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Abstract

Background: We wished to develop alternate production strategies to generate antibodies against traditionally problematic
antigens. As a model we chose butyrylcholinesterase (BChE), involved in termination of cholinergic signaling, and widely
considered as a poor immunogen.

Methodology/Principal Findings: Jettisoning traditional laborious in silico searching methods to define putative epitopes,
we simply immunized available BChE knock-out mice with full-length recombinant BChE protein (having been produced for
crystallographic analysis). Immunization with BChE, in practically any form (recombinant human or mouse BChE, BChE
purified from human serum, native or denatured), resulted in strong immune responses. Native BChE produced antibodies
that favored ELISA and immunostaining detection. Denatured and reduced BChE were more selective for antibodies specific
in Western blots. Two especially sensitive monoclonal antibodies were found capable of detecting 0.25 ng of BChE within
one min by ELISA. One is specific for human BChE; the other cross-reacts with mouse and rat BChE. Immunization of wild-
type mice served as negative controls.

Conclusions/Significance: We examined a simple, fast, and highly efficient strategy to produce antibodies by mining two
expanding databases: namely those of knock-out mice and 3D crystallographic protein-structure analysis. We conclude that
the immunization of knock-out mice should be a strategy of choice for antibody production.
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Introduction

Monoclonal and polyclonal antibodies are essential tools for

biological research. A necessity for structure function studies of

proteins both in vivo and in vitro, antibodies with new and varied

properties are constantly in demand. Complications in antibody

generation, however, often leave this tool void in the repertoire of

those available for the study of many proteins. A commonly held

explanation for the failure of antibody production following

immunization is a limited antigenic response due to high

conservation between the antigen and the endogenous proteins

of the immunized host. To circumvent this problem an antigen is

designed in silico that carries one specific epitope. This strategy

involves several steps, including: 1) selection of a primary sequence

that is divergent between the different species (immunizing antigen

and host to be immunized); 2) evaluation of sequence accessibility

in the 3D structure, if available (i.e., presence on the surface of the

protein); 3) peptide synthesis and attempts to obtain folding into

the native 3D structure and 4) immunization of the distant species.

This commonly used strategy can be efficient, despite its

complexity and time-consumption. Often, however, non-selectivity

(or cross-reactivity) of the antibody is encountered and this

problem is usually only uncovered when the antibody is used in a

background in which the gene encoding the protein of original

interest has been knocked-out or knocked-down [1,2]. Presence of

non-specific labeling or binding in this case is due to the presence

of the epitope in other proteins. In cases where the protein of

interest is studied in a species in which the deletion of the gene is

not possible, the control for cross-reactivity is more difficult.

In some gene therapy paradigms, on the other hand, unwanted

production of an antibody against a selected protein has been

described. In these cases an immune-naive host eliminates the newly

synthesized protein by standard immune responses, essentially

‘‘sabotaging’’ the gene therapy goal [3,4]. Along this line, the idea

of the immunization of ‘‘knock-out’’ mice was proposed to overcome

the problem of inter-species sequence similarity in antibody

production [5]. Indeed, this strategy has been successfully used in a

few studies but has, however, never become a common method of

choice for antibody production. Most likely this is due to the limited

variety of genetically modified animals, as well as the lack of a

PLoS ONE | www.plosone.org 1 September 2010 | Volume 5 | Issue 9 | e12892



sufficient amount of pure cognate protein for immunization.

Whatever the case, here we revisit this issue and shed new light on

this simple and efficient mouse immunization strategy (figure 1).

As a test case of this strategy to obtain antibodies, we choose a

‘‘problematic’’ antigen - butyrylcholinesterase (BChE). BChE is a

well-characterized enzyme, highly abundant in serum and in

tissue, and involved in the hydrolysis of acetylcholine and

detoxification of several drugs [6]. During the 1980s, several

monoclonal antibodies against human BChE were obtained, but

due to their weak affinity they have proved to be not very useful

[7,8]. Currently there are no antibodies either polyclonal or

monoclonal that recognize mouse or rat BChE in histochemistry,

immunoprecipitation or Western blots. Explanations for this could

be that BChE is highly glycosylated and/or the high inter-species

conservation of the sequence. For our test of this method we used

mice with a complete deletion of the BChE catalytic domain [9].

These animals are without any obvious phenotypic changes. As an

immunogen, we first used sugar-diminished full-length recombi-

nant human BChE that was prepared previously to study the 3D

structure [10]. In next steps enzyme from different source was

used, recombinant mouse BChE or serum human BChE and the

antigen was differently prepared (native or denatured).

Results

Immunization with recombinant low-sugar protein
The immune response to the recombinant BChE was strong in all

immunized BChE 2/2 animals as tested in both ELISA and

immunohistochemistry of fixed COS cells expressing human BChE.

The amount of antibody produced varied from mouse to mouse and

did not depend on the amount of injected protein. Even the lowest

injected amount of protein (15 mg) gave the maximal respond. As

determined in ELISA, after 4 boost injections the antibody titer of the

sera with the strongest response was 1/50,000. Wild-type animals, in

comparison to BChE 2/2 mice, responded negligibly to the

recombinant BChE and thus were omitted from the study after the

first priming injection. One of the BChE 2/2 mice was used to

generate monoclonal antibodies. Out of one thousand hybridomas

screened, 33 were positive with recombinant human BChE, and after

two further subcultures one IgG1, 11D8, was finally selected. As

illustrated in figure 2a and supplementary data (figure S1), 11D8

detected human BChE in ELISA. Within 1 min, 0.25 ng of

recombinant protein and 4 nl of human plasma are detected while

sensitivity of the detection increases with time; ie. within 1 hour

(figure 2a), 0.2 nl of serum and 0.42 pg of rBChE are detected. 11D8

shifted BChE oligomers in sucrose gradient (figure 2b). 11D8 binds

fixed human BChE in transfected mammalian cells (figure 2c) and

human tissue sections (figure 2d). 11D8 also recognizes purified

recombinant and wild-type human BChE in Western blots (figure 2e).

Presumably the epitope does not contain glycans because deglyco-

sylated protein in situ is still detected in WB (figure 2e). In addition,

the epitope is still present when the different glycosylation sites are

deleted from the complete protein (table 1). It is possible, therefore,

that the immunization was efficient due to a combination of lowered

glycosylation of the recombinant BChE used as an antigen and/or of

the use of the BChE knockout strain as host.

Immunization with BChE purified from human serum
To distinguish between these two possibilities, we immunized the

BChE knockout strain with wild-type human BChE purified from

serum [11]. Mice were immunized in 2 different conditions - with

native or denatured/reduced BChE. Similar to the results with

recombinant BChE, the immune response to purified human BChE

was strong, and detected even after the BChE priming injection. As

expected, serum from mice immunized with denatured BChE gave

stronger and more selective signal by Western blot (figure 3A) than

serum immunized with native enzyme. Sera recognized with

different intensity as little as 0.2 ml of human plasma and 8 ng of

purified protein. On the other hand, as shown in figure 3B with

staining of BChE expressed in a cell line, sera from mice immunized

with native BChE better recognized the native enzyme. Interestingly

sera from all mice immunized with human BChE cross-reacted with

mouse BChE in Western blots (figure 4B) and one serum from

immunization with native human BChE, labeled mouse BChE

expressed in COS cells (figure 3B). We can conclude, therefore, that

anti-BChE antibody production is as efficient regardless of whether

the BChE immunogen is glycosylated or not, and that using a mouse

that is genetically null for BChE as the target host facilitates

previously unobtainable results of anti-BChE antibody production.

Figure 1. Different steps in the generation of antibodies:
Strategy of immunization. Two high throughput methods ‘‘Knock-
out Mouse Project’’ and ‘‘Protein Structure Initiative’’ are crossed to
generate antibodies: immunization of knockout mice with high quality
protein domains. Each immunized mouse offers a new collection of
antibodies that are used as polyclonal source or that are cloned as
monoclonal source after fusion.
doi:10.1371/journal.pone.0012892.g001

Immunization of Knockouts
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Autologous immunization
To evaluate the feasibility of generating an antibody against

autologous BChE, we immunized mouse BChE knockouts with

mouse BChE protein. Similar to results with immunization of

these mice with human BChE, a strong immune response to the

antigen was generated and the resultant serum recognized the

protein in all assays (figure 4). The antibody titer in the selected

mouse sera was more than 1/50,000. Out of 1000 hybridoma, 42

were positive with mouse serum and after two further subcultures

three IgG1 were selected, while 4H1 gave the strongest signal. As

illustrated in figure 5A, 4H1 detected recombinant mouse BChE

and BChE in mouse serum in ELISA. 4H1 shifted BChE

oligomers but not AChE oligomers in sucrose gradient

(figure 5B). 4H1 binds fixed mouse BChE in transfected

mammalian cells (figure 2C) and rat tissue sections (figure 2D).

Of note then is that this strategy for antibody generation is not

limited to immunization with the orthologous protein, but is

efficient even when an autologous protein is used.

Discussion

Our results show that immunization of knock-out mouse is very

efficient method for the generation of both polyclonal and monoclonal

antibodies, while both recombinant and natural protein suit the task

and antigen preparation determines the characteristic of the resulting

antibody. The autologous immunization of knock-out strains of mice

Figure 2. Human BChE is recognized by monoclonal antibody 11D8. (A) Selectivity of 11D8 for recombinant and wild-type BChE by ELISA
(60 min detection). (B) 11D8 shifts BChE in sucrose gradient. Sucrose gradient of human PRiMA-BChE complex extracted from COS cells. Binding of
11D8 shifts the peaks of tetramer and dimmer. Wider high-S peak suggests a mixed population of IgG/one tetramer and IgG/two tetramers. (C) 11D8
recognizes BChE expressed by COS cells, anchored by ColQ and PRiMA as documented by confocal microscopy. (D) Immunohistochemistry of human
neuromuscular junction (NMJ). Top, nicotinic acetylcholine receptors are visualized with bungarotoxin (Bung). Bottom, staining with 11D8 labels
BChE. (E) Western blot of human recombinant (r) and wild-type (wt) BChE, (*) after deglycosylation.
doi:10.1371/journal.pone.0012892.g002

Immunization of Knockouts
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has been proposed previously for the generation of antibodies. With

this strategy monoclonal antibodies against the prion protein (the

infective agent of scrapie) was possible [12]. This method was also

successfully used to make a monoclonal antibody against apolipopro-

teins [13], while another group claimed successful generation of

polyclonal but failed in generation of monoclonal antibody against

cytokines [14]. We have also successfully used the described strategy to

obtain an antibody against another related protein – mouse

acetylcholinesterase (data not shown). At present we see no reason

why this strategy should not be employed for any protein antigen for

which there is need for an antibody, and are purified protein and a

cognate knockout mouse strain available. First of all, the number of

mutant mice generated over the past 10 years or so has increased

dramatically, so much so that several high throughput methods are in

progress that will generate a null allele for every single gene (http://

www.knockoutmouse.org/ and http://www.eucomm.org/). Impor-

tantly, many of these mutants are viable and live with no apparent

defect in the phenotype until adulthood. Secondly, large amounts of

high quality antigens are available, either from individual studies that

produced full/partial recombinant proteins for 3D structure analysis,

or from an NIH sponsored initiative underway (http://kb.psi-

structuralgenomics.org/about/psi.html) to produce and determine

the structure of all major classes of known proteins.

Despite the satisfying results that we have obtained, we would

like to point out that the proposed strategy does share some of the

limitations of conventional strategies. As with any immunization

based strategy, immunoreactivity towards the introduced protein is

key but sometimes, for still unexplained reasons, this does not

easily occur. Likewise, amounts of the immunizing protein to be

used as an antigen need to be available. Moreover, antibodies that

are produced may have limited use in recognition of the wild-type

protein. The immune response, however, can be different between

individual mice making it possible to select the mouse that

produces antibodies with favorable properties. Lastly, the antibody

could be produced against an epitope that is conserved between

species and thus will be cross reactive.

In some selective cases the properties of knockout mouse

themselves could be a limiting factor, i.e. because of an impaired

immune system or in the case of a partial deletion of the coding

sequence, either alternative promoter or splice variants may produce

a truncated form of the protein rendering the animal tolerant toward

the immunogen. Overall though we feel that the strategy presented,

of using knockout mice to produce antibodies against autologous

antigens, is a promising method that should be more seriously

considered for ‘‘problem’’ antigens, especially in the current climate

of new knockout strains emerging seemingly everyday.

Materials and Methods

Animals
BChE heterozygous mice [9] were maintained in a mixed

background strain 129S1/SvImJ and B6D2. By unsystematic

Table 1. ELISA of extracts from COS cells expressing different mutants of BChE with lowered glycosylation.

h BChE Glycosylation sites activity ELISA

position 17 57 106 241 256 341 455 481 485 486 O.D. O.D.

4 sugar off x x x x x x 0.6260.01 1.7960.03

3 sugar off x x x x x x 1.6360.01 3.0260.07

5 sugar off x x x x x 1.6360.11 2.9960.11

7 sugar off x x x 0.0660.00 0.1460.02

6 sugar off x x x x 0.4860.01 1.3360.03

no DNA 0.0360.00 0.0660.00

human serum x x x x x x x x x out of range out of range

‘‘no DNA’’ is a COS cell extract of non-transfected cells; 100 ml of rat serum was used as a negative control; 8 ml of human serum was used as a positive control.
doi:10.1371/journal.pone.0012892.t001

Figure 3. Mouse polyclonal anti-human BChE antibody raised
against wild-type protein recognizes human and mouse BChE.
(A) Western blot with sera from mice immunized with denatured/
reduced protein (h1–h3) or with native protein (h4–h6). (B) Immuno-
histochemical staining of BChE expressed in COS cells with sera from
mice immunized with the native protein (h4–h6); note that h6
recognizes human and mouse BChE. Human sera, 2 ml (first lane)
and 0.2 ml (second lane) were loaded on gel; (?) unknown protein;
(*) purified wild-type BChE (8 ng).
doi:10.1371/journal.pone.0012892.g003

Immunization of Knockouts
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crossing with B6D2 mouse strains, heterogeneity of the back-

ground strain was managed in order to avoid random mutations.

Homozygous BChE 2/2 were selected by PCR from crude tissue

extracts after alkaline hydrolysis using a mix of allele specific + and

2 primers (supplementary table S1) and HotStart TaqDNA

polymerase (Qiagen), with an annealing temperature of 65uC.

Mice were maintained under standard conditions at a constant

temperature of 22uC with a 12 - hour daylight cycle. Food and

water were provided ad libitum. In accordance with French

legislation, the investigators had valid licenses to perform

experiments on live vertebrates delivered by the Direction des

Services Vétérinaires (Préfecture de Police, Paris, France). The

animal house and the experimental room had received the

agreement of the same authority.

Immunization
Young (25–40 days old) and old (around 95 days) BChE 2/2

mice were immunized with 15–50 mg of antigen in Freund’s

adjuvants (Pierce; # 77140 and #77145) by subcutaneous

injection. Mice were bled from femoral vein 5 days after each

injection and presence of the antibody in the plasma was tested in

ELISA (see below). Once plateau of antibody production was

detected, hybridoma fusion was performed (figure 1). Antibody

titer was determined by ELISA. As a negative control, four wild-

type BChE mice of the same strain and of the same age were

immunized under same condition as BChE 2/2 mice.

Monoclonal antibody generation and screening
Monoclonal antibodies were generated commercially (P.A.R.I.S

Production d’Anticorps & Services, Compiègne, France) by

hybridoma fusion (SP2/0) followed by 2 subcloning steps.

Hybridomas obtained during preparation were screened for

antibody production by modified ELISA method and then by

Western blot, immunohistochemistry, by ELISA with human,

mouse, rat and cat plasma and mouse tissue extracts (liver, lungs,

muscle).

Isotyping
Isotyping was performed commercially (P.A.R.I.S Production

d’Anticorps & Services, Compiègne, France) using an RD Biotech

kit. Samples were diluted 1:10 and color development time was

10 min (sample 11D8; 4H1).

ELISA
96-well plate Nunc-Immuno F96 Maxi-Sorp plates (Nunc

GmbH & Co) were coated with 1 mg of native or denatured

recombinant human or mouse BChE per well. Protein was

denatured by 20 min incubation at 99uC, in the presence of 1%

SDS and 35 mM beta-mercaptoethanol. Plates were blocked with

3% non-fat milk and incubated for 2 hours with 1:50 and 1:100

dilution of plasma from immunized animals or with culture

medium from hybridoma cells. Secondary anti-mouse antibody

coupled to horse radish peroxidase (HRP) (Amersham Biosciences

- GE Healthcare Europe GmbH; # NA931) were used in dilution

1:2000 in phosphate-buffered saline (PBS). HRP was revealed with

substrate o-phenylenediamine dihydrochloride (Sigma-Aldrich

Chimie; # P5412).

Modified ELISA
Immunoplates Maxi-Sorp (see above) were coated with 1 mg per

well of affinity pure goat anti-mouse IgG +IgM (Jackson

Immunoresearch laboratories, # 115-005-004) or goat anti-mouse

IgG (P.A.R.I.S Production d’Anticorps & Services, Compiègne,

France) diluted into 100 ml with PBS. Plates were blocked with

Figure 4. Antibodies from BChE knockout mice immunized with mouse BChE. (A) Confocal microscopy of COS cells expressing mouse
BChE. (B) Western blot of recombinant mouse BChE with sera from mice immunized with recombinant mouse BChE (m1–m3), or from mice
immunized with BChE purified from human serum (h1–h6), or with monoclonal antibody produced against human low-glycosylated BChE (11D8). In
this experiment, each antibody sample was tested with 75 ng, 38 ng and 8 ng of recombinant mouse BChE loaded onto a denaturing gel. In the
11D8 lane, the band marked with ‘‘*’’ represents 750 ng of protein.
doi:10.1371/journal.pone.0012892.g004

Immunization of Knockouts
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0.1% BSA. Culture medium from hybridoma cells were incubated

in plate, together with or followed by BChE sample. Recombinant

human BChE, human plasma, mouse plasma, rat plasma, cat

plasma, mouse tissue extracts (liver, lungs, muscle) were used in the

assay. Amount of BChE to be used was determined from titration

experiments with recombinant human BChE as discussed in

supplementary figure S1. Signal was revealed as BChE activity

measured with 1 mM butyrylthiocholine, in the presence of 5 mM

5,59-dithiobis-(2-nitrobenzoic acid) (Ellman’s reagent) and 5 mM

Hepes buffer, pH 8.0 for the time period up to 20 hours.

Sensitivity of the antibody was set to the dilution that gave 40%

higher signal comparing to the background.

Transfection of COS cells
DNA of human BChE in pCR/CMV expression vector was a

gift from Dr. David Lenz. Full length human BChE with mutation

of four glycosylation sites Asn17, Asn455, Asn481 and Asn486 was

in expression vector pGS [10] and DNA of mouse BChE in pGS

expression vector were a gift of Oksana Lockridge. rat ColQ [15]

and PRiMA [16] were in pCDNA3. ColQ and PRiMA are a

specific collagen and a small transmembrane protein that organize

BChE in tetramers and anchor them in the extracellular matrix

(ColQ) [15] or in the plasma membrane (PRiMA) [16]. To address

BChE to the cells surface, COS cells were co-transfected with

DNAs of BChE and ColQ or PRiMA. ExGene 500 (Euromedex;

# ET0250) was used for transfection. Cells were grown on poly-

lysine coated glass slides.

Immunohistochemistry of transfected COS cells
BChE was detected at the light microscopic level by immunoflu-

orescence. In brief, cells on glass slides were fixed in 2%

paraformaldehyde in PBS, washed, incubated in 0.1% BSA for

30 min and then in different dilutions of serum from immunized mice

or in different dilutions of culture medium from cells producing anti-

BChE antibody with 0.1% BSA for 15 hours at room temperature.

After a second wash, slides were incubated with cyanine 3-conjugated

donkey anti-mouse. After washing, the cells were mounted in

Vectashield mounting medium (Vector Laboratories, Burlingame,

CA; H-1000) and examined in a confocal microscope.

Western Blot
Denatured and reduced purified human BChE were run on

NuPAGE Novex 10% Bis-Tris gel (Invitrogen; # NP0303BOX).

Figure 5. Rodent BChE is recognized by monoclonal antibody 4H1. (A) Selectivity of 4H1 for recombinant and wild-type mouse BChE by
ELISA (60 min detection). (B) 4H1 shifts mouse BChE in sucrose gradient. Sucrose gradient of mouse serum. Binding of 4H1 shifts the peaks of
tetramer. Wider high-S peak suggests a mixed population of IgG/one tetramer and IgG/two tetramers. (C) 4H1 recognizes mouse BChE expressed by
COS cells, anchored PRiMA as documented by confocal microscopy. (D) Immunohistochemistry of young rat neuromuscular junction (NMJ). Right,
nicotinic acetylcholine receptors are visualized with bungarotoxin (Bung). Left, 4H1 labels rat BChE.
doi:10.1371/journal.pone.0012892.g005

Immunization of Knockouts
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Denatured and non-reduced plasma samples (maximum load 2 ml

per well) were run on NuPAGE Novex 4–12% Bis-Tris gel

(Invitrogen, # NP0323BOX). Monomer of BChE runs close to

albumin on PAGE and the thick band of albumin in plasma

resulting from its high quantity blocks interaction of antibody with

BChE. Using denaturing but non-reducing conditions overcomes

this problem and allows good separation of albumin and BChE

(which remains in dimers). Protein was transferred to PVDF

membrane by iBlot Dry Blotting system (Invitrogen, # IB4010)

and protein transferred was confirmed by visualization with

Ponceau. Membrane was then blocked with 5% non-fat milk and

incubated with anti-BChE antibody containing sample. Secondary

anti-mouse antibody coupled to HRP (Amersham Biosciences -

GE Healthcare Europe GmbH; # NA931) were used in dilution

1:10000 in PBS. ECL Western Blotting detection reagent

(Amersham Biosciences - GE Healthcare Europe GmbH, #
RPN2106) was used to detected the signal.

Sucrose gradient
Transfected cells were extracted in 25 mM Tris-HCl pH 7.4,

0.8 M NaCl, 10 mM EDTA, 1% CHAPS and protease inhibitors

2 mM benzamidine and mouse serum was diluted by 2 in the

same buffer. The extracts were incubated with 1 mg of mABs on

ice for few hours. Sedimentation analyses of BChE molecular

forms were performed in 5–20% (wt/vol) sucrose gradients

containing the same buffer except CHAPS was replaced by

0.2% Brij-97 (polyoxyethylene 10 oleoyl ether, SIGMA Aldrich),

to shift amphiphilic oligomers. The gradients were centrifuged at

38,000 rpm at 7uC for 18.5 h, using a SW41 rotor (Beckman

Instruments). Each gradient was collected in 48 fractions and

assayed for BChE activity. Fractions were calibrated with internal

sedimentation markers (alkaline phosphatase (6.1S) and ß-

galactosidase (16S)). Sedimentation marker profiles were used to

establish a linear relation between fraction numbers and Svedberg

units.

Supporting Information

Figure S1 Titration of 11D8 by ELISA. 11D8 was titrated in a

plate coated with secondary antibody (1 mg/well). Based on the

preliminary studies with polyclonal anti-hBChE antibody (inter-

mediate product), 0.1 mg of rhBChE (70 mU) was used for

titration. Amount of bound BChE was determined by an activity

assay with butyrylthiocholine (1 mM) in the presence of DTNB.

Hydrolysis was followed over a period of up to 4 hours, at variable

intervals. Figure represents results obtained after 15 min of

development.

Found at: doi:10.1371/journal.pone.0012892.s001 (0.17 MB TIF)

Table S1 Primers designed for genotyping of heterozygous and

homozygous BChE mutant mice.

Found at: doi:10.1371/journal.pone.0012892.s002 (0.03 MB

DOC)
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