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Abstract
Purpose  To test radiomics for prognostication of intrahepatic mass-forming cholangiocarcinoma (IMCC) and to develop a 
comprehensive risk model.
Methods  Histologically proven IMCC (representing the full range of stages) were retrospectively analyzed by volume seg-
mentation on baseline hepatic venous phase computed tomography (CT), by two readers with different experience (R1 and 
R2). Morphological CT features included: tumor size, hepatic satellite lesions, lymph node and distant metastases. Radiomic 
features (RF) were compared across CT protocols and readers. Univariate analysis against overall survival (OS) warranted 
ranking and selection of RF into radiomic signature (RSign), which was dichotomized into high and low-risk strata (RSign*). 
Models without and with RSign* (Model 1 and 2, respectively) were compared.
Results  Among 78 patients (median follow-up 262 days, IQR 73–957), 62/78 (79%) died during the study period, 46/78 
(59%) died within 1 year. Up to 10% RF showed variability across CT protocols; 37/108 (34%) RF showed variability due 
to manual segmentation. RSign stratified OS (univariate: HR 1.37 for R1, HR 1.28 for R2), RSign* was different between 
readers (R1 0.39; R2 0.57). Model 1 showed AUC 0.71, which increased in Model 2: AUC 0.81 (p < 0.001) and AIC 89 for 
R1, AUC 0.81 (p = 0.001) and AIC 90.2 for R2.
Conclusion  The use of RF into a unified RSign score stratified OS in patients with IMCC. Dichotomized RSign* classified 
survival strata, its inclusion in risk models showed adjunct yield. The cut-off value of RSign* was different between readers, 
suggesting that the use of reference values is hampered by interobserver variability.
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Introduction

Cholangiocarcinoma is the most common malignancy of 
biliary tract and the second most common primary hepatic 
malignancy, it accounts for 15–20% of primary hepatobiliary 
malignancies, mostly affecting male elderly [1], with the 
highest prevalence in Asian countries [2]. The anatomical 
distribution implies different management options: intrahe-
patic cholangiocarcinoma is the most frequent site of origin 
[3], notably the “mass‐forming” growth pattern (intrahepatic 
mass-forming cholangiocarcinoma, IMCC) represents over 
60% of cases [4]. The American Joint Committee on Can-
cer (AJCC)/Union for International Cancer Control (UICC) 
staging system 8th edition is used for prognostic stratifica-
tion and treatment choice [5]. Notably, the AJCC staging 
system incorporates clinical characterization of intrahepatic 
cholangiocarcinoma by contrast-enhanced computed tomog-
raphy (CT) [6–8].

Imaging plays a pivotal role for diagnosis, staging, and 
prognostication of IMCC [7, 9–11]. However, visual assess-
ment of CT and manual annotation suffer from subjective 
variability: this might result in variable performance in 
clinical management [7, 12, 13]. Quantitative analysis of 
CT data was reported for standardized characterization of 
cholangiocarcinoma by radiomic features (RF), especially 
for accurate prediction of lymph node metastases beyond 
visual morphologic criteria [14, 15]. The use of radiomics 
in hepatic malignancies has been thoroughly explored for 
non-invasive differentiation of histology or for prediction 
of lymph node metastases, into the scenario of the so-called 
soft-outcome measures [16–20]. A minority of authors chal-
lenged the use of radiomics for prediction of survival and 
disease-free survival [21, 22].

Accurate non-invasive prognostic descriptors of IMCC 
are deemed of major clinical support for personalized thera-
peutic approach because IMCC is one form of intrahepatic 
cholangiocarcinoma for surgical option, and therefore radi-
omics might represent a relevant complement in pre-sur-
gical clinical management. Most of the published research 
focused on population selected by clinical treatment, namely 
surgery or embolization [23, 24]. However, the application 
of radiomics on broader population is still lacking, especially 
for management throughout the full process of treatment 
decision.

The aim of this study was to test radiomics for prognos-
tication of IMCC and to develop a prognostic model that 
combines clinical parameters and radiomics for prediction 
of survival in patients with IMCC, across the full range of 
treatment options.

Materials and methods

Study population

Patients with histologically proven IMCC at *BLINDED* 
between January 2007 and December 2018 were retro-
spectively retrieved. The Institutional Review Board 
approved this study (Prot. 43,024) and informed consent 
was retrieved for enrolled patients.

Inclusion criteria were: (a) immunopathological diagno-
sis of IMCC; (b) age > 18 years; (c) baseline hepatic venous 
phase CT. Exclusion criteria were: (a) previous treatment; 
(b) periductal infiltrating or intraductal growing patterns; 
(c) missing clinical data; (d) motion artifact on CT imaging. 
Demographics and clinical data were collected, including 
histologic grading and treatment. All patients underwent 
contrast-enhanced CT with injection of high-concentration 
iodine contrast (400 mg I/mL, Iomeron 400, Bracco, Italy), 
volume 90–130 mL (based on patient weight), flow rate 
3–4 mL/s. Contrast-enhanced scan was triggered by 150 HU 
density in abdominal aorta (at level of celiac axis) and portal 
venous phase was acquired with 60 s delay.

Morphologic CT descriptors

Two readers (R1, radiologist with 15-year experience 
in abdominal imaging; R2, 4th year radiology resident) 
independently reviewed the CT scans (blinded to clinical 
and pathological information) and collected the following 
standard clinical parameters:

•	 Tumor size: maximum diameter on axial plane (manual 
caliper);

•	 Satellite hepatic lesions;
•	 Lymph node metastasis defined as follows:

o	 Short-axis > 10 mm,
o	 Central necrosis (areas of lower density),
o	 Contrast enhancement compared with liver [25];

•	 Distant metastasis in organs other than liver or lymph 
nodes.

In case of disagreement, a final consensus was reached 
between readers for binary variables. Otherwise, discrep-
ancy in manual caliper of tumor size were deemed substan-
tial when exceeding 5 mm in lesions larger than 25 mm or 
exceeding 20% in lesions smaller than 25 mm (reference: 
R1 radiologist). Such discrepancy was resolved with a joint 
reading session. If the discrepancy was below the established 
threshold, the mean between the two readers was considered.
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Volumetric analysis: segmentation and extraction 
of radiomic features

DICOM headers were recorded to assess variability 
between acquisition and reconstruction parameters.

Each reader independently outlined tumor boundaries 
on portal venous phase by manually drawing the volume 
of interest (VOI) with a dedicated software (3D Slicer 
version 4.10.2). 108 RF were calculated by SlicerRadi-
omics® [26], including shape, first-order, Gray-Level-
Co-occurrence-Matrix (GLCM), Gray-Level-Run-
Length-Matrix (GLRLM), Gray-Level-Size-Zone-Matrix 
(GLSZM), Neighboring-Gray-Tone-Difference-Matrix 
(NGTDM) and Gray-Level-Dependence-Matrix (GLDM) 
features. The RF subsets obtained from segmentations of 
R1 and R2 were named RF-R1 and RF-R2, respectively.

Statistical analysis

Continuous data were reported as median, first and third 
quartiles (interquartile range, IQR). Categorical data were 
reported as frequency of occurrence.

The primary outcome of this study was overall survival 
(OS), it was calculated as number of days between the 
date of CT and date of death. The last follow-up was set at 
5 years and dataset lock was on October 22, 2019. Asso-
ciation between clinical parameters and OS was tested 
by Mann–Whitney U test or Pearson chi-square test, as 
appropriate.

Variability of radiomic features

Variability of RF across acquisition and reconstruction 
parameters was tested by Kruskal–Wallis test and Spear-
man correlation. Reconstruction algorithm settings B30s and 
B40s were not considered in statistical analysis because each 
occurred only once.

Interobserver variability of RF was tested by intraclass 
correlation coefficient (ICC) based on single rater, absolute-
agreement, 2-way mixed-effects model. Single rater ICC 
was considered because machine learning models were 
independently developed for each segmentation. ICC val-
ues < 0.5 were deemed for high variability, 0.5–0.75 moder-
ate, 0.75–0.9 low, and > 0.90 very low [27]. RF with high 
variability were excluded from prognostic modeling.

Stratification of risk

Multistep process for developing prognostic models is there-
after detailed (Fig. 1).

Radiomic signature  Pearson correlation analysis between 
each RF and OS were performed. RF were ranked in 
descending order according to their correlation coefficients 
for both RF-R1 and RF-R2 subsets: highly correlated RF 
that belonged in both readers were selected. Principal com-
ponent analysis (PCA) was applied to the selected RF in 
order to reduce the dimensionality of radiomic predictors 
and to extract a single radiomic signature (RSign) for syn-
thetized representation of all RF in a unique scale of risk. 
Both correlation analysis and PCA were performed by Weka 
v.3.8.3 [25].

Fig. 1   The flowchart summarizes the multistep process for selection of radiomic features (RF) andbuilding of radiomic signature (RSign)
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Univariate Cox proportional hazards models were used to 
verify if RSign represented a predictor of OS. Median value 
of OS was used to discretize two groups, namely short-term 
and long-term survivors. A Receiver Operating Character-
istic (ROC) analysis was performed to determine the cut-
off value of RSing for optimal stratification into two risk 
groups: the value that yielded the largest vertical distance 
between the ROC curve and the random chance line (Youden 
index) was chosen as optimal cut-off for RSign (RSign*). 
Kaplan–Meier survival curves for the two risk groups were 
calculated and then compared using log-rank test.

Risk models  Cox proportional hazards models were devel-
oped to evaluate RSign and clinical parameters (including 
morphological CT descriptors) as predictors of OS. Predic-
tors with p-values > 0.10 were excluded from subsequent 
final models. Significant variables with potential confound-
ing effect in clinical application were identified and excluded 
from final analysis, notably a post-hoc analysis was run in a 
subset of resected IMCC without chemotherapy (see “Anal-
ysis restricted to resected subpopulation”, Supplementary 
Material). Final Cox proportional hazard models were built 
on predictors that were significant in univariate analysis. 
Statistical findings of survival analysis were validated using 
a bootstrap procedure using 200 random samples. Logistic 
regression was then performed to build models for estimat-
ing the performance improvement attributable to RSign by 
comparing:

–	 Model 1: clinical parameters including age, gender, grad-
ing, and morphologic CT descriptors.

–	 Model 2: clinical parameters from Model 1 and RSign.

The 1-year OS was used to discretize OS for logistic 
regression analysis. Logistic models were compared by area 
under the ROC curve (AUC) [26]. Logistic classification 
was performed using a tenfold cross-validation procedure. 
Akaike information criterion (AIC) and Likelihood Ratio 
Test were used for models comparison [28].

Statistical analysis was performed by SPSS Statistics 
23(IBM Corp., Armonk, N.Y., USA) and R 4.0.2 (http://​
www.R-​proje​ct.​org) [29].

Results

Seventy-eight patients (age range 35–89 years, 43 men) were 
selected, median follow-up was 262 days (IQR 73–957) 
(Table 1). 62/78 (79%) patients died, notably 46/78 (59%) 
within 1 year since CT. Survival data were right-censored 
for 16/78 (20.5%) patients, at time of dataset lock.

Standard clinical parameters from CT showed discrep-
ancy in 7.8% maximum diameter, 7.8% satellite lesions, 

10.3% lymph node metastasis, 6.4% distant metastasis; the 
consensus was skewed toward R1 reading (Supplementary 
Table 1).

Variability of radiomic features

Variability across different acquisition protocols was signifi-
cant in 5/108 (5%) for RF-R1 and in 11/108 (10%) for RF-R2 
(Supplementary Table 2–3).

Variability due to segmentation was high in 37/108 (34%) 
RF, moderate in 44 (41%), and low in 27 (25%) (Supplemen-
tary Table 4). The 71 RF with moderate to low variability 
were selected for modeling process.

Stratification of risk

Radiomic signature

The six top ranked RF were concordant between readers, 
these included both Shape and first-order types (Table 1). 
Among the first-order RF, we found redundancy between 
Median and Mean: Median was selected because it showed 
higher ranking and ICC. The model with 5 RF was synthe-
tized into a unique continuous scale that expressed values of 
RSign (range − 5.24–3.69). Median of RSign was different 
between readers, while maintaining quite similar IQR and 
very good ICC 0.79 (Table 1).

Univariate stratification of risk by continuous range 
of RSign (1-unit increment) performed slightly different 
between R1 (HR 1.37 95%CI 1.15–1.62, p < 0.001) and R2 
(HR 1.28 95%CI 1.09–1.50, p = 0.002), still both readers 
maintained statistical significance. Univariate Cox Regres-
sion selected the same significant variables for both read-
ers, namely: RSign, satellite lesions, and distant metastases. 
RSign showed AUC 0.73 for R1 and AUC 0.66 for R2, the 
optimal cut-off value for dichotomization of risk categories 
was:

–	 RSign* = 0.39 for R1.
–	 RSign* = 0.57 for R2.

According to RSign* reference, high-risk patients were 
distributed as follows: R1 38/78 (49%) and R2 43/78 (55%) 
patients. Median OS of risk categories by RSign* was sig-
nificantly shorter in high-risk patients than low-risk patients 
(145 days vs 465 days, p < 0.001) and Kaplan–Meier sur-
vival curves showed significantly different risk strata for 
both readers (Fig. 2).

Risk models

Multivariate Cox proportional hazards regression analy-
ses based on RF-R1 or RF-R2 showed different significant 

http://www.R-project.org
http://www.R-project.org
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variables, except for RSign* (Table 2). Notably, RSign* 
was retained for both readers (p ≤ 0.001), with the highest 
HR among significant predictors of outcome (R1 HR 1.53 
95%CI 1.24–1.88, R2 HR 1.28 95%CI 1.07–1.52—Table 2). 
Risk models were composed as follows:

•	 Model 1: satellite lesion and distant metastasis.
•	 Model 2: satellite lesion, distant metastasis, and RSign*.

Model 1 showed AUC 0.71 (both readers) for clas-
sification of 1-year survival, which improved in Model 2 

(R1: AUC 0.81; R2: AUC 0.81) (Fig. 3), thus suggesting 
an independent prognostic yield for RSign. AIC showed 
relative convenience of Model 2 (Fig. 3), thus suggesting 
that inclusion of RSign* is worth despite increasing model 
complexity. Likelihood Ratio Test for Logistics models 
comparison was statistically significant in favor of RSign* 
inclusion (R1: p value < 0.001, R2 p value = 0.001). A 
graphic example of added value between Model 1 and 
Model 2 is rendered in Fig. 4.

Table 1   Demographics, clinical data, morphological CT descriptors, RF are reported

Categorical data are reported as absolute number and relative distribution (percentage in round bracket). Continuous data are reported as median 
(median, first and third quartiles in square brackets). RF are reported for each of the two readers (R1 and R2), the ranking position is reported for 
each reader using round brackets
a Three patients undergoing surgery were also administered adjuvant chemotherapy
b Selected in the final model RSign

Population characteristics

Demographics
Gender (male)
 Male 43 (55)
 Female 35 (45)

Age (years) 61 [68–74]
Death 62 (79)
Overall survival 262 [73–957]
Survivors at 1 year 32 (41)
Clinical data
Radiology
 Satellite hepatic lesion 38 (49)
 Metastatic lymph node 54 (69)
 Distant metastasis 25 (32)

Grading
 G1 1 (1)
 G2 29 (37)
 G3 48 (62)

Treatment
 Surgical resectiona 31 (40)
 Chemotherapya 25 (32)
 Radiofrequency ablation 11 (14)

RF type RF name R1 R2 ICC

Selected RF and RSign
Shape Surface volume ratiob 0.2 [0.1–0.3] (6) 0.2 [0.1–0.3] (6) 0.54
First order Medianb 70.0 [59.4–89.8] (3) 70.0 [60.0–89.8] (1) 0.80
First order Mean 70.7 [59.1–85.7] (4) 69.1 [59.0–87.5] (3) 0.78
First order 10’ percentileb 36.5 [21.0–47.0] (5) 34.0 [19.3–45.3] (5) 0.70
First order 90’ percentileb 107.5 [94.3–120.0] (1) 110.0 [97.3–125.3] (2) 0.78
First order Root mean squaredb 76.7 [65.–90.9] (2) 76.6 [69.4–92.3] (4) 0.77
RSign 0.23 [− 1.05–1.16] 0.54 [− 1.05–1.28] 0.79
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Analysis restricted to resected subpopulation

Twenty-eight patients underwent resection, they were not 
treated with chemotherapy. 17/28 (61%) patients died, 
notably 10/28 (36%) within 1 year since CT. Using RSign* 
derived from the overall population, median OS was signifi-
cantly shorter in high-risk (601 days) than low-risk patients 
(1419 days, p ≤ 0.001), yet Kaplan–Meier survival curves 
were not significantly different (Fig. 5).

In this selected small population, no predictors were 
retained by univariate analysis. Multivariate Cox propor-
tional hazards regression analysis selected gender and 
RSign, only for R1 (Table 3). Again, RSign outstood for 
stratification of OS (R1 1.81 95%CI 1.10–2.99, p = 0.02; 
R2 HR 1.22 95%CI 0.91–1.63, p = 0.19), despite widened 
confidence interval, as an expected statistical consequence 
of the population shrinkage.

Fig. 2   Kaplan–Meier plots estimate overall survival for low and high-risk groups, based on RSign* for each reader

Table 2   Multivariate Cox 
proportional regression in 
the whole patient cohort, and 
selected variables for Model 2

Bold is used when a statistically significant p value is encountered (< 0.05)
*Selected by univariate Cox regression

R1 R2

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

All predictors
RSign 1.53 (1.24–1.88)  < 0.001 1.28 (1.07–1.52) 0.006
Age 1.04 (1.01–1.07) 0.02 1.03 (1.00–1.06) 0.05
Gender (male) 1.58 (0.84–2.98) 0.16 1.05 (0.59–1.89) 0.86
Grading 1.42 (0.83–2.44) 0.20 1.38 (0.81–2.34) 0.24
Satellite lesions 1.70 (0.91–3.16) 0.09 2.36 (1.32–4.23) 0.004
Metastatic lymph nodes 1.22 (0.66–2.25) 0.54 1.23 (0.66–2.27) 0.51
Distant metastasis 2.02 (1.07–3.84) 0.03 1.46 (0.78–2.74) 0.23
Significant predictors*
RSign 1.36 (1.13–1.62)  < 0.001 1.24 (1.04–1.47) 0.02
Satellite lesions 2.10 (1.17–3.82) 0.01 2.53 (1.43–4.47) 0.001
Distant metastasis 1.76 (0.97–3.20) 0.06 1.34 (0.76–2.38) 0.31
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Discussion

In this study, we showed that volume CT radiomics is associ-
ated with prognosis in patients with IMCC and that RF can 
be synthetized into RSign for stratification of survival by 
a unique scale. We stipulated a threshold for definition of 
high and low-risk patients by RSign, called RSign*. The risk 
model including RSign* outperformed the model without 
radiomics. Moreover, the stratification by RSign* showed a 
trend for differentiation of survival also in the subgroup of 
patients undergoing surgery.

Variability and selection of RF

The outcome of cholangiocarcinoma is poor, its optimal 
clinical management is challenged by the gaze between 
curative approach and minimized invasive procedures. In 
2017, Raoof proposed a risk model based on post-operative 
variables for prediction of survival in resected intrahepatic 
cholangiocarcinoma (MEGNA score) [30]. While showing 
the accuracy of MEGNA score compared to AJCC staging 
system, the authors underscored the need for pre-operative 
tools to inform decision regarding surgery and adjuvant 
therapy. The pre-operative characterization of intrahepatic 
cholangiocarcinoma burgeoned thanks to the investigation of 
prognostic factors from imaging, including radiomics.

In 2019, Ji proposed a nomogram by 8 RF plus CA19.9 
for prediction of prognosis and, notably, for stratification 
of lymph node metastases beyond morphologic standards 
[15]. This study included a broad population with full 
range of treatment options, consistent with ours. In 2020, 

Chu reported that RF could stratify poor outcome after 
surgery [23]. Both Ji and Chu reported excellent interob-
server agreement, yet they both analyzed only experienced 
readers. In particular, Chu reported excellent agreement 
(98.7% RF with ICC > 0.5) [23], which is substantially dif-
ferent from our results showing higher variability between 
one resident and one experience abdominal radiologist 
(71% RF with ICC > 0.5). Such discrepancy underscores 
the need for experienced reader for high-skilled seg-
mentation of tumor boundaries. Of note, segmentation 
of focal abnormalities in liver is more challenging com-
pared to other organs where semi-automatic segmentation 
is already used in CT clinical practice and demonstrated 
with good diagnostic performance also among technolo-
gists (e.g., lung nodules) [31–33]. However, despite high 
interobserver variability in one third of RF, we observed 
that the six top ranked RF were consistent between read-
ers, and were selected for building a radiomic model with 
minimized interaction from manual segmentation. Of 
note, the selected RF could be interpreted into morpho-
logical impressions. For instance, feature “Surface volume 
ratio” is representative of both size and shape: this RF is 
expected to vary depending on lesion size (the larger the 
lesion the lower the value) and pattern of growth (the more 
irregular the surface the higher the value). Nonetheless, 
“Surface volume ratio” relies on manual segmentation 
with as low as ICC 0.54 and therefore underscores the 
relevance of standardized segmentation. The six selected 
RF were similar in kind (first-order RF including percen-
tiles of density) to those from a previous study focusing 
on prediction of surgical utility by RF in portal venous 

Fig. 3   ROC curves of Model 1 and Model 2 with respective AUC and AIC, for each reader. Model 1 included satellite lesion and distant metas-
tasis. Model 2 included satellite lesion, distant metastasis, and RSign*
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Fig. 4   Chromatic representation of four examples with variable 
classification by either Model 1 or Model 2. Survival probability is 
reported in left column for Model 1 and right column for Model 2: 
the survival probability of each model is rendered by chromatic scale 
of the on tumor segmentation ROI (see chromatic legend in bottom 
box of the figure). The middle column details the outcome (alive or 
dead) of each case at 1 year since CT and the RSign value by reader 
1. Example 1—large IMCC consistently classified with likelihood of 
1-year survival > 0.75 by both Model 1 and Model 2 (RSign < 0.39), 
alive at 1 year. Example 2—small IMCC classified with likelihood of 

survival < 0.5 by Model 1 and likelihood of survival > 0.5 by Model 
2 (RSign < 0.39), alive at 1  year. Example 3—large IMCC classi-
fied with high likelihood of survival > 0.75 by Model 1 and likeli-
hood of survival < 0.5 by Model 2 (RSign > 0.39), dead at 1  year. 
Example 4—small IMCC classified with mid-low likelihood of sur-
vival < 0.5 by Model 1 and likelihood of survival < 0.25 by Model 
2 (RSign > 0.39), dead at 1 year. Of note, example 2 and example 3 
showed inconsistent risk stratification between Model 1 and Model 2. 
In these two cases, the inclusion of RSign (Model 2) improved the 
stratification of 1-year survival
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phase CT [23]. This overlapping character (portal venous 
phase and first-order radiomics) suggests that relatively 
simple RF should be deemed relevant also in an unselected 
population like ours (including both surgery candidates 
and advanced disease). In line with this observation, pre-
vious studies reported association of density metrics with 
mutations or protein expression in intrahepatic cholangio-
carcinoma [34, 35].

Morphologic variables and RF were derived from 
venous phase in our retrospective database, whereas previ-
ous studies selected arterial phase. Mosconi et al. reported 
that textural RF are best extracted from arterial phase, in 
a population selected for transarterial radioembolization 
[24]. In that study, venous phase remained significant for 
first-order features, including “Mean”, partly consistent with 

our observation. It is worth mentioning that some difference 
between our results and Mosconi’s might ought to different 
clinical characteristics that potentially influence the imaging 
appearance of contrast pharmacodynamics, as well as inter-
observer variability and technical details (contrast agent was 
different between our study and Mosconi’s, 400 and 350 mg 
I/mL, respectively). Nonetheless, comparison of these stud-
ies shows that first-order features warrant risk stratification, 
and this was consistent across our readers. First of its kind, 
our experiment also detailed the variability of radiomics 
across CT scanners and CT protocols, which led to selec-
tion of the most robust RF: this selection warrants stability 
of RSign for clinical use.

Fig. 5   Kaplan–Meier plots estimate overall survival for low and high-risk groups, based on RSign* for each reader, in the selected population of 
resected IMCC

Table 3   Multivariate Cox 
proportional regression for 
the subpopulation of patients 
treated by surgery

Bold is used when a statistically significant p value is encountered (< 0.05)

R1 R2

Hazard Ratio (95% CI) p value Hazard Ratio (95% CI) p value

All predictors
Rsign 1.81 (1.10–2.99) 0.02 1.22 (0.91–1.63) 0.19
Age 1.07 (0.98–1.16) 0.12 1.06 (0.98–1.14) 0.15
Gender (male) 6.10 (1.29–28.98) 0.02 1.89 (0.60–5.89) 0.28
Grading 0.91 (0.29–2.87) 0.87 1.10 (0.33–3.64) 0.87
Satellite lesions 0.86 (0.24–3.10) 0.82 1.55 (0.46–5.26) 0.48
Metastatic lymph nodes 0.50 (0.15–1.64) 0.26 0.59 (0.18–1.87) 0.37
Distant metastasis 0.00 (0.00–Inf) 0.998 0.00 (0.00–Inf) 0.999
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Radiomic signature

We propose a simple RSign with 5 RF into a synthetized 
single score, which is optimal for practical use and similar 
to the approach formerly proposed for radiomics of primary 
liver malignancies [15, 36, 37]. The univariate stratification 
of survival by RSign granted similar magnitude of risk in 
each reader of this study, about 1.4-fold for R1 and 1.3-
fold for R2 (Table 2). This was true when analyzing RSign 
with “relative approach”, with nominal increment of 1-unit 
throughout the full range of RSign. However, “relative 
approach” has limited value for clinical translation, because 
clinical decision making is best served by discrete categories 
defined by absolute threshold. The analysis of RSign with 
absolute approach showed interobserver variability in this 
study: RSign* was different between readers. The interpreta-
tion of such difference is allegedly found in the aforemen-
tioned variable experience. To the best of our knowledge, 
the individual performance by discrete categories of risk 
was not reported in the literature. Our data fill in this gap by 
showing the variability of absolute threshold when RF are 
used by readers with different experience. The translation of 
absolute threshold into practical use depends on optimized 
segmentation method. Zhao showed that interobserver vari-
ability is mitigated by semi-automated segmentation of the 
neoplastic volume [38]. Eventually, semi-automated tools 
will cope with segmentation bias and reconcile variability 
of risk strata within clinically applicable boundaries.

We used a multistep statistical process to integrate 
RSign* in risk models including standard clinical vari-
ables. Risk models with RSign* performed better than 
model without RSign*, with statistically significant 
improvement for both readers. Inclusion of RSign* was 
confirmed statistically worth by AIC analysis. Of note, 
standard clinical variables retained in model were repre-
sented by morphological descriptors on CT. Also previous 
studies retained findings from CT morphologic domain 
(e.g., lymph node metastases, liver metastases) [15, 23, 
24], and discarded demographic and laboratory data. This 
consistency among independent studies brings about the 
most prominent role of CT imaging for stratification of 
disease course.

RSign in candidates for surgery

We analyzed our method in a subpopulation of patients 
who underwent resection, with the aim of testing our 
general approach into specific risk strata of IMCC. The 
selection of this subpopulation was driven by previous 
evidence showing that operability is an independent prog-
nostic factor [39]. The yield of RSign by 5 RF derived 
from the whole population of our study was confirmed 

in selected subpopulation undergoing surgery. Further-
more, RSign* could classify patients with fairly different 
survival among those undergoing surgical resection. This 
observation shows that RSign is not dependent on current 
standards for disease management and prognostication, 
and allegedly it projects RSign for complementing mor-
phological characterization.

Limitations

The current study suffers from limitations. First, a single 
phase of contrast enhancement was explored. Second, we 
could not perform external validation. Third, the small 
absolute number of patients represented power limitation, 
hence we cannot exclude type II errors on second or higher 
order RF. Finally, the small population of this study could 
be investigated with only one reference RSign*, result-
ing in binary strata. However, the optimal clinical support 
is expected from tools multiple discrete strata, including 
indeterminate category. Larger studies are warranted to 
investigate polychromatic interpretation of RSign.

In conclusion, we proposed a RSign that associated with 
survival in IMCC. The proposed RSign was discretized in 
radiomic categories of risk and its yield complemented in 
multivariable risk models. The reported interobserver vari-
ability of RSign* warns on the need for consistent segmen-
tation of IMCC on CT images. The generalized derivation 
of RSign* showed potential for use also in subpopulation 
undergoing surgery.
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