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Abstract: Humoral immunity is crucial for protection against invading pathogens. Broadly neu-
tralizing antibodies (bnAbs) provide sterilizing immunity by targeting conserved regions of viral
variants and represent the goal of most vaccination approaches. While antibodies can be selected
to bind virtually any region of a given antigen, the consistent induction of bnAbs in the context
of influenza and HIV has represented a major roadblock. Many possible explanations have been
considered; however, none of the arguments proposed to date seem to fully recapitulate the observed
counter-selection for broadly protective antibodies. Antibodies can influence antigen presentation
by enhancing the processing of CD4 epitopes adjacent to the binding region while suppressing the
overlapping ones. We analyze the relative positioning of dominant B and T cell epitopes in published
antigens that elicit strong and poor humoral responses. In strong immunogenic antigens, regions
bound by immunodominant antibodies are frequently adjacent to CD4 epitopes, potentially boosting
their presentation. Conversely, poorly immunogenic regions targeted by bnAbs in HIV and influenza
overlap with clusters of dominant CD4 epitopes, potentially conferring an intrinsic disadvantage
for bnAb-bearing B cells in germinal centers. Here, we propose the theory of immunodominance
relativity, according to which the relative positioning of immunodominant B and CD4 epitopes within
a given antigen drives immunodominance. Thus, we suggest that the relative positioning of B-T
epitopes may be one additional mechanism that cooperates with other previously described processes
to influence immunodominance. If demonstrated, this theory can improve the current understanding
of immunodominance, provide a novel explanation for HIV and influenza escape from humoral
responses, and pave the way for a new rational design of universal vaccines.

Keywords: antibody; immunodominance; viral escape; epitope

1. Introduction

Antibodies are a fundamental component of human immunological defense, and one
of their most important functions is to confer protection against viruses and exogenous
microorganisms upon primary infection or vaccination [1–3]. Antibodies that are able to
provide sterilizing immunity, by preventing pathogen entry and interaction with target
cells, are commonly called ‘neutralizing antibodies’ (nAbs) [1]. nAbs are produced by
B cells that have been selected in the host germinal centers (GCs) [3–5]. Upon antigen
encounter, antigen-specific B cells start proliferating, interact with cognate CD4 T cells, and
then migrate to the center of B follicles where they establish the GC microstructure [3,4,6–8].
GCs are the microanatomical niches where B cell clones mature, receive survival signals
by cognate CD4 T cells, mutate their B cell receptors (BCRs), and are selected to produce
high-affinity nAbs [3,5,9].
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The repertoire of naïve B cells and BCRs is extremely diverse thanks to BCR rear-
rangement during B cell development, resulting in the potential to produce antibodies
against virtually any epitope of a given antigen [2,10,11]. Despite this potential, epitope
specificities are not equally targeted by humoral responses, with the most frequently tar-
geted epitopes defined as immunodominant [3,12]. Following immunization, the higher
prevalence of specific B and T cell clones, which expand at the expense of other epitope-
specific cells, is referred to as immunodominance [3,12]. The combination of germline
B cell precursor frequency, antigen accessibility, affinity/avidity, and CD4 T cells help
influence the Darwinian selection process of B cell clones in GCs and largely impact epitope
immunodominance [1,3].

The goal of most vaccines is to induce the vigorous and long-term production of nAbs
with the ability to prevent any future infection. However, some viruses deploy diverse
strategies to escape antibody neutralization, including the mutation of viral antigens
(e.g., HIV and influenza) [1,3,13]. Antibodies that bind to conserved viral epitopes and are
able to neutralize different viral mutants and strains are referred to as ‘broadly neutralizing
antibodies’ (bnAbs) [1]. Conserved viral epitopes often represent the ‘Achilles heel’ of
mutating viruses, as they cannot be mutated without altering important steps in the viral life
cycle [1,14,15]. While the induction of bnAbs represents the major goal of most vaccination
approaches, none of the strategies tested to date have successfully and consistently induced
anti-HIV and anti-influenza bnAbs [13,15,16]. Indeed, the immunodominance of B cell
clones specific for variable and/or non-broadly neutralizing viral epitopes has recently
proven to be a major obstacle in vaccine design, with the enhanced production of non-
neutralizing antibodies at the expense of the bnAbs [3,12,15,16].

Poor or defective bnAbs induction following vaccination in the context of HIV and
influenza has been extensively studied. The following potential explanations for defective
bnAbs production (e.g., anti-gp120 CD4 binding site for HIV, anti-stem of the hemagglu-
tinin (HA) for influenza) have been proposed: poor epitope accessibility [3,17,18], high
mutational load required to generate bnAbs [1], low neutralizing B cell precursor fre-
quency [19], and HLA-II polymorphisms [20,21]. Nevertheless, none of these arguments
can fully recapitulate the apparent counter-selection for bnAbs, with recent experimental
evidence arguing against such theories.

Around 30 years ago, antibody binding was shown to influence antigen processing
and presentation, with CD4 T-cell epitopes either inhibited or boosted based on their
relative positioning to the antibody epitope [22–24]. Here, we propose the theory of immun-
odominance relativity, according to which the relative positioning of B and T cell epitopes
within a given antigen drives immunodominance. During a global pandemic caused by
a newly emerged coronavirus, understanding the molecular bases of immunodominance
has become of paramount importance, particularly to guide the rational design of future
universal vaccines.

2. Historical Viral Escape Theories

In recent decades, several hypotheses have been proposed to explain the molecular
mechanisms underlying the inconsistent induction of bnAbs, especially in the context of
HIV and influenza vaccination studies.

2.1. Antigen Variability and Epitope Accessibility

The variation of immunodominant epitopes due to the accumulation of random
mutations in the viral genome represents one of the most successful strategies for viruses
to escape the host immune system [1,13]. This strategy is particularly relevant for RNA
viruses, which rely on more error-prone molecular machinery when duplicating their
genome [25]. However, HIV and influenza envelope proteins (gp120 and HA, respectively)
contain three-dimensional structures that are not permissive to a high mutational load,
as this would result in the impairment of essential steps during the viral life cycle, such
as binding to target receptors, membrane fusion, and internalization [1,25,26]. Indeed,
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conserved regions of these antigens, namely, the CD4 binding domain of gp120 and the
stem of HA, contain the epitopes targeted by the most potent bnAbs described to date
against these two viruses, 3BNC117 [27] and MEDI8852 [28], respectively. Nevertheless,
antibody responses targeting the CD4 binding domain and the stem of HA are very rare in
the general population.

Epitope accessibility has long been regarded as a fundamental requirement to effec-
tively mount humoral responses [1,14,18,29–32]. First-generation anti-HIV bnAbs targeting
the CD4 binding site showed limited neutralization breadth and/or potency, a finding
thought to be related to the poor accessibility of these epitopes in HIV-1 primary isolates [33].
Recently, however, a renewed experimental effort has led to the isolation of several new
anti-CD4 binding site human monoclonal antibodies (VCR01-like) characterized by greater
breadth and potency [19,34,35]. Moreover, the CD4 binding site is accessible for binding to
human CD4 molecules [14], an essential step during viral entry into target cells, and VRC01-
like Abs can be generated in macaques following vaccination [36], indicating that this
region can be immunogenic in vivo. In the context of influenza HA, steric hindering from
the head domain has been considered to prevent Ab binding to the stem domain [1,15]. Nev-
ertheless, further increasing the accessibility of the stem with head-less HA immunogens
did not result in potent bnAbs induction [1,37], suggesting overall that the low accessibility
of conserved viral epitopes does not fully explain mechanisms for subdominant bnAbs
induction. More recently, bnAbs were shown to efficiently bind to cryptic epitopes in dif-
ferent microbial antigens, such as coronavirus [38], ebolavirus [39], and plasmodium [40],
conferring neutralization across different subspecies of those pathogen families.

2.2. B Cell Precursor Frequency, Somatic Hypermutation, and HLA2 Polymorphisms

The frequency of germline B cell precursors shapes the humoral response to immuno-
genic antigens by impacting GC occupancy [1,3]. A low B cell precursor frequency has
been proposed as one potential obstacle to mounting effective bnAb responses following
vaccination. Despite being relatively rare in the repertoire, VRC01-like cells can be acti-
vated by a high-affinity stimulation in mouse models that recapitulate human precursor
frequencies [3,18]. VRC01-like precursors are also present in 96% of humans [19], giving
hope that a bnAb-like HIV vaccine is indeed possible. Furthermore, germline residues of
the VH1-69 alleles, which account for 2–6% of the B cell repertoire, are known to mainly
mediate recognition of influenza group 1 HA stem [1,41]. This extraordinary high number
of putative anti-stem B cell precursors correlates, however, with a subdominant VH1-69
response that is generated only in some individuals.

The high mutational load required to develop bnAbs can also represent a major
challenge [1]. Indeed, anti-HIV VRC01-like antibodies require multiple rounds of somatic
hypermutation to be generated and are frequently characterized by extensive nucleotide
insertions and substitutions [1,3]. Nonetheless, it was recently shown that a single proline-
to-alanine mutation in HCDR2 was sufficient to confer high-affinity binding to the influenza
HA stem [41], consistent with a rapid affinity maturation process. Despite the low number
of mutations required, anti-influenza bnAbs are rare and apparently counter-selected,
suggesting that high mutational load and complex antibody selection processes do not
fully recapitulate defective bnAbs induction, at least in the context of influenza.

A variety of host genetic factors can influence the outcome of viral infections, most
notably polymorphisms within the HLA class I and II loci [20,42–44]. HLA class II molecules
are essential in the development of adaptive immune responses, as they present antigens to
CD4 T cells and contribute to the regulation of B and T cell interactions within GCs. HLA
DRB1*13-DQB1*06 was associated with a trend toward the increased duration of AIDS-free
time in HIV patients treated with anti-retroviral therapy [43]. In addition, the inheritance
of DRB1*13 alleles has been associated with long-term survival among children with
vertically transmitted HIV-1 infection [20] and higher IFNγ production by Th1 cells [21].
Nevertheless, anti-CD4 binding site (and gp41-MPER) bnAb responses were detected in
very few individuals independently of HLA class II haplotypes [45], suggesting that HLA
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class II polymorphisms are not likely to explain the defective anti-viral bnAbs production
following vaccination.

2.3. BCR and Antibody Modulation of Antigen Presentation

Antigen processing and presentation were initially investigated using macrophages or
dendritic cells as a model of antigen presenting cells (APCs) [46]. In such cases, the APCs
do not possess specific antigen receptors and antigen internalization is mainly restricted to
receptor-free endocytosis. In contrast, antigen uptake by antigen-specific B lymphocytes is
mediated by the BCR, which mediates efficient antigen presentation at lower concentrations
than those required by non-specific B cells [23,47]. Antibodies can alter the conformation
and stability of target antigens [48] and protect epitopes from proteolytic processing [49].
In particular, antibody–antigen complexes can resist the lysosomal acidic pH [22], therefore
influencing the antigen fragmentation by proteases, which can initiate while the antigen is
still bound by antibodies [50].

Pioneer work by Berzofsky and Celada indicated that antibody binding could differ-
entially boost antigen presentation to some T cell clones, either through the modulation of
antigen uptake or proteolytic processing [51–54]. Accordingly, it was hypothesized that
the antibody specificity shapes the initial pattern of antigen fragmentation, supporting the
existence of T and B cell preferential pairing [51,55] and reciprocity circuits [51]. A few
years later, the sophisticated work from P.D. Simitsek et al. demonstrated that antibody
binding to antigens can modulate their processing by enhancing or suppressing HLA
class II presentation of different CD4 T cell determinants [56]. Strikingly, a single bound
antibody (11.3) or its Fab fragment was shown to simultaneously boost the presentation of
one CD4 T-cell epitope (1273–1284 aa), while suppressing the in vitro presentation of other
determinants (1174–1189 aa, Figure S1) [56]. Both tetanus epitopes that are modulated by
BCR/antibody binding were shown to fall within the 11.3 Ab footprint region (i.e., the
region of the antigen that is at least partially protected from lysosomal proteolytic cleav-
age). The suppressed epitope (1174–1189 aa) is sterically hindered to bind to HLA class II
molecules upon interaction with 11.3 Ab, likely due to reduced proteolysis in the lysosomal
and inaccessibility to HLA binding [56]. On the contrary, the boosted epitope (1273–1284aa)
was likely protected from excessive cleavage, stabilized, and made more accessible for the
binding to HLA class II molecules by the interaction with the 11.3 Ab. The processing
of epitopes located far from the BCR/antibody binding region (947–967 aa) was instead
maintained unaltered. The influence of the antibody specificity on antigen degradation
was further analyzed in clones of tetanus-specific B cells with different epitope specifici-
ties [50,57], and was confirmed using other model antigens, such as f3-galactosidase [52]
and myoglobin [54].

3. Results
3.1. Strong Inducers of Neutralizing Humoral Responses

Given the impact of BCR and antibody binding on antigen processing, we postulated
that the relative positioning of B and CD4 T cell epitopes shapes immunodominance. To
test this hypothesis in the absence of studies that map B and CD4 T cell immunodominant
epitopes within single patients, we analyzed the 3D positioning of published B and T
cell epitopes in immunogenic antigens known to elicit strong and neutralizing humoral
responses, such as measles HA, diphtheria toxoid, vesicular stomatitis virus glycoprotein
(VSV-GP), and SARS-CoV-2 spike protein. To restrict our focus to highly immunodominant
and HLA-independent regions, we gathered published data for B and T cell epitopes and
selected determinants found in multiple patients or host species (mice, macaques, and hu-
mans). This approach allowed us to select determinants that were likely to be dominant in
the presence of different HLA class II alleles. In addition, we decided to focus our analysis
on experimentally validated rather than predicted epitopes [58]. Across measles HA and
diphtheria toxoid, immunodominant CD4 epitopes are scattered throughout the protein se-
quences and often adjacent to immunogenic and neutralizing B-cell epitopes (e.g., measles
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HA: T epitopes 321–350 [59], 443-469 [60]; B epitopes 309–319, 380–400aa [61]; diphtheria
toxoid: T epitopes 271–290, 321–340, 411–450 [62], B epitopes 247–260, 395–403, 477–483,
508–527 [63], Figure 1; Tables S1 and S2). In the diphtheria toxoid (PDB 1MDT), 5 out of
18 immunodominant B regions (255–260 [64], 381–394 [64], 395–403 [63], 452–458 [64], and
465–475aa [64]) are located next to immunogenic CD4 epitopes (271–290, 351–371, 411–430,
431–450aa [62]), possibly in the ideal position to be boosted upon BCR binding (Figure 1.
Interestingly, only 2 out of 18 immunodominant B-cell epitopes (351–355, 409–420aa) [63,64]
partially overlap with immunodominant CD4 determinants (351–370, 411–430aa) [62]; how-
ever, they are also adjacent to other CD4 determinants (331–350, 421–440aa) [62] (Figure 1
and Table S2). In VSV-GP (PDB 4YDI), a neutralizing B-cell epitope (382–400aa) [65] is
located next to two immunodominant CD4 epitopes (338–368aa) [66] and does not overlap
with any CD4 epitope (Figure S2 and Table S3). Protective antibodies targeting the spike pro-
tein of SARS-CoV-2 are induced in the majority of infected or vaccinated patients [67–71].
In agreement with the previous observations on immunogenic antigens, four out of eight
B-cell immunodominant epitopes (209–226, 721–733, 769–786, 809–826aa) [72,73] are ad-
jacent to immunodominant CD4 determinants (166–180, 751–765, 866–880aa) [74] in the
SARS-CoV-2 spike protein, possibly inducing an antigen presentation boost upon BCR
binding (Figure 2 and Table S4). In parallel with other highly immunogenic antigens, none
of the immunodominant B regions were found to overlap with dominant CD4 epitopes.
Interestingly, 95% of SARS-CoV-2 CD4 epitopes induced upon vaccination were conserved
across viral variants [75], suggesting that these concepts may apply to newly emerging
viral variants. Despite broad immunogenicity, the spillovers of β-coronaviruses in humans
and the emergence of SARS-CoV-2 variants highlight the need for broader anti-coronavirus
humoral protection. Recently, a highly conserved B epitope in the stem-helix of SARS-CoV-
2 spike (1148–1156aa [69]) was shown to be a target of several bnAbs [68], thus representing
a potential target for broad humoral protection. Higher frequencies of anti-stem helix-
specific Abs were observed in vaccinated individuals who were previously infected [68],
indicating this region is immunogenic in humans. However, these antibodies are found
at much lower frequencies in individuals previously infected with SARS-CoV-2 or those
who received two doses of mRNA vaccines, indicating that humoral responses targeting
the stem helix are usually rare. Interestingly, this highly conserved stem-helix B epitope
(1148–1156aa [69]) was not located near any immunodominant CD4 determinant, where
antigen presentation boost upon BCR binding is unlikely to occur. This observation can
explain the counter-selection of anti-stem-helix bnAbs in favor of more immunogenic but
less cross-reactive anti-spike B-cell specificities, which are adjacent to immunodominant
CD4 determinants and might take advantage of enhanced antigen presentation. Of interest,
other neutralizing and dominant B epitopes were described to locate within the RBD spike
domain, distant from dominant CD4 determinants [76,77].
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378-400aa
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351-355aa

Figure 1. Crystal structure of measles hemagglutinin (PDB:2ZB6, top) or diphtheria toxoid
(PDB:1MDT, bottom). Immunodominant B cell epitopes are depicted in red, while dominant CD4
determinants are highlighted in blue. Overlapping epitopes are highlighted in pink.
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Fig. 2

866-880aa

Figure 2. Crystal structure of SARS-CoV-2 spike protein (PDB:6VSB). Immunodominant B cell
epitopes are depicted in red, while dominant CD4 determinants are highlighted in blue.

Overall, these data suggest that immunodominant and neutralizing B-cell epitopes
are mostly not overlapping with and often adjacent to dominant CD4 T-cell epitopes,
increasing the chances of an antigen presentation boost rather than suppression upon BCR
binding. Additionally, antigens that are associated with a rapid nAb response contain
immunogenic CD4 determinants scattered in several portions of the viral proteins. Scattered
CD4 T cell epitopes increase the likelihood for dominant B cell clones targeting multiple
regions of the antigen to emerge, facilitating a neutralizing humoral response. The presence
of conserved and dominant viral CD4 epitopes that support nAb production raises the
intriguing question about why such viruses have evolved to maintain these immune
determinants. Some of these epitopes may be part of protein regions that do not allow for a
high mutational load, as it would result in a loss of viral fitness. However, this possibility
would not explain why such conserved regions contain dominant CD4 epitopes. A second
possibility is that these viruses maintained these conserved and dominant CD4 epitopes to
obtain long-term fitness advantages. Indeed, this may be particularly the case of aggressive
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and fast replicating cytopathic viruses (including VSV and measles), which are highly
infectious and induce widespread cell damage. The early and potent neutralization of such
viruses is key for reaching a balance in the host–pathogen interaction, as hosts incapable of
neutralizing such viruses are likely to succumb to the infection. In addition, these viruses
usually escape Ab responses by infecting a new host prior to the generation of antiviral
adaptive immunity and are thus not highly affected by neutralization. For these reasons,
these cytopathic viruses were likely not selected to evolve a protective mechanism against
the pressure of the adaptive immune system.

3.2. Poor Inducers of Neutralizing Humoral Responses

In contrast, we postulated that the clustering of dominant CD4 T cell epitopes could
reduce the immunogenicity of specific antigen portions, suppressing T cell help to B cells
targeting those regions. To test this hypothesis, we modeled the relative positioning of B
and T cell epitopes in well-studied antigens that efficiently escape broad Ab neutralization,
such as HIV gp120 and influenza HA. To minimize the effects of viral antigen variability
and HLA class II polymorphisms, we focused on experimentally validated and highly
immunodominant CD4 determinants presented by multiple HLAs (see Materials and
Methods Section) and conserved B cell epitopes targeted by bnAbs.

The CD4 binding site in HIV gp120 represents, among others, one of the most promis-
ing targets to achieve broad anti-HIV protection. Indeed, second-generation anti-CD4
binding-site antibodies (e.g., 3BNC117) broadly neutralize HIV-1 primary isolates and
suppress infection upon intravenous injection in chronically infected patients, represent-
ing a potent clinical tool. Intriguingly, immunodominant CD4 epitopes are not scattered
throughout the whole gp120 protein; rather, they are clustered in the outer domain [78]
(Figure 3). In addition, combining rules for HLA class II binding of predicted epitopes
to well-conserved sequences substantially improves the prediction of immunodominant
CD4 epitopes [79], as epitopes included in conserved sequences are more likely to become
immunodominant thanks to a higher frequency across different viral strains. Altogether,
these observations suggest that HIV might have evolved to host a cluster of immunodom-
inant CD4 T cell epitopes within the CD4 binding site, a highly conserved region of the
gp120 outer domain and the target of the most promising bnAbs (Figure 3). To confirm
this observation, we selected validated immunodominant CD4 epitopes published by
different research groups, focusing on those shared by multiple HLA class II haplotypes
(immunodominant in at least two different mouse strains, macaques, and/or patients).
Highly immunodominant CD4 epitopes are localized within three main regions in the
gp120 sequence, 300–368 [78–80], 400–449 [78,81], and 480–508aa [78,79,81–83] (Figure 3
and Table S5), confirming the clustering of immunodominant epitopes within the CD4
binding site in the outer domain.

Crystal structures of HIV gp120 and 3BNC117 bnAb (PDB 4jpv) are presented in Fig-
ure 3. The neutralizing epitope recognized by 3BNC117 is located within the CD4 binding
site and overlaps with immunodominant CD4 T cell determinants (300–368, 400–449, and
480–508aa). Strikingly, 62% of the amino acids essential for 3BNC117 binding (Figure 3
and Table S5) are located within the highly immunodominant CD4 T cell epitopes. A high
overlap of B and T cell epitopes may result in the suppression of antigen presentation and
intrinsic disadvantage of B cells displaying 3BNC117-like BCRs [19]. In support of this
hypothesis, high-affinity anti-CD4 binding site Abs added during APC-Ag pulsing [84]
can inhibit gp120-specific CD4 T cell proliferation by suppressing gp120 processing and
preventing HLA class II antigen presentation [85]. Moreover, recent experimental evidence
suggests that potent help is required to stimulate and expand rare precursors of anti-gp120
bnAbs in vivo, highlighting the importance of T cell help during this process [86].
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3BNC117

Figure 3. Crystal structure of HIV gp120 monomer and 3BNC117 bnAb (PDB:4JPV). Immunodomi-
nant CD4 epitopes are highlighted in blue. Amino acids essential for 3BNC117 binding are listed
(bottom left) and those overlapping with CD4-dominant regions are highlighted in red.

Similarly, immunodominant CD4 T cell epitopes (401–430aa) [17] largely overlap with
neutralizing B cell regions in the influenza HA stem (PDB 5JVR; Figure 4 and Table S6),
with 50% essential amino acids for MEDI8852 binding to the HA stem located within the
highly immunogenic CD4 T regions (401–430aa) [17]. In support of the functional role of
this relative positioning, anti-stem (but not anti-head) antibodies have recently been shown
to specifically inhibit presentation of immunodominant T cell epitopes located within
the HA stem [17]. The influenza HA head is the target of most strain-specific nAbs that
commonly lack broadly neutralizing activity. Anti-HA-head B cell clones largely dominate
the humoral responses, allowing for strain-specific nAbs to emerge in virtually every
infected host. Of note, the influenza HA head also contains immunodominant CD4 epitopes
(centered around 215 and 265 aa [87]), which are mostly adjacent to immunodominant B
cell regions (Figure 4 and Figure S3). This relative positioning recapitulates the structure
observed in highly immunogenic antigens, likely leading to enhanced antigen presentation
upon BCR binding. On the contrary, the surface of the HA-stem region is constituted of
immunodominant CD4 T cell epitopes, maximizing the likelihood of suppressing any B
cell clone targeting this conserved protein region, particularly in the context of concomitant
presence in the GC reaction.
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Figure 4. Crystal structure of influenza hemagglutinin and MEDI8852 bnAb (PDB:5JW3). Immun-
odominant B-cell epitopes are depicted in red, while dominant CD4 determinants are highlighted
in blue. Amino acids essential for MEDI8852 binding are listed (bottom left) and those overlapping
with CD4-dominant regions are highlighted in red.

To quantify the observed differences in the relative positioning of B and T cell epitopes,
we grouped together antigens that were strong or poor inducers of long-lasting humoral re-
sponses and measured the frequency of B epitopes that were distant from (>15aa), adjacent
to (<15aa), or overlapping (0aa) with CD4 T cell epitopes. In support of our hypothesis,
the relative positioning of B and T cell epitopes is highly associated with the immuno-
genicity of the antigens analyzed (X2 = 23.0485, n = 66, p < 0.0001, Figures 5a and S3 and
Table S7), with poor immunogens showing an increased frequency of B epitopes overlap-
ping with immunodominant CD4 determinants compared to strong nAb inducers (58.6%
vs. 8.1%, respectively).
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Figure 5. (a) Quantification of dominant B cell epitopes classified as distant from (>15aa), adjacent to
(<15aa), or overlapping with (<0aa) immunodominant CD4 determinants within the same antigen.
Good nAb inducers (measles HA, diphtheria toxoid, SARS-CoV-2 spike, and influenza HA head:
black dots) and poor nAb inducers (influenza HA stem and HIV gp120: red dots) are compared.
Chi-squared analysis was applied (see Table S7). (b) Model figure showing immunodominant B cell
(left) recognizing immunogenic viral regions and boosting antigen presentation upon BCR binding;
right, subdominant B-cell clone binding conserved/poorly immunogenic viral regions and inhibiting
presentation of overlapping CD4 epitopes.
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Altogether, this analysis supports the immunodominance relativity model, according
to which the relative positioning of B and T cell epitopes within antigens drives B cell
immunodominance. Epitopes targeted by bnAbs often overlap with highly immunodomi-
nant CD4 T cell epitopes within viral antigens that escape Ab neutralization (Figure 5b).
Epitope overlap may result in the suppression of antigen presentation, limiting T cell help
and introducing an intrinsic disadvantage for B cell clones displaying bnAb-like BCRs. To
maximize this effect, immunodominant CD4 T cell epitopes are mostly scattered across the
viral antigens that induce efficient Ab neutralization, whereas they tend to cluster within
poorly immunogenic regions in antigens that escape humoral responses. In conclusion,
the immunodominance relativity model offers an innovative explanation for HIV and
influenza escape from long-lasting immunity and the molecular basis of antibody selection
and maturation.

4. Discussion

Antibodies can potentially target any epitope of a given antigen, thanks to the ex-
tremely high variability in the repertoire of B-cell clones. Despite this potential, epitope
specificities are not equally targeted by humoral responses, with the most frequently tar-
geted epitopes defined as immunodominant. Viruses have evolved different strategies to
escape Ab neutralization, among others (hyper)mutation of viral antigens. Antibodies able
to neutralize multiple viral variants are defined as broadly neutralizing, and they represent
the ultimate target of most vaccination strategies. BnAbs represent a fundamental tool to
mount effective protection against highly mutating viruses, such as influenza and HIV.
Despite the prolonged efforts to induce such humoral responses upon vaccination, bnAbs
are generally highly subdominant when compared to other strain-specific antibodies.

Understanding the rules defining immunodominance is of paramount importance to
improve the design of future vaccination strategies. In recent decades, several hypotheses
have been suggested to explain the molecular mechanisms underlying the inconsistent
induction of bnAbs, including antigen mutation, epitope accessibility, high BCR mutational
load required, B-cell precursor frequencies, and HLA class II polymorphisms. Nevertheless,
none of these hypotheses fully recapitulates the counter-selection of bnAbs, especially in
the context of isolated antigens in vaccination studies. Pioneering work by Berzofsky and
Celada demonstrated that BCR or antibody binding to antigens could boost or inhibit the
presentation of specific CD4 epitopes based on their relative positioning. Indeed, antibodies
can both sterically hinder and inhibit the presentation of CD4 T cell epitopes located within
the Ab-bound region or stabilize adjacent epitopes to facilitate their mounting on HLA
molecules, thus enhancing their presentation.

In the present work, we propose the theory of immunodominance relativity, accord-
ing to which the relative positioning of B and T cell epitopes within an antigen shapes
immunodominance. Indeed, we found that subdominant conserved regions targeted by
bnAbs (e.g., CD4 binding site of HIV gp120 or the stem of influenza HA) often overlap with
clusters of highly immunodominant CD4 epitopes. In support of this observation, anti-CD4
binding site and anti-HA stem Abs inhibit antigen presentation upon binding, reinforcing
the idea that overlapping B and T cell epitopes can lead to the inhibition of antigen presen-
tation. Our analysis suggests that bnAb B cell precursors specific for conserved regions
of HIV and influenza inhibit the presentation of immunodominant CD4 determinants
upon BCR binding, resulting in poor T cell help during the GC reaction and consequent
counter-selection in favor of other dominant B cell clones. On the contrary, non-neutralizing
or strain-specific immunodominant B cell precursors may boost the presentation of adjacent
immunodominant CD4 epitopes, resulting in increased T cell help and selective advantage
during GC reactions. It is worth highlighting that the mechanism we proposed in this study
might have different impacts on B cell immunodominance depending on the B epitopes
analyzed. Indeed, specific bnAb-targeted B cell determinants may be subdominant as
a function of other immunosuppressive mechanisms, which are extensively discussed
above. Interestingly, the potent anti-HIV bnAb antibody can eventually be isolated from
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infected patients years after the infection. A possible explanation for this event in light of
our proposed theory is that extensive T–B crosstalk and BCR mutational load in GCs over
the years might overcome defects in antigen presentation by bnAb-bearing B cell clones,
as the impairment in antigen presentation is significant but not absolute. We would also
like to point out that a conformational (rather than linear) epitope analysis might impact
epitope interactions and will be of great interest to obtain in this context. Nevertheless, our
analysis likely comprises both linear and conformational epitopes, as the immunodominant
B regions provided likely contained both linear and structural determinants.

This working hypothesis currently lacks formal experimental demonstration; however,
we built the model gathering data from a multitude of independent publications over
the last four decades and found supportive experimental evidence published by different
groups. Finally, we propose that the relative positioning of B–T epitopes may be one addi-
tional mechanism that cooperates with the other above-mentioned processes to influence
immunodominance. If demonstrated, this theory can improve the understanding of the
immune responses against current and future pandemics and will indicate a rational way
to design antigens for effective vaccination strategies.

5. Materials and Methods
5.1. CD4 and B-Cell Immunodominant Epitope Selection and Analysis

To focus the analysis on HLA-independent immunodominant determinants, exper-
imentally validated CD4 and B epitopes that were found to be dominant in at least two
different species/mouse strains or multiple patients were selected for further testing. B-cell
epitopes were arbitrarily classified as distant from (>15aa), adjacent to (<15aa), or overlap-
ping (<0aa) with dominant CD4 epitopes based on their distance and positioning within
the antigenic linear sequence. As such, peptides distant less than 15aa were considered as
likely to be near enough for the Ab to suppress the CD4 epitope.

5.2. Crystal Structures’ Visualization

To highlight the inter-positioning of B- and CD4-dominant epitopes in 3D structures,
the above-mentioned PDB files were modified using Pymol (2.3.5). CD4-dominant epitopes
were labeled in blue, B-dominant epitopes in red, and overlapping regions in magenta.
Amino acids essential for bnAb binding to antigens are listed in the indicated figures, and
those overlapping with CD4-dominant epitopes are highlighted in magenta.

5.3. Statistical Analysis

Prism software (GraphPad 9.0.1) was used for all statistical analysis. A chi-squared
test was performed to evaluate the relationship between immunogenicity and the relative
distribution of B- and T-cell epitopes within antigens. p < 0.05 was considered significant.
In the summary graphs, the points indicate samples and horizontal lines are the means.
Error bars indicated standard error mean (SEM).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vaccines10081227/s1, Figure S1. Crystal structure of tetanus
toxoid (PDB:1AF9) is shown. Antibody footprint binding region is depicted in red, while CD4
determinants are highlighted in blue. Figure S2. Crystal structure of Vesicular Stomatitis Virus
glycoprotein (PDB:512M) is shown. Immunodominant B-cell epitopes are depicted in red, while
dominant CD4 determinants are highlighted in blue. Figure S3. Pie charts showing percentages
of distant (black), adjacent (gray), or overlapping (white) B epitopes in indicated antigens (good
inducers: left; poor inducers: right). Table S1. Immunodominant CD4 T- and B-cell epitopes within
measles glycoprotein (GP). Table S2. Immunodominant CD4 T- and B-cell epitopes within diphtheria
toxoid. Table S3. Immunodominant CD4 T- and B-cell epitopes within Vesicular Stomatitis Virus (VSV)
Indiana glycoprotein (GP). Table S4. Immunodominant CD4 T- and B-cell epitopes within SARS-CoV2
spike protein. Table S5. Immunodominant CD4 T- and B-cell epitopes within HIV gp120 protein.
Table S6. Immunodominant CD4 T-cell and bnAb B-cell epitopes within influenza hemagglutinin
(HA) protein. Table S7. Chi-squared table. The chi-squared statistic is 23.0485. The p-value is

https://www.mdpi.com/article/10.3390/vaccines10081227/s1
https://www.mdpi.com/article/10.3390/vaccines10081227/s1
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<0.00001. The contingency table above provides the following information: the total observed epitope
inter-positioning (the percentage of total epitope inter-positioning) and the chi-squared statistic for
each antigen.
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