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Abstract: Anodization enables fabrication of controlled nanotopographies on Ti implants to offer
tailorable bioactivity and local therapy. However, anodization of Zr implants to fabricate ZrO2

nanostructures remains underexplored and are limited to the modification of easy-to-manage flat Zr
foils, which do not represent the shape of clinically used implants. In this pioneering study, we report
extensive optimization of various nanostructures on implant-relevant micro-rough Zr curved surfaces,
bringing this technology closer to clinical translation. Further, we explore the use of sonication to
remove the top nanoporous layer to reveal the underlying nanotubes. Nano-engineered Zr surfaces
can be applied towards enhancing the bioactivity and therapeutic potential of conventional Zr-based
implants.
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1. Introduction

Zirconium (Zr) is a valve metal that is very stable with a high dielectric constant, and
hence it is a suitable material choice for the nuclear and microelectronic industries [1].
Further, Zr and its alloys are extensively used in the field of optics, magnetics, chemical
sensors, and biomedical implants [2]. Due to their favourable characteristics (physical,
chemical, and biological), Zr-based implants are gaining popularity in the dental and
orthopaedic markets [3,4]. For this application, the favourable biocompatibility of Zr is
mainly attributed to its surface oxide film (ZrO2). Further, Zr (metal, grey colour) with
a ZrO2 (ceramic, white colour) surface has a toughness comparable to metals, and hence
is suitable for a variety of biomedical applications [5]. Clinically, ceramic structures have
shown a higher risk of fracture due to the nature of the material. However, oxidized Zr
surfaces offer the potential to decrease wear and tear as the bulk of the material is metal,
and not a monolithic ceramic [6]. It is noteworthy that oxidized Zr is not a ceramic but
the transition of metal to ceramic. Studies have established that ZrO2 not only promotes
osseointegration but also demonstrates reduced cytotoxicity as compared to Ti-based
implants [2]. Moreover, ZrO2/Zr presents greater mechanical strength and low ion release
when compared to Ti [7]. Overall, as compared to Ti, ZrO2 based implants offers many
advantages including superior aesthetics, with favourable biological, mechanical, and
optical properties [8].

In the last few decades, the potential of Zr and its alloys in the field of dental implants
has gained increasing attention [9–11]. Although there are some in vivo studies that
demonstrate the biocompatibility of Zr, the surface modification and related bioactivity
assessment of Zr-based implants needs in-depth investigation [2]. It is noteworthy that in
compromised patient conditions (e.g., diabetic and osteoporotic), ‘normal’ bioactivity may
not be sufficient to encourage bone-implant integration, and hence enhanced bioactivity is
needed. In that light, surface modifications of Zr-based implants to form an oxide layer
have been performed via various physical, chemical, and electrochemical means [12–14].
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Further, electrochemical anodization (EA) has been regarded as an effective strategy to
fabricate ZrO2 with nanoscale surface roughness and the ability to incorporate bioactive
ions (Ca or P) [15].

It is well established that the bioactivity of modified implant surfaces follows the trend
nano- > micro- > macro-scale [16]. As a result, research has shifted towards the fabrication of
controlled nanotopographies on Zr-based implants (including Zr, Ti–Zr alloys etc.). Various
strategies have been employed for nano-engineering Zr implants, such as electrochemical
anodization (EA) [17], plasma treatment [18], micro-arc oxidation [19], hydrothermal
treatment [20], chemical co-precipitation, and sol–gel method [21]. Among these, EA
stands out due to its cost-effectiveness, scalability, and control over the characteristics of the
fabricated nanostructures [22]. Briefly, EA involves immersion of a target substrate (Zr) as
an anode and a counter electrode (cathode) in a suitable electrolyte (containing water and
fluoride ions), and a supply of constant voltage/current. Upon attainment of optimized
conditions, self-ordering of ZrO2 nanotubes occurs on the surface of the anode. Relevant to
biomedical applications, EA to fabricate self-ordered ZrO2 nanotubes has gained attention,
with various attempts made to optimize the EA fabrication [23–25]. Further, the augmented
bioactivity and osteogenic ability of ZrO2 nanotubes has also been demonstrated [26–28].

With respect to anodized nano-engineered zirconium implants, key fabrication chal-
lenges remain unaddressed:

1. Fabrication optimization has only been restricted to planar Zr flat foil that is easy
to manage. However, clinically used orthopaedic and dental implants are based on
curved surfaces and edges, thereby limiting the clinical translation of conventional
anodized Zr flat foil.

2. Dental implants generally use microscale roughness which, to date, is regarded as a
‘gold standard’ for ensuring osseointegration. Thus, preserving rather than removal of
this micro-roughness (which is routinely performed to fabricate nanotubes) is needed
along with superimposition of nanostructures (dual micro–nano).

To further optimize the fabrication of anodic nanostructures on Zr-based implants, in
this study, we explore EA optimization of Zr wires as models for curved clinically relevant
implant architectures. Briefly, EA parameters, including voltage and time, were varied to
fabricate oxide nanocrystals, nanopores, and nanotubes on the Zr wires (Figure 1). This
study bridges the gap between the fabrication of controlled nanostructures on clinically
relevant Zr surfaces, with the objective of facilitating future clinical translation. We also
report on the use of sonication to reveal the underlying nanostructures by removing the
superficial nanoporous oxide film. Optimized fabrication of controlled nanotopographies
on implant substrates that preserves the underlying micro-roughness can be paradigm
shifting in the domain of Zr-based biomedical applications.
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2. Experimental Section
2.1. Materials and Chemicals

Zirconium wire with 0.5 mm diameter [annealed, 99.2% purity (metal basis excluding
Hf), 4.5% Hf max] was obtained from Alfa Aesar (Lancashire, UK) and used as received.
High-purity (NH4)2SO4, NH4F, and methanol were purchased from Sigma Aldrich (North
Ryde, Australia).

2.2. Electrochemical Anodization (EA)

Prior to EA, as-received Zr wires were cut into 10 cm lengths and sonicated in ethanol
to remove any surface contaminants. EA was carried out in a custom-designed two-
electrode electrochemical cell at room temperature using a DC power source (Keithley,
Cleveland, OH, USA) with the current precisely monitored [29,30]. EA was performed
using as-received Zr wire as the anode (5 mm exposed in the electrolyte) and non-targeted
Zr wire as a cathode in an electrolyte with 1 M (NH4)2SO4 + 0.5 wt% NH4F. Anodization
was performed at 20–100 V for 10–120 min, with current vs. time precisely recorded (Power
Supply App, Keithley KickStart Software, Solon, OH, USA). Anodization voltage and time
was decided based on current literature and prior optimizations studies using Ti wires [29].
Briefly, current density was calculated (current/area of anode) and plotted against time
to visualize key features identifying anodization [29]. To remove the anodic oxide layer,
anodized samples were sonicated in methanol for various time intervals to reveal the
underlying features.

2.3. Surface Characterization

Surface topography characterization of the nanostructures was performed using
scanning electron microscopy (JSM 7001F, JEOL, Tokyo, Japan). Before imaging, samples
were mounted on an SEM holder using double-sided conductive tape and coated with a
5 nm thick layer of platinum. Images with a range of scan sizes at normal incidence and a
30◦ angle were acquired from the top surfaces.

3. Results and Discussion

Figure S1 (Supplementary Information) shows the SEM image of as-received Zr wire
with clearly visible micro-machined features (micro-rough). There is an obvious resem-
blance to conventional dental implants/abutments with respect to the micro-scale features,
which for dental implants, ensures osseointegration. This micro-roughness is regarded
as the ‘gold-standard’ in dentistry and, hence, its removal to fabricate nanostructures
could prove detrimental [31]. We have previously demonstrated that dual micro–nano
features with nanopores superimposed on micro-machined Ti can be fabricated using an
optimized EA procedure [32]. Fabrication of controlled nanostructures with preserved
underlying micro-features on Zr implants can result in a paradigm shift in achieving en-
hanced bioactivity from nano-engineering, without compromising the benefits obtained
from micro-roughness. In that light, we optimized the anodization of Zr implants us-
ing Zr wire as a model for Zr dental/orthopaedic implants with curved surfaces and
micro-machined lines.

Figure 2 shows low-magnification SEM images of the anodized wire, demonstrating
an even coverage of the anodic ZrO2 film, with clearly visible cracks. We have previously
reported similar cracks on TiO2 films formed on anodized Ti wire [32]. Briefly, these
instabilities of the anodic layer could be attributed to the electric field concentrations at
the topographical peaks of the substrate—which, in this case, is an irregular micro-rough
curved surface [29,30]. The surface heterogeneity (micro-roughness) upon EA can also
result in thicker oxide at the convex part and thinner oxide at the concave part [33]. It is
noteworthy that these surface inconsistencies do not compromise the mechanical stability
of the nano-engineered surface and can be used to accommodate drugs or enhance cellular
adhesion [34]. Further, we have also explored strategies, including electrolyte ageing and
surface polishing, to reduce anodic layer cracks [30].
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In summary, these cracks or pits are unavoidable on the anodized curved substrates
and are attributed to (Figure 3):

(1) Curved substrate: radial/perpendicular growth of nanotubes outwards [29].
(2) Internal stresses: due to uneven electric field distribution.
(3) Mechanical stress: due to volume expansion and limited space for growth.
(4) Weak spots: electrolyte penetration resulting in unstable/fragile anodic layers [35].
(5) Substrate: micro-roughness further exacerbates the stresses/weak spots [36].
(6) Nanotube collapse (or bundling): especially for longer tubes.
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Figure 2. Top-view SEM images of anodized Zr wires at various voltages and times. (A–C) 20 V;
(D–F) 40 V; (G–I) 60 V; (J–L) 80 V and (M–O) 100 V. Scale bars represent 20 µm.

Various strategies can be employed to reduce such cracks or instabilities on anodized
metal surfaces (however, these remain poorly explored for Zr anodization) [37]:

(1) Use of appropriately aged electrolyte—mostly applicable to anodization with organic
electrolytes (like ethylene glycol) [38,39].

(2) Polishing the substrate prior to anodization using mechanical, chemical or electropol-
ishing treatments (will reduce/remove micro-roughness) [37].

(3) Reducing water content, voltage/current, or anodization time (may reduce diame-
ter/length of anodized nanostructures due to reduced growth rates).
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Figure 3. Representation of the formation of cracks or pits on the surface of anodized curved surfaces.

There have been attempts at exploring electrolyte ageing for Zr EA, with confirmation
of the transition of nanoporous to nanotubular topography for EA performed in glycerol-
based electrolyte [38,40]. It is noteworthy that such surface defects can also be reduced or
minimized by electropolishing of the substrate, as shown elsewhere [29,41]. However, any
polishing will ‘consume’ the underlying micro-roughness, removing this desirable feature
of the implant and potentially compromising the positive osseointegrating property of
the micro-roughness. Further, the cracks on the anodic film have been shown to survive
drug loading and release in in vitro, ex vivo, and in vivo settings [34,42,43]. Indeed, cracks
allow for higher drug loading amounts and enhance the overall surface roughness (at the
microscale), allowing for higher cellular adhesion and anchoring points. Figure 2 also
shows clear evidence of the anodic film with preserved micro-machined lines, with the
anodic film aligned parallel to the lines on the underlying substrate. Cracks corresponding
to voltage and time are also evident from Figure 2. Similar to Ti wire EA, cracks and
instabilities increase with voltage and time of EA.

High-magnification images of the anodized Zr wires are presented in Figure 4. At
20 V, a bare oxide layer with no distinguishable features is visible for 10–60 min of EA.
For 120 min EA at 20 V, delamination of the oxide film reveals the presence of under-
lying nanocrystal-like features (Figure 4C). Using 40 V 60 min yielded alignment of the
nanoporous layer onto the underlying micro-roughness (Figure 4E). However, for 40 V at
120 m, some evidence of the underlying nanotubular structures is visible, covered by the
oxide film (Figure 4F). Further, clear evidence of nanopore formation is visible for 60 V at
10 m (diameter ~46 nm) and 60 m (diameter ~52 nm) (Figure 4G–I). In summary, for all of
the 60 V anodized samples, we observed nanopore formation throughout the surface of
the wire, with the irregular sponge-like patches of the ZrO2 layer (which was prominent
for 60 V 10 m samples). It is worth noting that the nanopores on the Zr wire are aligned in
the direction of the underlying microfeatures of the substrate. Our group has shown that
aligned TiO2 nanopores on Ti can be used to mechanically stimulate cells [44,45]. Briefly,
the activity of primary gingival fibroblasts and osteoblasts on aligned TiO2 nanopores was
enhanced and the cells aligned parallel to the nanopores, indicating a strong mechanotrans-
duction effect [45]. Additionally, as clear nanopores are visible, loading and release of
various therapies may be enabled, which has never been demonstrated for ZrO2 nanopores
and, hence, warrants further investigation. We have previously shown that that TiO2
nanopores are mechanically superior to conventional as well as mechanically enhanced
(via various physical/chemical techniques) nanotubes (shown for TiO2 nanotubes) [37].
Additionally, for EA at 80–100 V for 10–60 m (Figure 4J–O), nanopore-like surface fea-
tures were observed, which were aligned in the direction of the underlying substrate
micro-roughness.
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Unmarked scale bars represent 1 µm.

To elucidate the mechanism of formation of the various ZrO2 nanostructures, we
undertook a detailed analysis of the current density (J) vs. time (t) plots, as presented in
Figure S2 (Supplementary Information). The first 15 s of J vs. t plots provide information
with respect to the first two phases of Zr EA: (1) formation of compact barrier layer (BL)
and (2) pit formation [46]. There are significant differences between the J values at different
voltages, and the presented data provide information about the time to reach equilibrium
(teq) and barrier oxide layer (BL) thickness. The delay in reaching equilibrium equates
to a thicker BL, strong adherence to the underlying substrate, and a stable anodic film,
attributed to reduced compressive stress at the ZrO2–Zr interface [47]. teq and J are highest
for the 60 V EA, which corresponds to a previous study showing that improved ordering is
obtained for higher growth rates (or higher J values) [48]. This explains the findings from
Figure 4G–I, which shows that the most nanoporous structures were obtained for 60 V
EA. Based on J values corresponding to 60 V, an increased ‘outward expansion pressure’
for fast growth also explains the abovementioned. For EA performed at higher voltages
(80 and 100 V), it can be assumed that the BL will be severely etched (higher field results
in increased inward O2− migration) and the electric field polarises the Zr–O bond and
damages the tubular structures [46]. As previously reported, besides the internal growth-
induced stresses, electric field-induced stresses can also result in compromised stability of
the anodized ZrO2 film [29,32].
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Next, in order to expose the nanostructures covered by the ZrO2 film or nanopores, we
sonicated the anodized wires at various times from 5–60 min. The resultant nanostructures
are presented in Figure 5. It was found that dependent on the overall anodized film stability,
higher sonication times disrupted the nanostructures. Five-minute sonication for the 20 V
120 min samples exposed the underlying nanocrystal-like topography, which was found to
cover the underlying substrate (Figure 5B,C). For 60 V 10 m, 15 min sonication partially
removed the nanoporous layer, while 30 m completely removed the nanopores, revealing
the ZrO2 nanotubes (Figure 5E,F). The survival of the nanotubes even at 30 m sonication
confirms the mechanical stability and robustness of the dual micro–nanostructures onto the
underlying wire substrate. This correlates with previous studies whereby the microfeatures
of the underlying substrates allowed for increased interfacial contact area between the
anodic film and the substrate [35,40–42]. This increased area reduces the mechanical stress
and volume expansion during anodic film growth and hence improves overall mechanical
stability. Next, 10 min sonication of the aligned nanopores on 100 V 10 min wire revealed
the ZrO2 nanotubes (Figure 5H,I) underneath. A similar effect was also observed for
80 V 10 m anodized wires, as shown in Figure S3 (Supplementary Information). It is
noteworthy that for 60 V 10 m, the anodic structures survived the extended sonication time
(15–30 m, Figure 5F), though for higher voltages (80 and 100 V, Figure 5I and Figure S3C),
a small duration (5–10 min) exposed the underlying structures. We have previously shown
that increased EA voltage is associated with higher growth rates on curved substrates,
and hence reduced structural integrity of the anodized nanostructures (as compared to
low-voltage-anodized structures) [29].
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Figure 5. Top-view SEM images showing the influence of sonication of anodized Zr wire for various
durations to remove superficial nanoporous oxide layer and expose underlying nanostructures. (A–C)
20 V 120 min anodized wire for 5 min sonication reveals nanocrystal-like features; (D–F) 15–30 min
sonication of 60 V 10 min Zr wire reveals nanotubes; and (G–I) 5–10 min sonication removes oxide
film and exposes underlying nanotubes on 100 V 10 min anodized wire. Survival of nanotubes on Zr
wire post-sonication confirms mechanical stability and strong adherence to the underlying substrate.

In summary, this study highlights the fabrication of stable nanotopographies on clini-
cally relevant Zr surfaces—ensuring clinical translatability of electrochemically anodized
Zr implants. The innovation of the study is the fact that it is a pioneering attempt at the
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fabrication of complex ZrO2 nanostructures on Zr curved surfaces via EA, while preserv-
ing the ‘gold standard’ micro-roughness to fabricate dual micro–nanostructures. Further,
such controlled dual micro–nanostructures on Zr implants have the potential to augment
cell activity and local therapy. Previous studies suggest that such aligned dual micro–
nanostructures can mechanically stimulate cells [44]. Therefore, future studies will focus
on the evaluation of soft- and hard-tissue integration on the surface of nano-engineered Zr
implants, with the current study providing important data that bridges the gap to clinical
translation by evaluating clinically relevant implant surfaces. It is noteworthy that bioactiv-
ity and therapeutic evaluations of such curved 3D implant substrates (Zr wires) is difficult
to achieve in conventional 2D cell culture in vitro, which is more suitable for flat/planar
substrates. We have previously undertaken extensive bioactivity evaluations of nano-
engineered Ti wires in a 3D cell culture system in vitro [42], animal tissues ex vivo [43],
and animal implantation in vivo [34]. However, inclusion of such detailed assessments is
outside the scope of the current paper that is focussed on fabrication optimization.

4. Conclusions

With the objective of bridging the gap between nano-engineered zirconia and the
dental implant industry, this study showcases the fabrication of various controlled nan-
otopographies on Zr wire substrates (as a model for dental implants) via electrochemical
anodization (EA). In a pioneering approach, by tuning EA voltage and time, EA of micro-
machined Zr wire enabled the fabrication of aligned nanopores, nanotubes, and nanocrys-
tals. We also showed the impact of removing the top layer of oxide/nanopores to reveal the
underlying nanotubes. Preserving the underlying micro-roughness and superimposition
of controlled ZrO2 nanostructures holds great promise towards improving the bioactivity
and therapeutic potential of conventional Zr-based dental and orthopaedic implants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11040868/s1, Figure S1: SEM images of as-received Zr wires, Figure S2: current density vs.
time plots for anodization of Zr wire, Figure S3: SEM images confirming the influence of sonication
on 80 V 10 min anodized Zr wire.
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15. Jović, V.D.; Jović, B.M. The Influence of the Conditions of the ZrO2 Passive Film Formation on Its Properties in 1 M NaOH. Corros.
Sci. 2008, 50, 3063–3069. [CrossRef]

16. Gulati, K.; Hamlet, S.M.; Ivanovski, S. Tailoring the Immuno-Responsiveness of Anodized Nano-Engineered Titanium Implants.
J. Mater. Chem. B 2018, 6, 2677–2689. [CrossRef]

17. de la Hoz, M.F.T.; Katunar, M.R.; González, A.; Sanchez, A.G.; Díaz, A.O.; Ceré, S. Effect of Anodized Zirconium Implants on
Early Osseointegration Process in Adult Rats: A Histological and Histomorphometric Study. Prog. Biomater. 2019, 8, 249–260.
[CrossRef] [PubMed]

18. Bacchelli, B.; Giavaresi, G.; Franchi, M.; Martini, D.; de Pasquale, V.; Trirè, A.; Fini, M.; Giardino, R.; Ruggeri, A. Influence of a
Zirconia Sandblasting Treated Surface on Peri-Implant Bone Healing: An Experimental Study in Sheep. Acta Biomater. 2009, 5,
2246–2257. [CrossRef] [PubMed]

19. Zhang, L.; Zhu, S.; Han, Y.; Xiao, C.; Tang, W. Formation and Bioactivity of Ha Nanorods on Micro-Arc Oxidized Zirconium.
Mater. Sci. Eng. C 2014, 43, 86–91. [CrossRef]

20. Quan, R.; Yang, D.; Yan, J.; Li, W.; Wu, X.; Wang, H. Preparation of Graded Zirconia–Cap Composite and Studies of Its Effects on
Rat Osteoblast Cells in Vitro. Mater. Sci. Eng. C 2009, 29, 253–260. [CrossRef]

21. Li, X.; Deng, J.; Lu, Y.; Zhang, L.; Sun, J.; Wu, F. Tribological Behavior of ZrO2/Ws2 Coating Surfaces with Biomimetic Shark-Skin
Structure. Ceram. Int. 2019, 45, 21759–21767. [CrossRef]

22. Gulati, K.; Kogawa, M.; Maher, S.; Atkins, G.; Findlay, D.; Losic, D. Titania Nanotubes for Local Drug Delivery from Implant
Surfaces. In Electrochemically Engineered Nanoporous Materials; Springer: Berlin/Heidelberg, Germany, 2015; pp. 307–355.

23. Tsuchiya, H.; Macak, j.; Taveira, L.; Schmuki, P. Fabrication and Characterization of Smooth High Aspect Ratio Zirconia Nanotubes.
Chem. Phys. Lett. 2005, 410, 188–191. [CrossRef]

24. Katunar, M.R.; Sanchez, A.G.; Coquillat, A.S.; Civantos, A.; Campos, E.M.; Ballarre, J.; Vico, T.; Baca, M.; Ramos, V.; Cere, S.
In vitro and in vivo characterization of anodised zirconium as a potential material for biomedical applications. Mater. Sci. Eng. C
2017, 75, 957–968. [CrossRef] [PubMed]

25. Zhao, J.; Xu, R.; Wang, X.; Li, Y. In Situ Synthesis of Zirconia Nanotube Crystallines by Direct Anodization. Corros. Sci. 2008, 50,
1593–1597. [CrossRef]

26. Guo, L.; Zhao, J.; Wang, X.; Xu, R.; Lu, Z.; Li, Y. Bioactivity of Zirconia Nanotube Arrays Fabricated by Electrochemical
Anodization. Mater. Sci. Eng. C 2009, 29, 1174–1177. [CrossRef]

27. Frandsen, C.J.; Brammer, K.S.; Noh, K.; Connelly, L.S.; Oh, S.; Chen, L.H.; Jin, S. Zirconium Oxide Nanotube Surface Prompts
Increased Osteoblast Functionality and Mineralization. Mater. Sci. Eng. C 2011, 31, 1716–1722. [CrossRef]

28. Zhang, L.; Han, Y. Enhanced Bioactivity of Self-Organized ZrO2 Nanotube Layer by Annealing and Uv Irradiation. Mater. Sci.
Eng. C 2011, 31, 1104–1110. [CrossRef]

29. Gulati, K.; Santos, A.; Findlay, D.; Losic, D. Optimizing Anodization Conditions for the Growth of Titania Nanotubes on Curved
Surfaces. J. Phys. Chem. C 2015, 119, 16033–16045. [CrossRef]

30. Gulati, K.; Maher, S.; Chandrasekaran, S.; Findlay, D.M.; Losic, D. Conversion of Titania (TiO2) into Conductive Titanium (Ti)
Nanotube Arrays for Combined Drug-Delivery and Electrical Stimulation Therapy. J. Mater. Chem. B 2016, 4, 371–375. [CrossRef]

31. Gulati, K.; Ivanovski, S. Dental Implants Modified with Drug Releasing Titania Nanotubes: Therapeutic Potential and Develop-
mental Challenges. Expert Opin. Drug Deliv. 2017, 14, 1009–1024. [CrossRef]

32. Gulati, K.; Li, T.; Ivanovski, S. Consume or Conserve: Microroughness of Titanium Implants toward Fabrication of Dual
Micro–Nanotopography. ACS Biomater. Sci. Eng. 2018, 4, 3125–3131. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jpor.2019.09.003
http://www.ncbi.nlm.nih.gov/pubmed/31859081
http://doi.org/10.1007/s10266-017-0296-3
http://www.ncbi.nlm.nih.gov/pubmed/28194543
http://doi.org/10.1016/j.jpor.2017.07.003
http://www.ncbi.nlm.nih.gov/pubmed/28827030
http://doi.org/10.1016/j.ceramint.2019.10.220
http://doi.org/10.1002/jbm.b.31725
http://doi.org/10.1111/j.1744-7402.2005.02025.x
http://doi.org/10.1016/S0142-9612(01)00110-7
http://doi.org/10.1007/s10856-012-4770-8
http://doi.org/10.1016/j.corsci.2008.08.007
http://doi.org/10.1039/C8TB00450A
http://doi.org/10.1007/s40204-019-00124-0
http://www.ncbi.nlm.nih.gov/pubmed/31758415
http://doi.org/10.1016/j.actbio.2009.01.024
http://www.ncbi.nlm.nih.gov/pubmed/19233751
http://doi.org/10.1016/j.msec.2014.06.029
http://doi.org/10.1016/j.msec.2008.06.019
http://doi.org/10.1016/j.ceramint.2019.07.177
http://doi.org/10.1016/j.cplett.2005.05.065
http://doi.org/10.1016/j.msec.2017.02.139
http://www.ncbi.nlm.nih.gov/pubmed/28415552
http://doi.org/10.1016/j.corsci.2008.01.026
http://doi.org/10.1016/j.msec.2008.10.003
http://doi.org/10.1016/j.msec.2011.07.016
http://doi.org/10.1016/j.msec.2011.04.004
http://doi.org/10.1021/acs.jpcc.5b03383
http://doi.org/10.1039/C5TB02108A
http://doi.org/10.1080/17425247.2017.1266332
http://doi.org/10.1021/acsbiomaterials.8b00829
http://www.ncbi.nlm.nih.gov/pubmed/33435053


Nanomaterials 2021, 11, 868 10 of 10

33. Zhao, J.; Wang, X.; Xu, R.; Meng, F.; Guo, L.; Li, Y. Fabrication of High Aspect Ratio Zirconia Nanotube Arrays by Anodization of
Zirconium Foils. Mater. Lett. 2008, 62, 4428–4430. [CrossRef]

34. Kaur, G.; Willsmore, T.; Gulati, K.; Zinonos, I.; Wang, Y.; Kurian, M.; Hay, S.; Losic, D.; Evdokiou, A. Titanium Wire Implants with
Nanotube Arrays: A Study Model for Localized Cancer Treatment. Biomaterials 2016, 101, 176–188. [CrossRef] [PubMed]

35. Proost, J.; Vanhumbeeck, J.; van Overmeere, Q. Instability of Anodically Formed TiO2 Layers (Revisited). Electrochim. Acta 2009,
55, 350–357. [CrossRef]

36. Fan, M.; la Mantia, F. Effect of Surface Topography on the Anodization of Titanium. Electrochem. Commun. 2013, 37, 91–95.
[CrossRef]

37. Li, T.; Gulati, K.; Wang, N.; Zhang, Z.; Ivanovski, S. Understanding and Augmenting the Stability of Therapeutic Nanotubes on
Anodized Titanium Implants. Mater. Sci. Eng. C 2018, 88, 182–195. [CrossRef] [PubMed]

38. Muratore, F.; Hashimoto, T.; Skeldon, P.; Thompson, G.E. Effect of Ageing in the Electrolyte and Water on Porous Anodic Films
on Zirconium. Corros. Sci. 2011, 53, 2299–2305. [CrossRef]

39. Guo, T.; Oztug, N.A.K.; Han, P.; Ivanovski, S.; Gulati, K. Old Is Gold: Electrolyte Aging Influences the Topography, Chemistry,
and Bioactivity of Anodized TiO2 Nanopores. ACS Appl. Mater. Interfaces 2021, 13, 7897–7912. [CrossRef] [PubMed]

40. Li, T.; Gulati, K.; Wang, N.; Zhang, Z.; Ivanovski, S. Bridging the Gap: Optimized Fabrication of Robust Titania Nanostructures
on Complex Implant Geometries Towards Clinical Translation. J. Colloid Interface Sci. 2018, 529, 452–463. [CrossRef]

41. Pilling, N.B. The Oxidation of Metals at High Temperature. J. Inst. Met. 1923, 29, 529–582.
42. Gulati, K.; Kogawa, M.; Prideaux, M.; Findlay, D.M.; Atkins, G.J.; Losic, D. Drug-Releasing Nano-Engineered Titanium Implants:

Therapeutic Efficacy in 3D Cell Culture Model, Controlled Release and Stability. Mater. Sci. Eng. C 2016, 69, 831–840. [CrossRef]
43. Rahman, S.; Gulati, K.; Kogawa, M.; Atkins, G.J.; Pivonka, P.; Findlay, D.M.; Losic, D. Drug Diffusion, Integration, and Stability of

Nanoengineered Drug-Releasing Implants in Bone Ex-Vivo. J. Biomed. Mater. Res. Part A 2016, 104, 714–725. [CrossRef]
44. Gulati, K.; Moon, H.G.; Kumar, P.T.S.; Han, P.; Ivanovski, S. Anodized Anisotropic Titanium Surfaces for Enhanced Guidance of

Gingival Fibroblasts. Mater. Sci. Eng. C 2020, 112, 110860. [CrossRef]
45. Gulati, K.; Moon, H.G.; Li, T.; Kumar, P.T.S.; Ivanovski, S. Titania Nanopores with Dual Micro-/Nano-Topography for Selective

Cellular Bioactivity. Mater. Sci. Eng. C 2018, 91, 624–630. [CrossRef]
46. Ismail, S.; Ahmad, Z.A.; Berenov, A.; Lockman, Z. Effect of Applied Voltage and Fluoride Ion Content on the Formation of

Zirconia Nanotube Arrays by Anodic Oxidation of Zirconium. Corros. Sci. 2011, 53, 1156–1164. [CrossRef]
47. Zhou, X.; Nguyen, N.T.; Özkan, S.; Schmuki, P. Anodic Tio2 Nanotube Layers: Why Does Self-Organized Growth Occur—A Mini

Review. Electrochem. Commun. 2014, 46, 157–162. [CrossRef]
48. Jessensky, O.; Müller, F.; Gösele, U. Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina. Appl. Phys. Lett.

1998, 72, 1173–1175. [CrossRef]

http://doi.org/10.1016/j.matlet.2008.07.054
http://doi.org/10.1016/j.biomaterials.2016.05.048
http://www.ncbi.nlm.nih.gov/pubmed/27289379
http://doi.org/10.1016/j.electacta.2008.12.008
http://doi.org/10.1016/j.elecom.2013.10.012
http://doi.org/10.1016/j.msec.2018.03.007
http://www.ncbi.nlm.nih.gov/pubmed/29636134
http://doi.org/10.1016/j.corsci.2011.03.014
http://doi.org/10.1021/acsami.0c19569
http://www.ncbi.nlm.nih.gov/pubmed/33570904
http://doi.org/10.1016/j.jcis.2018.06.004
http://doi.org/10.1016/j.msec.2016.07.047
http://doi.org/10.1002/jbm.a.35595
http://doi.org/10.1016/j.msec.2020.110860
http://doi.org/10.1016/j.msec.2018.05.075
http://doi.org/10.1016/j.corsci.2010.11.044
http://doi.org/10.1016/j.elecom.2014.06.021
http://doi.org/10.1063/1.121004

	Introduction 
	Experimental Section 
	Materials and Chemicals 
	Electrochemical Anodization (EA) 
	Surface Characterization 

	Results and Discussion 
	Conclusions 
	References

