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Formation of diverse polycyclic 
spirooxindoles via three-
component reaction of 
isoquinolinium salts, isatins and 
malononitrile
Jing Sun, Guo-liang Shen, Ying Huang & Chao-Guo Yan

The triethylamine promoted three-component reaction of N-(4-nitrobenzyl), N-ethoxycarbon
ylmethylisoquinolinium bromide, isatins and malononitrile in ethanol afforded spiro[indoline-
3,2′-pyrrolo[2,1-a]isoquinolines] in good yields and with high diastereoselectivity. The similar 
reaction of N-cyanomethylisoquinolinium chloride mainly gave complex indolo[2″,3″:2′,3′]
pyrrolo[3′,4′:4,5]pyrrolo[2,1-a]isoquinoline derivatives. However, the three-component reaction 
of N-cyanomethylisoquinolinium chloride, isatins and ethyl cyanoacetate mainly resulted in 
functionalized spiro[indoline-3,8′-pyrido[2′,3′:4,5]pyrrolo[2,1-a]isoquinolines].

The cyclic nitrogen N-ylides such as pyridinium, thiazolium, quinolinium, isoquinolinium methylides are a 
special group of reactive azomethine ylides, which can be easily generated from the deprotonation of imida-
zolium, thiazolium, pyridinium salts and their benzo-fused analogs with reactive N-methyl group connecting 
with stronger electron-withdrawing groups1–8. Because of cyclic nitrogen N-ylides have heterocyclic aromatic 
character, basicity, electron-attracting positive nitrogen atom, and the strongly electron-withdrawing substituent 
like carbonyl, cyano, or nitro groups connecting with methylene group, they have been become one of practical 
potential synthons in synthetic reactions9–18. The most common reaction is 1,3-dipolar cycloaddition of cyclic 
nitrogen N-ylides such as pyridinium ylide with various electron-deficient acetylene and alkenes to give indol-
izine derivatives, in which the pyridyl ring is retained19–26. The second widely used reaction is the reaction of cyclic 
nitrogen N-ylides with alkenes bearing electron-withdrawing groups to give the corresponding cyclopropanes, 
2,3-dihydrofurans and other heterocyclic compounds, in which the pyridyl unit iseliminated27–34. According to 
the structures of the substrates and the reaction conditions, the reaction of the cyclic nitrogen N-ylides showed 
very interesting molecular diversity26,35–39. In the past few years, we investigated the multicomponent reactions by 
employing easily generated cyclic nitrogen ylides as the main substrates and have successfully developed a num-
ber of highly efficient protocols for synthesis of some biologically important nitrogen-containing heterocyclic 
compounds40–48. Recently, we successfully found that the cycloaddition reaction of the cyclic nitrogen N-ylides 
with reactive 3-phenacylideneoxindoles resulted in diverse spirooxindole systems including spiro[indoline-3,1′ 
-pyrrolo[2,1-a]isoquinolines], spiro[cyclopropane-1,3′ -indolines], 3-furan-3(2 H)-ylidene)indolin-2-ones, 
spiro[benzo[d]pyrrolo[2,1-b]thiazole-3,3′ -indolines], and complex cyclopentyl dispiroxindoles49–57. We also 
found that three-component reactions of N-benzylbenzimidazolium salts, isatins and malononitrile or ethyl 
cyanoacetate gave a series of the novel zwitterionic salts and the unexpected products with opening of the imi-
dazole ring58. These results together with the previously reports59–64 indicated that the 1,3-dipolar cycloaddition 
reactions of cyclic nitrogen N-ylides with 3-methyleneoxindoles have fruitful chemistry. Due to the spirooxindole 
existing in a large number of naturally occurring and medicinally relevant substances, the development of effi-
cient method for constructing the spirooxindole motif is of great importance in synthetic organic and medicinal 
chemistry65–72. Against this background and in continuation of our efforts to develop new efficient synthetic 
methods for complex spirooxindoles73–83, herein we wish to report the interesting results of three-component 
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reactions of N-(4-nitrobenzyl), N-ethoxycarbonylmethyl and N-cyanomethylisoquinolinium salts with isatins 
and malononitrile as well as ethyl cyanoacetate.

Results and Discussion
According to our previously established reaction conditions58, an equivalent amount of N-(4-nitrobenzyl)
isoquinolinium bromide, isatins and malononitrile in ethanol in the presence of triethylamine as base was 
stirred at room temperature overnight. The reaction was accomplished to give the expected spiro[indoline-3,2′ 
-pyrrolo[2,1-a]isoquinolines] 1a-1h in satisfactory yields (Fig. 1, entries 1–8). The pure products can be eas-
ily obtained after simple filtration of the resulting precipitates and washing with cold ethanol. 1H NMR and 
13C NMR spectroscopy clearly indicated that only one isomer exists in the obtained products 1a-1h. The single 
crystal structures of the three compounds 1a (Fig. 2), 1c (Fig. s1 in SI) and 1e (Fig. s2 in SI) were successfully 
determined by X-ray diffraction. The three single crystal structures all showed that the p-nitrophenyl group and 
phenyl group of oxindoline moiety exist in trans-configuration. On the basis of spectroscopy and single crystal 

Figure 1. Synthesis of spiro[indoline-3,2′-pyrrolo[2,1-a]isoquinolines] 1a-1oa. 
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structures, it can be concluded that the thermodynamically stable trans-diastereoisomer of spiro[indoline-3,2′ 
-pyrrolo[2,1-a]isoquinolines] was predominately produced in this base promoted three-component reaction. 
Moreover, when N-ethoxycarbonylmethylisoquinolinium bromide was employed under the same reaction con-
ditions, the desired spiro products 1i-1o were also prepared in good yields (Fig. 1, entries 9–15). The crystal 
structure of the compound 1j (Fig. s3 in SI) indicated that it has the same configuration to that of compounds 
1a, 1c and 1e. Thus, the relative trans-configuration of spiro products 1i-1o were also elucidated on the basis of 
1H NMR spectra and determination of single crystal structure of the compound 1j. On the other hand, when 
N-phenacylisoquinolinum bromides were employed in the three-component reaction, we were very disap-
pointed to find that the reaction resulted in complex mixtures, which were unable to be separated out. It has been 
known that N-phenacylisoquinolinum bromides usually have higher reactivity than that of N-p-nitrobenzyl- and 
N-ethoxycarbonylmethylisoquinolinium bromides49–57. In order to get good results, we carefully examined the 
reaction conditions for N-phenacylisoquinolinum bromides and did not get the expected products. This results 
might be due to the instability of the expected spiro[indoline-3,2′ -pyrrolo[2,1-a]isoquinolines] with benzoyl 
groups.

In order to establish the generality of this three-component reaction, we extended the above reaction protocol 
to N-cyanomethylisoquinolinium chloride, which was previously prepared from reaction of isoquinoline and 
chloroacetonitrile in refluxing acetonitrile. Under similar reaction conditions, the three-component reaction of 
isatins, malononitrile with N-cyanomethylisoquinolinium chloride afforded complex polycyclic compounds 2a-2l  
as the main products in moderate to good yields and the corresponding zwitterionic compounds as byproducts 
in very low yields (Fig. 3). For convenience, only two zwitterionic compounds 3a and 3b were successfully sep-
arated out in 14% and 10% yields, respectively. The structures of the obtained compounds 2a-2l and 3a-3b were 
fully characterized by IR, HRMS, 1H and 13C NMR spectroscopy. The single crystal structures of compounds 2d 
(Fig. 4), 2e (Fig. s4 in SI), 2k (Fig. s5 in SI) and 3b (Fig. 5) were determined by X-ray diffraction. Comparing the 
structures of compounds 1a-1o with that of compounds 2a-2l, it can be seen that compounds 2a-2l have two 
additional pyrrolidine rings on the skeleton of spiro[indoline-3,2′ -pyrrolo[2,1-a]isoquinolines] 1a-1o, which 
suggested that the initially formed spiro compounds 1 underwent further transformations in the reaction system. 
The byproducts 3a-3b were obviously coming from a separate reaction mechanism.

In order to explain the formation mechanism of the spiro compounds 1 and 2, a plausible reaction mechanism 
was proposed on the basis of the known 1,3-dipolar cycloaddition reactions of the cyclic nitrogen ylides49–58 
(Fig. 6). Initially, triethylamine promoted condensation of isatin with malononitrile could afford isatylidene 
malononitrile (A). An isoquinolinium ylide was generated in situ from basic deprotonation of the isoquino-
linium salt. Secondly, Michael addition of the isoquinolinium ylide to isatylidene malononitrile (A) resulted in 
intermediate (B). Thirdly, the intramolecular coupling of the cyclic iminium ion with the carbanion to give the 
spiro compound 1. On the other hand, the spiro compound 1 might be directly formed by the concerted addition 
reaction of isoquinolinium ylide with isatylidene malononitrile (A). In case of reaction with N-(4-nitrobenzyl) 
and N-ethoxycarbonylmethyl isoquinolinium salts, the stable spiro compound 1 was separated out as the final 
product. In the case of N-cyanomethylisoquinolinium salt, further nucleophilic addition of the carbanion of 
malononitrile to the spiro compound 1 afforded a new intermediate (C). Then, the intramolecular attack of one 
cyano group in intermediate (C) to the cyclic imine afforded the obtained polycyclic spiro compound 2.

Encouraged by the above results, ethyl cyanoacetate and methyl cyanoacetate were also employed as substrates 
to replace malononitrile under same reaction conditions. Instead of giving spiro[indoline-3,2′ -pyrrolo[2,1-a]
isoquinolines], new types of polycyclic compounds 4a-4g were produced in moderate to good yields (Fig. 7). In 
order to elucidate the structures of the polycyclic compounds 4a-4g, four single crystal structures of 4b (Fig. 8), 
4c, 4d and 4e (Fig. s6–s8 in SI) were successfully determined by X-ray diffraction. From Fig. 8, it can be seen that 
the neutral compounds 4a-4g have similar structuralfeatures as zwitterionic compounds 3a-3b, which suggested 
that they were produced according to an alternative reaction process.

Although an accurate interpretation of the reaction mechanism remains elusive, according to the experi-
mental observations and the closely related reports84, a plausible mechanism for the formation of polycyclic 

Figure 2. Molecular structure of spiro compound 1a. 
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compounds 4 are proposed in Fig. 9. Presumably, the initially formed isatylidene cyanoacetate (A) reacts with the 
isoquinolinium ylide to afford adduct (B) as outlined in Fig. 6 Subsequently a Michael addition of second mol-
ecule of ethyl cyanoacetate to the adduct (B) provides new intermediate (C), which was converted to the inter-
mediate (D). Then, the polycyclic intermediate (E) could be formed by an annulation process, which ultimately 
provides. polycyclic product 4.

Conclusion
In summary, we have systematically investigated the three-component reaction of various isoquinolinium salts 
with isatin and malononitrile or ethyl cyanoacetate. The reaction provided a variety of products depending on the 
structures of the cyclic nitrogen ylides and the functionalized groups in the substrates, from which the expected 
functionalized spiro[indoline-3,2′ -pyrrolo[2,1-a]isoquinolines] and several complex polycyclic spirooxindoles 
were successfully synthesized in good yields. Possible formation mechanisms accounting for the formation of 
these complex spiro compounds have been proposed. This protocol has advantages of the mild reaction condi-
tions, easily accessible starting materials, broad substrate scope, satisfactory yields and high diastereoselectivity, 

Figure 3. Synthesis of indolo[2″,3″:2′,3′]pyrrolo[3′,4′:4,5]pyrrolo[2,1-a]isoquinolines 2a-2la. 

Figure 4. Molecular structure of spiro compound 2d. 
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which makes it a useful and attractive method for the synthesis of the complex heterocyclic spirooxindole systems 
in synthetic and medicinal chemistry.

Methods
Materials. All reactions were performed in atmosphere unless noted. All reagents were commercially available 
and use as supplied without further purification. NMR spectra were collected on either an Agilent DD2400 MHz 
spectrometer or a Bruker AV-600 MHz spectrometer with internal standard tetramethylsilane (TMS) and signals 
as internal references, and the chemical shifts (δ ) were expressed in ppm. High-resolution Mass (ESI) spectra were 
obtained with Bruker Micro-TOF spectrometer. The Fourier transform infrared (FTIR) samples were prepared as 

Figure 5. Molecular structure of spiro compound 3b. 

Figure 6. Proposed formation mechanism for spiro compounds 1 and 2. 
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thin films on KBr plates, and spectra were recorded on a Bruker Tensor 27 spectrometer and are reported in terms 
of frequency of absorption (cm−1). X-ray data were collected on a Bruker Smart APEX-2 CCD diffractometer.

General procedure for the three-component reaction of N-4-nitrobenzyl and 
N-ethoxycarbonylmethylisoquinolinium salts with isatin and malononitrile. To a 50 mL round 
flask was added N-(4-nitrobenzyl) or N-ethoxycarbonylmethyl isoquinolinium salt (1.0 mmol), isatin (1.0 mmol), 
malononitrile (1.0 mmol) and triethylamine (2.0 mmol) in ethanol (15.0 mL). The solution was stirred at room 
temperature for twelve hours. The resulting precipitates were collected by filtration, which were washed with cold 
ethanol to give the pure products for analysis.

General procedure for the three-component reaction of N-cyanomethylisoquinolinium chlo-
ride with isatin and malononitrile. A mixture of N-cyanomethylisoquinolinium chloride (1.0 mmol), 

Figure 7. Synthesis of spiro[indoline-3,8′-pyrido[2′,3′:4,5]pyrrolo[2,1-a]isoquinolines] 4a-4ga. 

Figure 8. Molecular structure of spiro compound 4b. 
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isatin (1.0 mmol), malononitrile (2.2 mmol) and triethylamine (2.0 mmol) in ethanol (15.0 mL). The solution 
was stirred at room temperature for twelve hours. The resulting precipitates were collected by filtration, which 
were subjected to preparative thin-layer chromatography with a mixture of light petroleum and ethyl acetate 
(V/V =  3:1) to give the pure products 2a-2l and 3a-3b for analysis.

General procedure for the three-component reaction of N-cyanomethylisoquinolinium chloride 
with isatin and alkyl cyanoacetate. A mixture of N-cyanomethylisoquinolinium chloride (1.0 mmol), 
isatin (1.0 mmol), methyl or ethyl cyanoacetate (2.0 mmol) and triethylamine (2.0 mmol) in ethanol (15.0 mL) 
was stirred at room temperature for twelve hours. The resulting precipitates were collected by filtration, which 
were subjected to preparative thin-layer chromatography with a mixture of light petroleum and ethyl acetate 
(V/V =  3:1) to give the pure products 4a-4g for analysis.
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