorption uptake decreased slightly when the amine concentration increased.
The high number of amine molecules that surrounded the INAD surface affected its poros-
ity and decreased its adsorption capacity. The enhancement of the adsorption uptake can
be explained by the incorporation of high numbers of amines onto the INAD surface. Until
now, no explanation has been found as to why the adsorption capacity of INAD decreases
when the concentration of the precursors increases. In other works, a large molecular
weight of amines improved the stability of the adsorbent [82,83]. PEI functionalized with
1,2-epoxybutane (EB) was synthesized by Choi et al. [83]. The proportion of primary amine
gradually decreased, while the proportion of secondary amine and tertiary amine gradually
increased. Consequently, the grafting of 1,2-epoxybutane onto INAD improved the stability
and the adsorptive properties. More recently, they also demonstrated that increases in the
molecular weight of amines induced superior thermal stability. The resulting material had
O/N molar ratios of 0.42, 0.64, and 0.82, respectively, as shown in Figure 1.
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6. Influence of Amines on the Hydrophilic Characters

The grafting of amines can influence the hydrophilicity and hydrophobicity of INADs.
In order to investigate the effect of amine immobilization, contact angle measurements
were employed to study wettability, surface energy, and diffusion resistance. Bouazizi et al.
investigated the hydrophilic properties of INADs modified with amines such as DEA,
PAMAM, and aminosilane. The contact angle results showed that the INAD surface became
more hydrophilic than the original one. Amine intercalation in the adsorbents increased
their hydrophilic character, and this improved diffusion or the transfer rate of organic
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molecules from the aqueous solution toward the INAD surface [18]. In addition, amine
grafting introduced a visible decay of the hydrophilic surface, evidenced by the loss of the
OH stretching bond [19]. This behavior was also recorded for DEA(OH)2 grafting, which
decreased the hydrophilic character, given the consecutive decrease until total loss of the
hydroxyl groups. Therefore, we can conclude that amine grafting increases the hydrophilic
character as it decreases the number of hydroxyl groups present at the adsorbent surface.
In another work, amine grafting induced a visible decrease in the hydrophilic character
in relation to slight compaction of the structure. This can be explained by hydrophobic
interactions within the aminosilane entanglement and strong interactions between amino
and surrounding -OH groups. In this regard, these interactions imply that diffusion is
hindered, causing slow initial wettability without affecting the hydrophilic character. On the
contrary, metal–organic frameworks (MOF) functionalized by inserting 2-aminoterephthalic
acid showed an increase in the hydrophobic character of the adsorbent [77]. The surface
morphology of both unmodified and amine-modified MOF remained unchanged, but their
hydrophilic properties decreased, as supported in Figure 2.
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It was recently demonstrated that the contact angle increased as the number of amine
groups decreased. While the quantity of amines rose from 0.1 vol.% to 10 vol.%, the
contact angle increased, suggesting a higher coverage of the INAD surface. This last
result is of great interest for wastewater treatment because it shows that amine molecules
can interact with the adsorbent surface in a well-organized manner to maximize their
adsorptive properties. Again, the hydrophilic characteristics of amine-modified adsorbents
are explained by the remaining hydroxyl groups that lower the contact angle. Consequently,
the obtained hydrophilic charters are very helpful for removing pollutants from water.
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7. Chemical State of the Amine Groups

FTIR and XPS analysis were employed to investigate the presence of the different
chemical states of the amine groups and the surface compatibilities attributed to those
states. The band observed at 1582 cm−1 was associated to the bending vibration of NH2,
which is visible as a shoulder on the deformation mode of molecular adsorbed water
(Figure 3) [85,86]. The broad band between 1540 and 1490 cm−1 was associated to the
asymmetric deformation vibration of the NH3

+ groups [87–90]. In addition, the position of
the NH2 band shifted toward the lower wavenumbers as compared with those recorded
for the aqueous solutions of primary amines. This was explained by the presence of
hydrogen bonding interactions with NH2 groups [91]. In this case, the nitrogen atom (N) is
considered as a hydrogen acceptor [87]. The same trend was obtained by Bouazizi et al.,
where a similar shift (from 1600 to about 1575 cm−1) was recorded for APTES grafted with
metal oxide and activated carbon [23]. These results evidence an interaction between amine
and silanol groups, which result in a variety of hydrogen-bonded surface conformations
such as an intramolecular membered ring structure. Another confirmation was obtained by
the presence of hydroxyl groups (Ti–OH) available for hydrogen bonding and or acid/base
interactions. Additionally, amine grafting onto INAD induced distortion of the surface
chemistry resulting in structure expansion in some cases and structure compaction in others.
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XPS analysis provided data about the amine molecules through high-resolution obser-
vation of N1s. The peak observed at 399.8 eV was attributed to the traces of molecularly
adsorbed N2. However, upon amine addition, the N1s peak of amine-loaded INAD con-
sisted of a broad asymmetric peak composed of two bands at 398 and 400 eV (Figure 4).
Until now, it has been hard to draw a conclusion about these peaks, as N1s data showed
various types of interactions that can have a similar binding energy, which are considered
as complicating factors [93–95]. The peaks at low binding energy (398 eV) can be associated
to the non-interacting NH2 groups or to Lewis acid-base interactions. Consequently, the
component at high binding energy at 401 eV is associated to protonated amine (NH3

+)
groups originating from proton transfer from -OH groups. The hydrogen-bonded amine
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groups are hard to observe experimentally by XPS. Although other peaks’ position and ratio
of NH2 and NH3

+ for INAD evidenced that amines addition occurred with specific surface
arrangements. [92]. Basically, the above results prove that possible surface conformations
of amines such as 3APPA at the INAD surface can be established via the free NH2 groups
accessible for interactions with their surroundings. In other cases, the NH2 groups can
involve intra- and inter-adsorbate interactions and adsorbate–surface interactions, with
3APPA amine as the adsorbate [95].
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Recent research has been conducted in the field of amine utilization for biomedical
applications. Amines have proved very useful for an effective junction and design of
high-value biomedical INADs [96]. In this case, amines play a key role to elaborate a
biomedical hydrogel in 2D and 3D shapes. In this case, amines allow for the formation
of links or connections between other chemicals at the surface to ensure the creation of
surface compatibility. Amines can adhere to and design the surface materials via several
interaction types and relate bond chemistry to the emergent adhesive properties with a
specific emphasis on biomedical applications (Scheme 6).
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8. Role of Amines in the Stability of Adsorbents

Various types of amines have been widely employed to generate activated sites and
improve the surface properties of INADs for environmental applications such as water
treatment. Moreover, several authors have proposed that a high stability of the adsorbent
is of great importance as it increases the efficiency of toxicant removal and reusability.
In this aim, researchers estimated that addition of organic moieties bearing chelating
groups on the support was effective to avoid the non-stabilization and aggregation of
adsorbent particles [98]. Among these organic moieties, amines have attracted many
researchers for the elaboration and functionalization of INADs through the chemical
grafting of amines and/or its derivates. In this regard, many works have shown that amine
surface functionalization increases INAD stability and the number of reusability cycles.
Figures 5 and 6 show an example of the mechanisms taking place during the process of
APTES-functionalized graphene oxide (GO) [24]. APTES plays a crucial role in INAD
stabilization based on graphene oxide as an adsorbent and it increases the immobilization
yield of metallic nanoparticles. The results obtained with APTES-modified GO showed
not only increases in the adsorption uptake toward organic pollutants but also improved
reusability of the catalyst.
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Figure 5. APTES for the stabilization and immobilization of iron nanoparticles onto GO adsorbent.
Reprinted from [24] with permission from Elsevier.

The same trend was obtained for palladium stabilization on amine-functionalized
zeolite. In other words, INAD materials can be stabilized by using amine as the organic
surface in the organic–inorganic composite. Infrared spectroscopy measurements showed a
marked change upon the incorporation of amines. This was observed by the slight decay in
band intensity noticed for the 3400 cm−1 and 2919 cm−1 peaks associated to the asymmetric
stretching vibrations of NH2 and the C–H aliphatic groups. The authors explained these
results by the significant role of amine insertion in the molecular structure of the INAD,
which induced a compaction of the organic entanglement due to the occurrence of strong
interactions between metal and amino groups M:NH2 [99].
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The above phenomenon is also reported in the literature for INAD based on metal
nanoparticles, where the CH and OH groups involved interactions with NH2 resulting in
INAD stabilization [101]. These results clearly demonstrate that intercalation of amine-like
APTES contributes to adsorbent stabilization due to strong interactions between the ad-
sorbent and NH2. Importantly, the thermal analysis demonstrated that untreated INAD
has a low thermal stability, which is considered a drawback for many applications. How-
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ever, amine addition played an interesting role by enhancing thermal stability. This was
illustrated by the visible decrease in mass weight above 100 ◦C. Thus, chemical grafting
of APTES increased the thermal stability of INAD, and induced more stable oxygen-
functionalized groups, resulting in a higher temperature of around 500 ◦C to decompose
the silanol groups or Si–O–Si bonds during amine surface functionalization of INAD.
APTES and PAMAM as amine sources appear to be responsible for the thermal stability
of the grafted materials. Concerning INAD durability, amines have a potential effect on
INAD reusability. The results obtained on the removal of pollutants onto metal oxide,
activated carbon, and fibrous materials revealed that immobilization of amine at the INAD
surface had an interesting role as to INAD reusability and recyclability. Measurements
of the catalytic activities of INAD showed that a copper oxide catalyst modified by the
chemical grafting of amines could be recycled and reused several times for water treatment.
This type of INAD was used more than seven times for 4-NP reduction, eight cycles for the
removal of methylene blue (MB), five cycles for the elimination of malachite green (MG),
and eight cycles for the removal of remazol red (RR) without visible decay in its catalytic
capacity. This superior removal uptake is explained by the key role of APTES amine, which
acts as an effective shield that prevents leaching and promotes material durability, and
by the high stability of the catalysts (Figure 7). This was confirmed by the structure and
thermal stability after the catalytic process. Both FT-IR and TGA analyses revealed no
visible change compared with the unmodified counterpart (Figure 8).
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9. Pollutant Removal by Amine-Grafted Inorganic Adsorbents

Tremendous amounts of minerals and organic pollutants can be found in water. This
is why amine-modified INADs have attracted many scientists because they are effective
for treating polluted waters and wastewater. This section studies the removal of various
pollutants and bacteria using amine-grafted INADs.

9.1. Removal of Heavy Metals and Nitrates

Table 3 summarizes the adsorption capacity of various INADs functionalized by amine
grafting for removing dyes, nitrates, heavy metals, organic molecules, and pharmaceu-
ticals from polluted water. The discussion starts with the removal of heavy metals and
nitrate, which is a monovalent anion. Consequently, it allows positively charged surfaces or
surfaces containing exchangeable anions to be effective adsorption sites. Liu et al. demon-
strated that nitrate adsorption involved different kinds of adsorption processes such as
electrostatic interactions, cation exchange, complexation, and hydrogen bonding [102].
These interactions depend on the composition, structure, and surface properties of the
INAD and the adsorption conditions (Scheme 7).

The chemical functionalization of an INAD using aluminum-loaded activated carbon
with grafting of the APTES for fluoride removal was studied by Bakhta et al. [103] and the
sorption capacity of fluoride onto the functionalized INAD reached 92.0 mg g−1. Fotsing
et al. [104] prepared cocoa shell biomass via chemical grafting of APTES and PEI. This func-
tionalized INAD was more effective for removing Cr(VI) and nitrates, with an approximate
adsorption uptake of 100 mg g−1. Furthermore, INADs showed affinity toward both ni-
trates and heavy metals as an interesting property of theses adsorbents. This was explained
by the role of amine immobilization at the INAD surface. In addition, the sorption of nitrate
and Cr(VI) onto amine-modified biomass as a function of the pH improved from pH 2 to 5,
with a maximum experimental adsorption capacity of 16.71 mg g−1 at pH 5. These results
explained the competition between the amine and nitrate groups due to the interference of
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silane present at the INAD surface. However, at higher pH values, competition between
OH− and NO3

− may have occurred, resulting in decreased NO3
− adsorption, and causing

electrostatic repulsion between the surface and NO3− ions. Furthermore, Bao et al. [56]
studied the removal of Zn(II) by functionalized Fe3O4@SiO2 with amine groups. INADs
were found to exhibit a sorption capacity around 169.5 mg g−1 at pH 5. Dindar et al. [105]
modified INAD based on mesoporous silicate with a solution of APTES, and the final prod-
ucts were used to eliminate the Cr(VI), As(V), and Hg(II) ions. This investigation showed
that the sorption efficiency depends on the number of amine groups present on each INAD
surface. The APTES-modified INAD exhibited a sorption uptake around 47 mg g−1, while
the INAD treated with N-[3-trimethoxysilyl-propyl] ethylenediamine had a maximum
sorption capacity around 140 mg g−1 at pH 1.7. The presence of amine groups at the
INAD surface greatly improved the adsorption uptake of hazardous heavy metals and
nitrates. In addition, they found out that the loading of more amine groups enhanced
the adsorption capacity, as in the materials prepared with ethylenediaminepropyle sal-
icylaldimine. In another study, modification of natural bentonite by anchoring APTES
and 3,2-aminoethylaminopropyltrimetoxysilane (AEAPS) was prepared and applied to
remove Pb(II) in aqueous solution [106]. Marjanović et al. [107] functionalized natural and
acid-activated sepiolites by grafting, using the [3-(2-aminoethylamino)propyl] trimethoxysi-
lane precursor. The material was used to remove chromium (VI) from aqueous solution.
Different adsorption mechanisms can occur during heavy metal removal. The main adsorp-
tion phenomenon for heavy metals involves electrostatic attraction and hydrogen bonds.
Keshvardoostchokami et al. [108] proved that a chitosan-based amine source improved
the removal of pollutants such as nitrate and ammonia. Ammonia removal involved ion
exchange, whereas nitrate removal implied hydrogen bonding and electrostatic bonding
(Scheme 8).
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9.2. Removal of Dyes

Regarding the high amounts of untreated dyes (methylene blue, malachite green,
crystal violet, remazol red, and others) discharged by various industries into the environ-
ment, amines have been considered a potential candidate for activating INADs for effective
removal of these dyes. The control of dye degradation has traditionally been studied at
different initial pollutant concentrations to measure the capacity of INADs to remove these
toxic pollutants. A decreased absorbance of the solution over time reflected the progressive
removal of the dyes from the solutions. By comparing the time required for reaching total
dye removal by CuO-based unfunctionalized and amine-functionalized INADs, no dye
was removed by the “raw” INAD. Nevertheless, amine-INAD showed a total dye removal
in less than 2 min contact time [20,22]. Consequently, amine-loaded INAD displayed a
superior adsorption uptake in comparison with its unmodified counterpart. This result is of
great importance because it provides clear evidence that amine grafting onto INAD plays a
key role in catalytic activities. In addition, the results revealed the important role played
by amines in the stabilization of the INAD catalysts, as explained in the above sections.
Xue et al. [65] grafted amine at the attapulgite surface to be used as an INAD for removing
reactive dyes in aqueous solution. Amine grafting onto the INAD presented a very high
adsorption capacity reaching 99.32% for various dyes such as MB and RR. The difference in
the dye adsorption capacities was explained by the electrostatic attraction between reactive
dyes and the protonated grafted amino groups. Lou et al. [110] reported the synthesis of
APTES-Fe3O4/bentonite material and its application for MB adsorption. The maximum
adsorption uptake was around 92 mg g−1 as compared with its unmodified counterpart.
Araghi et al. [111] reported the preparation of amino-loaded silica magnetite nanoparticles
as an INAD, which illustrates the role of amine grafting in dye removal. Similarly, Mor-
shed et al. investigated another type of INAD based on metal-fibrous materials and its
modification with the PAMAM for cationic MB and MG dye elimination [112]. The adsorp-
tion capacities of the amine-grafted INAD were 49.48 mg g−1 and 47.03 mg g−1 for MB and
MG, respectively. Furthermore, despite the role played by amine groups in dye removal,
the porosity of the adsorbent should not be neglected during the sorption process. For
cationic dyes, Laaz et al. [113] reported adsorption of red congo and anionic brilliant green
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onto SBA-15 and amine-functionalized SBA-15 as INADs. Red congo removal significantly
depended on the number of grafted amine functional groups rather than on the porosity of
the material. Therefore, increasing the number of amine groups at the INAD surface can
improve the capacities for dye adsorption. Additionally, the hydrophilic character and the
bond interactions between dyes and amine functional groups explain the high adsorption
capacities of amino-silicate-based INADs.

The adsorption of dyes from contaminated water onto the surface of an adsorbent
can be achieved via various adsorption mechanisms [114]. Dye adsorption onto INADs
involves many processes such as surface complexation, electrostatic interactions, van der
Waals forces, surface diffusion, and intraparticle pore diffusion, as shown in Scheme 9.

Polymers 2022, 14, x FOR PEER REVIEW 19 of 33 
 

 

onto the INAD presented a very high adsorption capacity reaching 99.32% for various 
dyes such as MB and RR. The difference in the dye adsorption capacities was explained 
by the electrostatic attraction between reactive dyes and the protonated grafted amino 
groups. Lou et al. [110] reported the synthesis of APTES-Fe3O4/bentonite material and its 
application for MB adsorption. The maximum adsorption uptake was around 92 mg g−1 
as compared with its unmodified counterpart. Araghi et al. [111] reported the preparation 
of amino-loaded silica magnetite nanoparticles as an INAD, which illustrates the role of 
amine grafting in dye removal. Similarly, Morshed et al. investigated another type of 
INAD based on metal-fibrous materials and its modification with the PAMAM for cationic 
MB and MG dye elimination [112]. The adsorption capacities of the amine-grafted INAD 
were 49.48 mg g−1 and 47.03 mg g−1 for MB and MG, respectively. Furthermore, despite 
the role played by amine groups in dye removal, the porosity of the adsorbent should not 
be neglected during the sorption process. For cationic dyes, Laaz et al. [113] reported 
adsorption of red congo and anionic brilliant green onto SBA-15 and amine-functionalized 
SBA-15 as INADs. Red congo removal significantly depended on the number of grafted 
amine functional groups rather than on the porosity of the material. Therefore, increasing 
the number of amine groups at the INAD surface can improve the capacities for dye 
adsorption. Additionally, the hydrophilic character and the bond interactions between 
dyes and amine functional groups explain the high adsorption capacities of amino-
silicate-based INADs.  

The adsorption of dyes from contaminated water onto the surface of an adsorbent 
can be achieved via various adsorption mechanisms [114]. Dye adsorption onto INADs 
involves many processes such as surface complexation, electrostatic interactions, van der 
Waals forces, surface diffusion, and intraparticle pore diffusion, as shown in Scheme 9. 

 
Scheme 9. Adsorption processes and mechanisms for dye removal from bulk liquid. Reprinted from 
[114] with permission from Elsevier. 

  

Scheme 9. Adsorption processes and mechanisms for dye removal from bulk liquid. Reprinted
from [114] with permission from Elsevier.

9.3. Elimination of Organic Pollutants

The treatment of hazardous organic compounds present in wastewaters has attracted
great attention, and the control of water pollution has become one of the major challenges
worldwide. Major classes of nitrophenolic molecules act as organic pollutants when they
are released in water by numerous industries [115–118]. Amine-grafted INADs have
shown positive results for eliminating these organic pollutants. Furthermore, methods for
reducing and removing these pollutants, e.g., adsorption and catalytic reduction, have been
considered the most effective techniques for water depollution. Bouazizi et al. studied the
removal of 4-NP organic dye via catalytic reduction in graphene oxide (GO) and APTES-
functionalized GO as INAD materials [24]. Measurements of the UV-absorption bands
showed a strong decay of the 400 nm band for 4-NP and increase in the 290 nm peak for
4-AP. Importantly, this effect was even more pronounced in the presence of APTES amine.
This provides evidence of the beneficial contribution of amine grafting for both catalytic
reduction and nanoparticle immobilization. Catalytic performance was related to the key
role of APTES grafting in enhancing the electron transfer from the INAD surface to the nitro
group of 4-NP [119–121]. It is worth noting that the reduction yield of the organic molecules
was around 97.5% in less than 2 min, suggesting that amine-functionalized catalysts can
rapidly generate 4-AP as ecofriendly molecules [122,123]. As previously stated, the grafting
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of APTES improved the removal of toxic pollutants. The slight decrease in the concentration
of 4-NP may be associated with the adsorption behavior of the 4-NP molecules onto the
amino-INAD [124]. Interestingly, kinetic studies on APTES-modified INADs showed a
constant rate k around 0.481 min−1, superior to those of unmodified INAD. These results
can be explained by the existence of a strong amino/support interaction effect between the
amine groups (APTES) and the INAD (GO sheets) [125].

The improvement of the catalytic properties was further associated to organic pollutant
diffusion towards the solid surface of the INAD. Similarly, works on metal-fibrous material-
based INADs and their amine-functionalized counterpart for organic element removal
showed that APTES grafting was key to improving electron transfer in link with the
catalytic capacity. To verify the role played by amines in the depollution of water from
organic molecules, control experiments were performed to study the reduction in 4-NP
by calculating the rate constant. The time course of catalysis strongly depended on the
post-treatment steps, and evidenced a positive effect of amine grafting onto INAD, as
supported by a higher value of k. Finally, the removal of organic molecules by INADs
can occur via hydrogen bonding. More particularly, adsorption of organic contaminants
with terminal NO2, SO2, and CO2 onto amine-modified INAD involves hydrogen bonding
(Scheme 10).
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9.4. Degradation of Mixtures of Pollutants

Mixtures of organic molecules and dyes can be released in the environment in the form
of industrial effluents, and this complicates their removal during the water remediation
process. In this regard, elimination of these hazardous molecules is of great importance, as it
is an urgent issue. Following the same water treatment protocol as mentioned in the above
sections, various amine-modified INADs have been used for removing pollutant mixtures.
INADs had an affinity toward the adsorption of mixtures of organic pollutants and dyes
(Figure 9). An aqueous solution containing a mixture of nitrophenol and dyes was typically
employed to evaluate the adsorption capacity of INADs functionalized by APTES grafting
(Table 3). The pollutants fully disappeared within a few minutes, suggesting that INADs are
efficient for removing pollutant mixtures. A comparison of the removal of different organic
molecules such as nitrophenol and MB dyes demonstrated that nitrophenol required more
time for its complete elimination. However, these results showed that amine-functionalized
INADs are more efficient for removing organic pollutants than for removing dyes. This was
explained by the unavoidable protonation of 4-NP groups which could favor the adsorption
of dye.
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malachite green (MG), and 4-nitrophenol (4-NP) as mixtures of pollutants: 4-NP + MB (a); 4-NP + MG
(b) and 4-NP + RR (c). Reprinted from [19] with permission from Elsevier.
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Table 3. Pollutant adsorption capacity of amine functionalized-INAD materials.

Inorganic Adsorbents (INADs) Grafted Amines Removed Pollutants Adsorption Capacity
(mg g−1) Reference

Graphene oxide PAMAM Nitrate 1025.9 [126]

Porous rice husk silica PEI Nitrate 94.5 [9]

Nanochitosan/
clinoptilolite PEHA Nitrate 277.8 [127]

Magnetized mesoporous silica
(SBA-15) APTES Nitrate 44.9 [128]

Polystyrene microspheres hexamethylenetetramine Nitrate 221.8 [129]

Cocoa shell APTES Nitrate
Cr(IV)

16.9
24.8 [104]

Magnetic nanoparticules Fe3O4 SiO2 APTES Zn (II) 270.3 [130]

Mesoporous silica SBA-15
APTES
aminopropyl and N-
propylsalicylaldimine

Cr (V)
As (V)
Hg (II)

64.2
16.3
7.0

[105]

Bentonite APTES and
3,2-aminoAEAPS

Pb (II)
Pb (II)

27.6
29.5 [106]

Acid-activated sepiolites AEAPS Cr (VI) 60 [107]

Kaolin composite Acrylamide Cs (II)
Co(II)

19.9
10.5 [40]

Clay (heulandite) Chitosan Cu(II)
As(V)

17.2
5.9 [44]

Chitosan/PVA/PES Fe3O4–NH2
Cr(VI)
Pb(II)

509.7
525.8 [45]

Magnetic graphene composite EDA

Cr(VI)
Pb(II)
Hg(II)
Cd(II)
Ni(II)

17.3
27.9
23.0
27.9
22.0

[46]

Fe3O4 HMD Cr (VI)\Ni (II) 232.5
222.1 [47]

Magnesium ferrite nanoparticles
(MgFe2O4)

Mesoporous amine
NH2

Pb (II) 135.1 [48]

Fe3O4/NaP zeolite nanocomposite APTES Pb(II)
Cd(II)

181.8
50.2 [49]

Magnetic illite–smectite clay APTES Pb(II) 227.8 [50]

Core–shell magnetic nanoparticle APTES and
NTA

Cu (II)
Sb (III)

55.6
51.1 [52]

Chitosan-coated magnetite Hydrazinyl amine Ni(II)
Pb(II)

3.9
2.6 [53]

Maghemite nanoparticles Glycine Cu (II) 625 [54]

Magnetic bentonite/Co
Fe2O4@MnO2

APTES Cd(II) 115.8 [57]

Clay (palygorskite) APTES Reactive red 3BS 34.2 [79]

Bentonite APTES-Fe3O4 Methylene blue 91.8 [110]

Modified fibrous nonwoven PAMAM Methylene blue,
malachite green

49.5
47.0 [18]
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Table 3. Cont.

Inorganic Adsorbents (INADs) Grafted Amines Removed Pollutants Adsorption Capacity
(mg g−1) Reference

Mesoporous material SBA-15 APTES Red congo, brilliant
green

25.5
56.3 [113]

Activated carbon DETA Phenol 18.1 [58]

Magnetic bamboo-based
activated carbon EDA Ciprofloxacin,

norfloxacin
245.6
293.2 [59]

Polyester fabrics (PET) APTES
PAMAM 4-nitrophenol (4-NP) 293.3

269.9 [60]

Montmorillonite clay Poly(4-vinylpyridine)
Selenate,
Eosin Y dye
methyl blue

176.1
8.5
156.9

[41]

Montmorillonite
Quarternized poly
vinylpyridinium-co-
styrene

Diclofenac 100.6 [43]

10. Amines for Biomedical Applications

Day after day in the past decades, the use of antibiotics has increased and the number
of resistant bacterial strains has increased too. On the path of searching for effective materi-
als with antibacterial properties, amine-modified INADs displayed an interesting behavior
toward inhibition of bacteria. The antimicrobial properties of amine-functionalized INADs
were evaluated by diffusivity and inhibitory tests towards the two Gram+ and Gram−
bacterial strains Staphylococcus epidermidis and Escherichia coli, respectively. Bouazizi et al.
studied the antibacterial capacity of copper oxide modified by amine intercalation on the
growth of E. coli and S. epidermidis. Optical density measurements showed that antibac-
terial activity occurred when a state of partial CuO dissolution and Cu+ cation release
was reached. Interestingly, the addition of amine-based DEA at the CuO surface highly
increased the antibacterial capacity, suggesting that amine groups may restrict the release
of Cu+ cation [17,19,21]. Subsequently, chemical grafting of -NH- can penetrate the cell and
release the cation inside, and then damage the bacterium. In other words, the protonation
of amine groups is attributed to the antibacterial property, involving sufficiently strong
electrostatic interactions with the negatively charged bacterial membranes, and resulting in
inhibited bacterial growth [17,21]. Therefore, antibacterial activity was improved, evidenc-
ing the key role of amine functionalization for CuO nanosheets. In the same vein, results
obtained with CuO-Si-S-NH2 showed that greater bacterial inhibition was observed after
APTES grafting. Researchers explained that the number of free electrons at the nanosheet
interface increased following amine addition, and made the resulting INAD more effi-
cient in killing bacteria such as S. epidermidis and E. coli. These results were confirmed
using amine-functionalized metal-fibrous materials, indicating that -NH2 grafting was
involved in damaging the bacterial cells: optical density measurements went down to
zero (Figure 10). Consequently, the chemical grafting of amines is the main parameter that
endows metal oxides with antibacterial activity against both Gram+ and Gram− bacteria.
The mechanism can be explained as follows: the surface area of the nanoparticles adheres
to powder strands which in turn increases the contact between the powder and the bacteria.
Meanwhile, the amine groups increase the junction with the powder particles, and thus the
contact with the bacteria is prolonged. A longer contact time between nanoparticles and
bacteria causes more damage to the bacteria so that the antibacterial capacity is improved.
The antibacterial activity is also explained by the oxygen species generated by the reac-
tion, such as H2O2 and O2•. More of them are produced after the intercalation of amine
molecules. Therefore, this improvement is closely related to the Cu, Si, and N elements.
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inhibition experiment using INAD against a mixture of E. coli and S. epidermidis. Reprinted from [18]
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Amine surface functionalization of INADs caused the rupture of bacterial cells, their
shrinkage, and their death. This confirms the antibacterial effect of the amine-functionalized
samples. Another work reached the same conclusion using trimethylamine (TEA)-grafted
zeolite. Figure 11 summarizes the inhibition zone diameter values of untreated and INAD-
treated solution. The unmodified INAD possessed antibacterial activity against both
bacteria. However, when amine groups were inserted within the INAD structure, the
antibacterial activity was further enhanced. Measurements of the diameter of the inhibi-
tion zone showed 27.9% and 64.9% increases for E. coli and S. aureus, respectively. This
improvement in the antibacterial capacity was attributed to the synergistic effects of the
positively charged protonated amine groups grafted onto the INAD. This behavior is in
good agreement with the literature [131–133]. According to these studies, such increases in
the positively charged surfaces can actually increase the interaction between the INAD and
the negatively charged bacterial cells.
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Based on the morphology of bacterial cells, researchers clearly observed and controlled
these antibacterial properties. In its normal state, E. coli appears as a rod with an intact
cell-shaped structure [134]. After amine grafting onto the INAD surface, holes were
observed on the bacterial membranes. Therefore, amine addition disrupted the bacterial
membrane, causing leakage of the bacterial cytoplasmic materials [135]. This behavior
is well documented for E. coli as compared with S. aureus. In similar conditions, the
morphology of S. aureus did not appear to be damaged (Figure 12). This might be due to a
different killing mechanism in which the damage mostly affected the proteins, lipids, or
inner components of the bacteria, rather than the bacterial membrane [136]. The different
mechanisms could be due to the different membranes of E. coli and S. aureus. The thicker
membrane of Gram+ bacteria better protects the membrane from damage [135,136].

Polymers 2022, 14, x FOR PEER REVIEW 26 of 33 
 

 

Based on the morphology of bacterial cells, researchers clearly observed and 
controlled these antibacterial properties. In its normal state, E. coli appears as a rod with 
an intact cell-shaped structure [134]. After amine grafting onto the INAD surface, holes 
were observed on the bacterial membranes. Therefore, amine addition disrupted the 
bacterial membrane, causing leakage of the bacterial cytoplasmic materials [135]. This 
behavior is well documented for E. coli as compared with S. aureus. In similar conditions, 
the morphology of S. aureus did not appear to be damaged (Figure 12). This might be due 
to a different killing mechanism in which the damage mostly affected the proteins, lipids, 
or inner components of the bacteria, rather than the bacterial membrane [136]. The 
different mechanisms could be due to the different membranes of E. coli and S. aureus. The 
thicker membrane of Gram+ bacteria better protects the membrane from damage 
[135,136].  

 
Figure 12. Morphology of (a) E. coli and (b) S. aureus before and after the antibacterial assay. 
Reprinted from [133] with permission from Elsevier. 

11. Conclusions 
Various inorganic adsorbents (INADs) based on metal oxide, metal-loaded fibrous 

materials, graphene oxide, metal–organic frameworks, silica, and metal-loaded biomass 
were functionalized by amine grafting for improved removal of pollutants in wastewater 
and antibacterial activity. Chemical functionalization of INADs via the grafting of amine 
depends on many parameters such as the nature of the solvent, the temperature, the 
amount of water, and the quantity of amine precursors. Amines are an effective agent for 
INADs because they induce superior activated sites at the surface of materials, which are 
very suitable for various applications. Due to the key roles of amines, INADs have been 
successfully used for adsorbing and removing heavy metals, dyes, organic molecules, 
mixtures of pollutants, and bacteria from water. Amine fixation can occur via covalent 
interactions, hydrogen bonding, and electrostatic interactions. Further kinds of amine 
grafting will be very useful and can play a key role to enhance both catalytic and 
antibacterial activities. Amine-functionalized INADs can be employed to produce highly 
activated sites at the grafted surface, which can act as supplementary activated sites. 
Furthermore, amine-modified INADs enhance antibacterial activity due to the presence 
of highly reactive oxygen species. The next challenge will be to upscale the experiments 
towards an industrial scale. Finally, the use of amine-grafted INADs for water disinfection 
is expected to be explored in the future. 

Figure 12. Morphology of (a) E. coli and (b) S. aureus before and after the antibacterial assay. Reprinted
from [133] with permission from Elsevier.



Polymers 2022, 14, 378 26 of 32

11. Conclusions

Various inorganic adsorbents (INADs) based on metal oxide, metal-loaded fibrous
materials, graphene oxide, metal–organic frameworks, silica, and metal-loaded biomass
were functionalized by amine grafting for improved removal of pollutants in wastew-
ater and antibacterial activity. Chemical functionalization of INADs via the grafting of
amine depends on many parameters such as the nature of the solvent, the temperature,
the amount of water, and the quantity of amine precursors. Amines are an effective agent
for INADs because they induce superior activated sites at the surface of materials, which
are very suitable for various applications. Due to the key roles of amines, INADs have
been successfully used for adsorbing and removing heavy metals, dyes, organic molecules,
mixtures of pollutants, and bacteria from water. Amine fixation can occur via covalent
interactions, hydrogen bonding, and electrostatic interactions. Further kinds of amine
grafting will be very useful and can play a key role to enhance both catalytic and antibacte-
rial activities. Amine-functionalized INADs can be employed to produce highly activated
sites at the grafted surface, which can act as supplementary activated sites. Furthermore,
amine-modified INADs enhance antibacterial activity due to the presence of highly reactive
oxygen species. The next challenge will be to upscale the experiments towards an industrial
scale. Finally, the use of amine-grafted INADs for water disinfection is expected to be
explored in the future.
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Nomenclature
AEAPS 3,2-aminoethylaminopropyltrimethoxysilane
APTES 3-aminopropyltriethoxysilane
BDTA benzyldimethyltetradecylammonium
CPTES 3-chloropropyltriethoxysilane
DEA Diethanolamine
DETA Diethylenetriamine
EDA Ethylenediamine
PEI Polyethyleneimine
HMD Hexamethylenediamine
DAN 1,5-diaminonaphthalene
APTMS 3-aminopropyltrimethoxysilane
DETA Diethylenetriamine
PAMAM Polyamidoamine-NH2
MOFs Metal–organic frameworks
ATP 2-aminoterephthalic acid
3APPA 3-aminopropylphosphonic acid
INAD Inorganic adsorbent
MOx Metal oxide
TEPA Tetraethylpentamine
NTA Nitrilotriacetic acid
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TETA Triethylenetetraamine
PATP p-aminothiophenol
PEHA Pentaethylenehexamine
TEA Trimethylamine
GO Graphene oxide
AC Activated carbon
3APPA 3-aminopropylphosphonic acid
3PPA 3-propylphosphonic acid
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68. Demirbaş, Ö.; Alkan, M.; Doğan, M.; Turhan, Y.; Namli, H.; Turan, P. Electrokinetic and adsorption properties of sepiolite modified
by 3-aminopropyltriethoxysilane. J. Hazard. Mater. 2007, 149, 650–656. [CrossRef]

69. Ozmen, M.; Can, K.; Arslan, G.; Tor, A.; Cengeloglu, Y.; Ersoz, M. Adsorption of Cu(II) from aqueous solution by using modified
Fe3O4 magnetic nanoparticles. Desalination 2010, 254, 162–169. [CrossRef]

70. Tao, Q.; Fang, Y.; Li, T.; Zhang, D.; Chen, M.; Ji, S.; He, H.; Komarneni, S.; Zhang, H.; Dong, Y.; et al. Silylation of saponite with
3-aminopropyltriethoxysilane. Appl. Clay Sci. 2016, 132–133, 133–139. [CrossRef]

71. Xiong, C.; Wang, S.; Sun, W.; Li, Y. Selective adsorption of Pb(II) from aqueous solution using nanosilica functionalized with
diethanolamine: Equilibrium, kinetic and thermodynamic. Microchem. J. 2019, 146, 270–278. [CrossRef]

72. Xiong, Y.; Cui, X.; Wang, D.; Wang, Y.; Lou, Z.; Shan, W.; Fan, Y. Diethanolamine functionalized rice husk for highly efficient
recovery of gallium(III) from solution and a mechanism study. Mater. Sci. Eng. C 2019, 99, 1115–1122. [CrossRef]

http://doi.org/10.1186/s40201-016-0252-0
http://doi.org/10.1039/C6RA07680G
http://doi.org/10.1080/09593330.2018.1485750
http://doi.org/10.1007/s11356-020-07766-9
http://www.ncbi.nlm.nih.gov/pubmed/31975003
http://doi.org/10.1016/j.ejpe.2018.03.004
http://doi.org/10.1016/j.jhazmat.2018.08.096
http://doi.org/10.1016/j.cej.2018.11.225
http://doi.org/10.1016/j.jhazmat.2013.11.022
http://doi.org/10.1016/j.cej.2015.12.104
http://doi.org/10.1016/j.jcis.2015.10.011
http://doi.org/10.1016/j.scitotenv.2019.05.218
http://www.ncbi.nlm.nih.gov/pubmed/31129538
http://doi.org/10.1016/j.jclepro.2018.01.242
http://doi.org/10.1016/j.biortech.2017.10.095
http://www.ncbi.nlm.nih.gov/pubmed/29145119
http://doi.org/10.1039/C9DT00937J
http://doi.org/10.1016/j.cej.2018.01.154
http://doi.org/10.1016/j.dyepig.2016.04.007
http://doi.org/10.1016/j.cej.2012.03.017
http://doi.org/10.1016/j.micromeso.2016.01.046
http://doi.org/10.1016/j.jhazmat.2011.06.018
http://www.ncbi.nlm.nih.gov/pubmed/21959185
http://doi.org/10.1016/j.jcis.2015.02.066
http://doi.org/10.1007/s11434-008-0361-y
http://doi.org/10.1016/j.jhazmat.2007.04.036
http://doi.org/10.1016/j.desal.2009.11.043
http://doi.org/10.1016/j.clay.2016.05.026
http://doi.org/10.1016/j.microc.2019.01.005
http://doi.org/10.1016/j.msec.2019.02.028


Polymers 2022, 14, 378 30 of 32

73. Javadian, H.; Koutenaei, B.B.; Shekarian, E.; Sorkhrodi, F.Z.; Khatti, R.; Toosi, M. Application of functionalized nano HMS type
mesoporous silica with N-(2-aminoethyl)-3-aminopropyl methyldimethoxysilane as a suitable adsorbent for removal of Pb (II)
from aqueous media and industrial wastewater. J. Saudi Chem. Soc. 2017, 21, S219–S230. [CrossRef]

74. Bouazizi, N.; Khelil, M.; Ajala, F.; Boudharaa, T.; Benghnia, A.; Lachheb, H.; Ben Slama, R.; Chaouachi, B.; M’Nif, A.; Azzouz, A.
Molybdenum-loaded 1,5-diaminonaphthalene/ZnO materials with improved electrical properties and affinity towards hydrogen
at ambient conditions. Int. J. Hydrogen Energy 2016, 41, 11232–11241. [CrossRef]

75. Anyanwu, J.-T.; Wang, Y.; Yang, R.T. Influence of water on amine loading for ordered mesoporous silica. Chem. Eng. Sci. 2021,
241, 116717. [CrossRef]

76. Gao, P.; Chen, D.; Chen, W.; Sun, J.; Wang, G.; Zhou, L. Facile synthesis of amine-crosslinked starch as an efficient biosorbent for
adsorptive removal of anionic organic pollutants from water. Int. J. Biol. Macromol. 2021, 191, 1240–1248. [CrossRef]

77. Zha, Q.; Sang, X.; Liu, D.; Wang, D.; Shi, G.; Ni, C. Modification of hydrophilic amine-functionalized metal-organic frameworks
to hydrophobic for dye adsorption. J. Solid State Chem. 2019, 275, 23–29. [CrossRef]

78. Ahmad, N.; Nordin, N.A.H.M.; Jaafar, J.; Malek, N.A.N.N.; Ismail, A.F.; Ramli, M.K.N. Modification of zeolitic imidazolate
framework-8 with amine groups for improved antibacterial activity. Mater. Today Proc. 2021, 46, 2024–2029. [CrossRef]

79. Xue, A.; Zhou, S.; Zhao, Y.; Lu, X.; Han, P. Adsorption of reactive dyes from aqueous solution by silylated palygorskite. Appl. Clay
Sci. 2010, 48, 638–640. [CrossRef]

80. Bertuoli, P.T.; Piazza, D.; Scienza, L.C.; Zattera, A.J. Preparation and characterization of montmorillonite modified with 3-
aminopropyltriethoxysilane. Appl. Clay Sci. 2014, 87, 46–51. [CrossRef]

81. Yang, S.-Q.; Yuan, P.; He, H.-P.; Qin, Z.-H.; Zhou, Q.; Zhu, J.; Liu, D. Effect of reaction temperature on grafting of γ-aminopropyl
triethoxysilane (APTES) onto kaolinite. Appl. Clay Sci. 2012, 62–63, 8–14. [CrossRef]

82. Zhang, W.; Li, Y.; Li, Y.; Gao, E.; Cao, G.; Bernards, M.T.; He, Y.; Shi, Y. Enhanced SO2 Resistance of Tetraethylenepentammonium
Nitrate Protic Ionic Liquid-Functionalized SBA-15 during CO2 Capture from Flue Gas. Energy Fuels 2020, 34, 8628–8634. [CrossRef]

83. Choi, W.; Min, K.; Kim, C.; Ko, Y.S.; Jeon, J.W.; Seo, H.; Park, Y.-K.; Choi, M. Epoxide-functionalization of polyethyleneimine
for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption. Nat. Commun. 2016, 7, 12640. [CrossRef]
[PubMed]

84. Park, S.; Choi, K.; Yu, H.J.; Won, Y.-J.; Kim, C.; Choi, M.; Cho, S.-H.; Lee, J.-H.; Lee, S.Y.; Lee, J.S. Thermal Stability Enhanced
Tetraethylenepentamine/Silica Adsorbents for High Performance CO2 Capture. Ind. Eng. Chem. Res. 2018, 57, 4632–4639.
[CrossRef]

85. Takeuchi, M.; Martra, G.; Coluccia, S.; Anpo, M. Investigations of the Structure of H2O Clusters Adsorbed on TiO2 Surfaces by
Near-Infrared Absorption Spectroscopy. J. Phys. Chem. B 2005, 109, 7387–7391. [CrossRef] [PubMed]

86. Morterra, C. An infrared spectroscopic study of anatase properties. Part 6.—Surface hydration and strong Lewis acidity of pure
and sulphate-doped preparations. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1988, 84, 1617–1637. [CrossRef]

87. Paul, G.; Musso, G.E.; Bottinelli, E.; Cossi, M.; Marchese, L.; Berlier, G. Investigating the Interaction of Water Vapour with
Aminopropyl Groups on the Surface of Mesoporous Silica Nanoparticles. ChemPhysChem 2017, 18, 839–849. [CrossRef]

88. Iliade, P.; Miletto, I.; Coluccia, S.; Berlier, G. Functionalization of mesoporous MCM-41 with aminopropyl groups by co-
condensation and grafting: A physico-chemical characterization. Res. Chem. Intermed. 2012, 38, 785–794. [CrossRef]

89. Zhang, L.; Liu, J.; Yang, J.; Yang, Q.; Li, C. Direct synthesis of highly ordered amine-functionalized mesoporous ethane-silicas.
Microporous Mesoporous Mater. 2008, 109, 172–183. [CrossRef]

90. Calvo, A.; Angelomé, P.; Sánchez, V.M.; Scherlis, D.A.; Williams, F.; Soler-Illia, G. Mesoporous Aminopropyl-Functionalized
Hybrid Thin Films with Modulable Surface and Environment-Responsive Behavior. Chem. Mater. 2008, 20, 4661–4668. [CrossRef]

91. Chiang, C.-H.; Ishida, H.; Koenig, J.L. The structure of γ-aminopropyltriethoxysilane on glass surfaces. J. Colloid Interface Sci.
1980, 74, 396–404. [CrossRef]

92. Gys, N.; Siemons, L.; Pawlak, B.; Wyns, K.; Baert, K.; Hauffman, T.; Adriaensens, P.; Blockhuys, F.; Michielsen, B.; Mullens, S.;
et al. Experimental and computational insights into the aminopropylphosphonic acid modification of mesoporous TiO2 powder:
The role of the amine functionality on the surface interaction and coordination. Appl. Surf. Sci. 2021, 566, 150625. [CrossRef]

93. Wielant, J.; Hauffman, T.; Blajiev, O.; Hausbrand, R.; Terryn, H. Influence of the Iron Oxide Acid−Base Properties on the
Chemisorption of Model Epoxy Compounds Studied by XPS. J. Phys. Chem. C 2007, 111, 13177–13184. [CrossRef]
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