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Abstract: The sphere target played a vital role in terrestrial LiDAR applications, and solving its
geometrical center based on point cloud was a widely concerned problem. In this study, we proposed
a newly finite random search algorithm for sphere target fitting. Based on the point cloud data and
the geometric characteristics of the sphere target, the algorithm realized the target sphere fitting
from the perspective of probability and statistics with the help of parameter estimation. Firstly, an
initial constraint space was constructed, and the initial center and radius were determined by finite
random search. Then, the optimal spherical center and radius were determined gradually through
continuous iterative optimization. We tested the algorithm with the simulated and realistic point
cloud. Experimental results showed that the proposed algorithm could be effectively applied to all
kinds of point cloud fitting. When the coverage rate was bigger than 30%, the fitting accuracy could
reach within 0.01 mm for all kinds of point clouds. When the coverage rate was less than 20%, the
fitting accuracy can reach ±1 mm, although it was reduced to a certain extent.

Keywords: light detection and ranging; point cloud; sphere target; constraint space; parameters; ro-
bustness

1. Introduction

Terrestrial light detection and ranging (LiDAR), also known as terrestrial laser scan-
ning (TLS), could quickly acquire the high-resolution point cloud on the target surface by
high-speed laser scanning and had brought the traditional single point measurement into
the era of surface measurement. A point cloud was a set of data points in space, which was
a collection of a large number of discrete measuring points on the external surface of an
object. Each point position had its set of Cartesian coordinates (X, Y, Z). TLS technology
had the characteristics of active, non-contact, high resolution, high precision, and rapid
and flexible data acquisition. It could go deep into the complex field environment and
realize the complete collection of the various large, irregular and non-standard entity or
real scene 3D data. It has been wildly used in many works, such as engineering surveys,
cultural relic protection, disaster monitoring, reverse 3D reconstruction et al. [1–5]. The
sphere target (ST) had a typical spatial rotation symmetry and standard parameterized
form. Part of its contour information could be obtained from any angle of view, with which
the spherical center and radius could be effectively solved. Therefore, it was widely used in
the multi-class application research of terrestrial LiDAR, such as the calibration and check
of a terrestrial laser scanner, scanning accuracy evaluation, registration, and georeferencing
of point clouds et al. [6–11]. The geometric center of the sphere target was inside the sphere
and could not be obtained directly through measurement. Usually, what we utilized TLS
to collect directly was the point cloud data on the surface of the target ball. Based on such
data to determine its internal geometric center, this involved the fitting problem of the
sphere target. At the same time, the sphere fitting problem was also a common problem to
be solved in object tracking, pattern recognition, robotics, camera calibration, and other
research work [12–17].
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Judging from the related literature, some scholars have conducted related research on
the problem of sphere fitting. Forbes took the center and the radius of the sphere as the
parameters to be sought and analyzed the fitting algorithms of several types of spheres
and other geometric bodies. These algorithms were mainly suitable for noise-free point
cloud data with a high coverage rate (CR) [18]. Nievergelt used a least-squares method
based on algebraic distances to calculate the center of the sphere. Although his method had
advantages in computational efficiency, it usually did not provide satisfactory results [19].
Späth, Shakarji, and Ahn, et al. used improved least-squares methods to perform sphere
fitting [20–23]. Clouse used conjugate gradient descent to calculate the sphere’s center,
which used both cost function evaluations, and evaluations of the derivative to find
a set of parameters that produce a local minimum cost [24]. Witzgall respectively used
algebraic fitting and geometric fitting to perform sphere fitting. With the help of the concept
of deviation between data point and sphere, the arithmetic fitting was solved by least-
square through linear regression. The geometric fitting used the orthogonal least-squares
solution [25]. Sumith used a fast geometric method to fit the center and radius of the sphere,
and the fitting accuracy was better than the ordinary least squares estimator (OLS) [26]. Liu
used a nonlinear least-squares method to achieve sphere fitting [27]. Fei used a constrained
nonlinear least-squares fitting (CNLSF) algorithm to realize the fitting of spheres with a
small segment angles strategy [28]. Lesouple used an expectation-maximization method to
achieve the fitting of spheres [29].

At present, most of the sphere fitting algorithms mainly rely on least-squares minimiza-
tion methods to obtain their centers, such as linear least-squares, nonlinear least-squares,
the total least squares method as well as the weighted total least squares method to elim-
inate the error of the coefficient matrix [30–32]. From the theory of least squares, the
least-squares estimation assumed that the mean of data noise was zero, resulting in an
unbiased parameter estimation. If the noise variance was known, the minimum variance
parameter estimation could be obtained by selecting appropriate weights on the data. In
addition, least squares estimation implicitly assumed that the entire data set could only
be explained by one parameter vector of a given model [33,34]. Numerous studies have
clearly shown that least-squares estimation could easily violate these assumptions. Some-
times, even if the data contained only one “bad“ datum, the least-squares estimate may be
seriously disturbed, resulting in low calculation accuracy. In addition to the least-squares
method, there were also some other methods, such as a minimum zone sphere, maximum
inscribed sphere, minimum circumscribed sphere [35–37]. These methods mainly take
advantage of linearization to fit the sphere with the help of mathematics or geometry. The
sphere target fitting itself was a nonlinear problem, which inevitably led to the loss of
accuracy in the linearization process. At the same time, the number of points in a sphere
target point cloud was usually more than thousands, which would cause a large calculation
matrix and low computational efficiency.

As we all know, in TLS work, no matter what type of sphere target we used, it
had a specific geometric size, that is to say, the spatial distribution of the point cloud of
any sphere target had a particular range that we call bounding box, and this bounding
box contains the whole point cloud of the sphere target, including the noises. From the
geometric characteristics, the geometric center and radius of the sphere target must be in
this bounding box. Thus, we could adopt a search strategy to look for the optical center and
radius in the bounding box that satisfies the specific error criteria. In this study, combining
the point cloud and geometric characteristics of point cloud, we developed a finite random
search alogorithm for the sphere target fitting. Our proposed algorithm mainly aimed to
achieve a better sphere target fitting after the point cloud extraction of a singular sphere
target has been completed. Its main objective is to calculate the geometric center accurately
based on the point cloud data of a single target sphere. The detailed design of the algorithm
is described in Section 2. In this paper, we did not discuss how to extract point cloud data
of an individual target sphere from a complex point cloud, but there were many solutions
for this problem [38].
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2. Methods and Data

Given a point cloud of a sphere target T = {(xi, yi, zi)|i = 1, 2, · · · , n ≥ 3} obtained
by TLS, let (X, Y, Z) be the unknown center, and let R be the unknown radius of the sphere
target. In a specific scanning coordinate system, both the geometric center (X, Y, Z) and
radius R of the sphere target were determined. During the data acquisition process, affected
by factors such as the instrument itself and the external environment, a point cloud was
inevitably mixed with noise [39,40]. Sphere target fitting was to extract the center and
radius of the sphere target from the point cloud with unknown distribution and outliers.
This could be viewed as an optimal parameter estimation problem. In this problem, we
regarded the geometric center (X, Y, Z) and radius R of the sphere target as the parameters
to be solved and took the target point cloud as the observation value. Using the point cloud
to fit the geometric center and radius could be regarded as finding the optimal parameters
that meet the specific decision rules.

We took the centroid of the sphere target point cloud as the center and took more
than two times the radius length as the constraint to construct an initial bounding box.
According to the geometric characteristics of the sphere target, its geometric center and
radius must be within the bounding box. Based on this feature, we could solve the problem
of the sphere target fitting by using the idea of probability theory and parameter estimation.
Let each sample in sample space U = {(Xi, Yi, Zi, Ri) | i = 1, 2, · · · , n} be composed of
four characteristic quantities, where (Xi, Yi, Zi) was the potential geometric center of the
target sphere and Ri was the potential geometrical radius of the target sphere. The four
characteristic quantities (X, Y, Z, R) were continuous variables, and their values should be
infinite in theory. From the perspective of probability and statistics, in the process of finite
random search, the probability of obtaining the optimal value was related to the size of the
sample space. The larger the sample space, the lower the probability of finding the optimal
value. Conversely, the smaller the sample space, the higher the probability of finding the
optimal value [41,42]. In this study, we proposed a finite random search algorithm suitable
for sphere target fitting combined with the point cloud and geometric characteristics of the
sphere target. The primary technical process of the algorithm is shown in Figure 1.

2.1. Initial Parameters

The initial parameters were mainly composed of the random search times Nloop, the
iterative optimization times Nopt, the estimated radius of the target sphere Rset, the total
error threshold Emin and the scale scaling factor α.

• Nloop referred to the number of random searches for the optimal value in a set-limited
search space.

• Nopt referred to the predetermined number of times to update the search space in the
iterative search process.

• Rset referred to the pre-estimated geometric radius of the sphere target. In TLS work,
the geometric radius of the sphere target used was usually known, and if the radius
could not be determined, Rset could be set to a relatively sizeable rough value.

• Emin referred to the preset value of the total error that determined the end of the fitting
prematurely. Setting the threshold here could realize that after the predetermined
fitting accuracy was reached, the fitting process was ended early to improve the
execution efficiency of the algorithm.

• α referred to the adjustment factor of the constrained space scaling when the con-
strained space was updated.

2.2. Error Criteria

The fitting problem of the sphere target point cloud could be regarded as the problem
of estimating parameters from noisy data, where the judgment criterion played an impor-
tant role. That would influence the accuracy of the estimated parameters, computation
efficiency, and the robustness to predictable or unpredictable errors. To find the optimal
center and radius of the target sphere, we must first determine the optimal center and
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radius measurement criteria. The error criteria of the existing sphere target fitting algo-
rithm were mainly divided into geometric error and arithmetic error, each of which has its
advantages and disadvantages [43]. In our proposed algorithm, an arithmetic error was
chosen as the criterion.

Let the current fitting center of the target sphere be (X, Y, Z) and the radius R. The
current total error Etotal could be calculated by Equation (1).

Etotal = ∑n
i=1

∣∣∣(xi − X)2 + (yi −Y)2 + (zi − Z)2 − R2
∣∣∣ (1)

where (xi, yi, zi) were the coordinates of the measured points of the point cloud, and n was
the number of the measuring points contained in the point cloud.
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In the proposed algorithm, a limited sample of possible solutions was generated with
the help of the constraint space, and their total error was calculated by using Equation (1)
one by one. The sample with the smallest total error was taken as the optimal solution under
the current constraint space. More detailed usage is described in Sections 2.3 and 2.4. The-
oretically, the smaller the total error Etotal was, the higher the coincidence degree between
the point cloud and simulated sphere surface was, the more accurate the current center
and radius were; otherwise, the deviation of the center or radius was more significant.

2.3. Initial Constraint Space and Sample Construction

In terms of the geometric characteristics of the sphere target, given the point cloud of a
sphere target, its centroid could be solved, and this centroid could be used as the geometric
center of the bounding box of the point cloud. By adjusting the side length of the bounding
box, we could construct a space cube containing the point cloud of the sphere target and
the complete range of the sphere target to be fitted. Then, the center of the sphere target
must be in this space cube. We called this cube the constrained space S, and the cube
constructed for the first time was the initial constraint space S(1). In the algorithm in this
paper, the initial constraint space was mainly constructed based on the point cloud and the
preset parameter Rset, and the construction principle is shown in Figure 2.
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(1) The centroid O(x, y, z) of the sphere target point cloud could be calculated and
used as the center of the initial constraint space.

(2) With O as the geometric center and Rset as the constraint, the space ranges of
the X, Y, and Z axes of the initial constraint space and radius range were determined
by Equation (2). In general, Rset was set to be slightly larger than the real radius of the
sphere target to ensure that the constructed initial constraint space covered the entire
target sphere. In practical scanning operations, the sphere target used usually had a clear
geometric size, so the estimated radius of the sphere target should be easy to determine.

X(1) :=
[

X(1)
min, X(1)

max

]
= [x− 2Rset, x + 2Rset]

Y(1) :=
[
Y(1)

min, Y(1)
max

]
= [y− 2Rset, y + 2Rset]

Z(1) :=
[

Z(1)
min, Z(1)

max

]
= [z− 2Rset, z + 2Rset]

R(1) :=
[

R(1)
min, R(1)

max

]
= [0, 2Rset]

(2)
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(3) With the initial constraint space and radius as constraints, a sample space
U(1) =

{(
X(1)

i , Y(1)
i , Z(1)

i , R(1)
i

)
| i = 1, 2, · · · , Nloop

}
composed of four characteristic quan-

tities was constructed, and it contained Nloop randomly generated samples.
(4)After determining the value ranges of the four characteristic quantities in the

sample space, the current scale of the characteristic quantities
(

L(1)
X , L(1)

Y , L(1)
Z , L(1)

R

)
could

be determined by Equation (3). 

L(1)
X =

∣∣∣X(1)
max − X(1)

min

∣∣∣
L(1)

Y =
∣∣∣Y(1)

max −Y(1)
min

∣∣∣
L(1)

Z =
∣∣∣Z(1)

max − Z(1)
min

∣∣∣
L(1)

R =
∣∣∣R(1)

max − R(1)
min

∣∣∣
(3)

The Etotal of each sample in U(1) was calculated in sequence by the error criterion
of Section 2.2, and compared with the preset total error threshold Emin. If Etotal was less
than Emin, it indicated that the current sample had reached the predetermined accuracy
of parameter estimation. At this point, this sample could be considered as the optimal
solution of parameters. Otherwise, the search should continue until all samples in U(1)

were tested. After traversing all the samples in U(1), if no sample satisfying Etotal < Emin
was found, the sample with the smallest Etotal was selected as the optimal solution of the
parameter in the current constraint space.

2.4. Constraint Space and Sample Update

From the perspective of probability and statistics, in the process of finite random
search, the probability of obtaining the optimal value was related to the size of the constraint
space. The smaller the constraint space, the higher the probability of finding the optimal
value [44,45]. In the last constraint space, the center and radius determined by finite
random search did not meet the set accuracy, so the sample space needed to be further
optimized to accurately determine the center and radius.

Suppose that in the constraint space S(i), the optimal solution of center and radius
obtained from Nloop samples was

(
X(i), Y(i), Z(i), R(i)

)
, and the scale of the characteristic

quantity was
(

L(i)
X , L(i)

Y , L(i)
Z , L(i)

R

)
.

(1) Each feature quantity could be scaled by using Equation (4). Here α ∈ (0, 1) was
the preset scale scaling factor, which was used to adjust the scaling speed of each feature
quantity. The smaller the value was, the faster the scaling speed was.

L(i+1)
X = αL(i)

X
L(i+1)

Y = αL(i)
Y

L(i+1)
Z = αL(i)

Z
L(i+1)

R = αL(i)
R

(4)

(2) With
(

X(i), Y(i), Z(i), R(i)
)

as the center and the updated feature quantity scale(
L(i+1)

X , L(i+1)
Y , L(i+1)

Z , L(i+1)
R

)
as the constraint, a new constraint space S(i+1) was con-

structed. The value ranges of the four characteristic quantities of each sample in sample
space U(i+1) =

{(
X(i+1)

i , Y(i+1)
i , Z(i+1)

i , R(i+1)
i

)
| i = 1, 2, · · · , Nloop

}
were determined by



Sensors 2021, 21, 7546 7 of 19

Equation (5). In this case, the value of R(i+1)
min should be paid attention. The radius of the

sphere target should not be negative, so R(i+1)
min must always be greater than 0.

X(i+1) :=
[

X(i+1)
min , X(i+1)

max

]
=
[

X(i) − L(i+1)
X , X(i) + L(i+1)

X

]
Y(i+1) :=

[
Y(i+1)

min , Y(i+1)
max

]
=
[
Y(i) − L(i+1)

Y , Y(i) + L(i+1)
Y

]
Z(i+1) :=

[
Z(i+1)

min , Z(i+1)
max

]
=
[

Z(i) − L(i+1)
Z , Z(i) + L(i+1)

Z

]
R(i+1) :=

[
R(i+1)

min , R(i+1)
max

]
=
[

R(i) − L(i+1)
R , R(i) + L(i+1)

R

] (5)

(3) With the updated constraint space S(i+1) and radius as constraints, a new sample
space U(i+1) containing Nloop samples was randomly generated.

According to the same search strategy, the Etotal of each sample in the sample space
U(i+1) was calculated one by one and detected whether it was less than the preset threshold
Emin of the total error. After traversing all the samples in U(i+1), if no sample satisfying
Etotal < Emin was found, the sample with the minor total error was selected as the optimal
solution of the parameters in the current constraint space.

2.5. Iterative Optimization

Based on the constraint space constructed, the finite random sample space was gener-
ated, and the optimal sample in the sample space was determined as the optimal solution
in the current constraint space. The optimal solution satisfying the predetermined accuracy
was gradually found by constantly updating the search and sample spaces. In general,
after more than ten iterations of optimization, the optimal value could be determined. In
the iterative optimization process, the search process may end when Etotal was less than
Emin, or it may end after the predetermined Nopt iterative optimization. At the same time,
considering the noise contained in the point cloud, the Etotal obtained may always fail to
reach Emin during the next finite iteration of Nopt, but after a finite iteration search, Etotal
might always stop decreasing. At this time, it was necessary to detect a situation that if the
Etotal did not decrease during two consecutive iterations, the iterative process should end.

2.6. Accuracy Estimation

The fitting accuracy of the sphere target center directly determined the scope of
application of the algorithm. When the center of the sphere target was known, the fitting
accuracy could be evaluated by the root mean square error (RMSE) of the center [46,47].
Let the real center of the sphere target be (Xo, Yo, Zo) and the fitted center

(
X f , Yf , Z f

)
.

The RMSE of the fitted center could be obtained by Equation (6).

RMSE = ±

√√√√(
X f − Xo

)2
+
(

Yf −Yo

)2
+
(

Z f − Zo

)2

N
= ±

√
dX2 + dY2 + dZ2

N
(6)

where in this study, N = 1.
Because the center of the sphere target was located inside the sphere, it could not be

measured directly, so it was difficult to accurately evaluate the fitting accuracy of the center
of the sphere target in practical work. To effectively test the fitting effect of the proposed
algorithm, simulation data with known center and radius were used to test the algorithm.

3. Experiment

To test the feasibility of the algorithm proposed in this paper, we designed two groups
of simulated data without noise point cloud and noisy point cloud for testing. The noise-
free point cloud mainly simulates the data processed by various denoising operations.
The noisy point cloud mainly simulates the data obtained by TLS directly and without
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previous noise processing. The test platform uses Windows 10 system, Intel I5-6500 CPU,
16G memory, and Intel Graphics 530 Graphics card.

3.1. Point Cloud Simulation

A target sphere was a standard spherical geometry whose point cloud consisted of
several measuring points on the surface of the target sphere. The spherical coordinates
(x, y, z) of any measurement point p in the sphere target point cloud could be determined
by the spherical radius r, the zenith angle θ ∈

[
0, 180

◦]
and the plane projection angle

ϕ ∈
[
0, 360

◦]
, as shown in Figure 3. In the scanning coordinate system, the scanning

coordinate (X, Y, Z) of measuring point p was affected not only by spherical coordinates
but also by the position of spherical coordinates (x0, y0, z0) in the scanning coordinate
system. At this point, the scanning coordinate of measuring point p should be calculated by
Equation (7). The sphere target point cloud was simulated by equally dividing the zenith
angle θ and plane projection angle ϕ.

X = x0 + r sin θ cos ϕ
Y = y0 + r sin θ sin ϕ

Z = z0 + r cos θ
(7)
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Due to the influence of TLS scanning field of view, occlusion of the target sphere itself,
scanning distance between TLS and sphere target, single station scanning could only obtain
target sphere point cloud data with maximum coverage of 50% [48,49]. Coverage rate (CR)
here was the percentage of the surface area covered by the pointing cloud to the total area
of the target sphere. It was mainly calculated based on the proportion of the surface area S′

occupied by the point cloud to the sphere‘s surface area S, as shown in Figure 4.
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The CR simulation of experimental data was realized by adjusting the range of zenith
angle θ. According to the surface area calculation formula of the spherical crown and
sphere, the coverage rate c of the simulated point cloud could be calculated by Equation (8),
and the meanings of each parameter are shown in Figure 4 [50,51].

c =
S′

S
=

2πrh
4πr2 =

h
2r

(8)

where S′ was the surface area of the spherical crown, S was the surface area of the sphere, h
was the height of the spherical crown, and r was the radius of the sphere.

In the simulation of a sphere target point cloud, the coverage rate c of the point cloud
was given, and the value range of the zenith angle θ ∈ (0, θmax) should be determined
according to the CR c, where θmax could be calculated by Equation (9).

θmax = arccos

(
OO′

r

)
= arccos

(
r− h

r

)
= arccos(1− 2c) (9)

where OO′ was the distance from the sphere’s center to the underside of the spherical
crown, and other symbols were the same as Equation (8).

Influenced by the instrument performance and external environment (wind, air hu-
midity, illumination, etc.), noise would inevitably be mixed in the point cloud obtained by
TLS. According to the error theory of geodesy, the noise in the measured data usually satis-
fied the Gaussian distribution N

(
µ, σ2), where µ and σ2 were the expected and variance of

the Gaussian distribution, respectively. In the simulation of experimental data, Gaussian
noise was added to the point cloud to simulate the real noise in the scanning process. In
all noise point cloud simulations, µ was set to 0, and σ was set to the maximum deviation
value of the point cloud.

3.2. Noise-Free Point Cloud

For noise-free point clouds of sphere target with different coverage rates, five sim-
ulated data were generated by using method 3.1, as shown in Figure 5. Among them,
coverage rates of (a)~(e) were 50%, 40%, 30%, 20% and 10%, respectively. The center and
radius (X, Y, Z, R) of all the simulated point clouds were (1000, 1000, 100, 0.0725), and the
unit was the meter. The sampling interval of both the zenith angle θ and the plane projec-
tion angle ϕ was 3◦. We use the proposed algorithm to fit the five simulated point clouds,
and the fitting process is shown in Figure 5. For the initial parameter setting in the fitting
process, Nloop, Nopt, Rset, Emin, and α were 1000, 30, 0.08 m, 0.001, and 0.25, respectively.
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After all sphere target fitting was completed, we calculated statistics on the number of
points in the point cloud, the RMSE of the fitting center, the total error at the end of the
fitting, iteration times, and running time, as shown in Table 1. According to the statistical
results, for the noise-free point cloud, when the coverage rate reaches more than 30%, the
total error threshold of 0.001 could be achieved, and the fitting center‘s RMSE was less
than 0.01 mm after less than 15 iterations of optimization. When the coverage was below
20%, the iterative optimization times would increase, but generally, the fitting would be
completed after about 25 iterations of optimization. At this time, the total error did not
reach the predetermined total error threshold of 0.001, and fitting should be the end of the
iteration process when the adjacent total error did not decrease, and both the deviations of
X, Y, and Z axes and the fitting center‘s RMSE were all less than 1 mm.

Table 1. Statistics of fitting results of noise-free point clouds.

Data Points CR
Error/mm

RMSE 1/mm Total Error 2 Iterations Runtime/ms
dX dY dZ

a 3751 50% −0.0018 0.0006 −0.0010 0.0021 0.0009 14 423.6
b 3267 40% 0.0042 0.0020 0.0064 0.0079 0.0010 14 224.1
c 2783 30% −0.0035 0.0054 0.0059 0.0087 0.0009 14 188.4
d 2178 20% −0.0047 0.0009 −0.0400 0.0403 0.0233 24 283.5
e 1573 10% −0.0001 0.0000 −0.9259 0.9259 0.0853 22 122.0

1 RMSE was calculated by Equation (6). 2 Total error at the end of the fitting.

Experimental results showed that the iterative optimization times were mainly affected
by the coverage rate in the absence of noise. When the coverage rate was greater than 30%,
ideal fitting results could be obtained after 15 iterations of optimization. When the coverage
was less than 20%, the number of iterations would increase, but generally, the fitting could
be completed after less than 25 iterations. The running time was mainly affected by the
number of measuring points in the point cloud. When the coverage rate was high, the
number of measuring points was large, and the running time was extended. When the
coverage rate was low, the measuring point data was small, and the running time was
short. From the calculation time of 10 simulated data, the fitting could be completed in less
than 0.5 s.

3.3. Noisy Point Cloud

Affected by instrument performance, scanning distance, incident angle, reflection
intensity, surface roughness, the external environment (e.g., ambient vibration, wind,
temperature), and other factors, the TLS point cloud cannot avoid mixed noise. From
various scanners’ existing nominal technical parameters, the ranging error within the
scanning distance of 100 m was basically within ±2.0 mm. Considering the influence of the
surrounding environment and other factors, we add ±5.0 mm noise to the simulation data.
We used method 3.1 to simulate five sphere target point clouds with different coverage
rates of ±5 mm noise, as shown in Figure 6. Among them, the coverage rates of (a)~(e)
were 50%, 40%, 30%, 20% and 10%, respectively. The center and radius (X, Y, Z, R) of all
the simulated point clouds were (1000, 1000, 100, 0.0725), and the unit was the meter. The
sampling interval of both the zenith angle θ and the plane projection angle ϕ was 3◦. We
use the proposed algorithm to fit the five simulated point clouds, respectively, and the
fitting process is shown in Figure 6. The initial parameter setting of the algorithm was the
same as that of the noise-free point cloud fitting, Nloop, Nopt, Rset, Emin, and α were 1000,
30, 0.08 m, 0.001, and 0.25, respectively.
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After every sphere target fitting was completed, we made statistics on the number of
points in the point cloud, the RMSE of the fitting center, the total error at the end of the
fitting, iteration times, and running time, as shown in Table 2. According to the statistical
results, for the noisy point clouds with different coverage rates, the fitting process ends
when the total errors stop decreasing during the iterative optimization process, and the
total errors at the end of the process do not reach the preset total error threshold of 0.001.
When the coverage was above 30%, the fitting center with RMSE less than 0.001 mm could
be obtained after about 25 iterations of optimization. When the coverage rate was 20%,
the fitting center with RMSE less than 1 mm could be obtained after about 20 iterations.
When the coverage rate was 10%, the fitting center‘s RMSE was about 2 mm after about
20 iterations of optimization. At this time, the error of X, Y, and Z axes primarily occurs in
the Z-axis, because the point cloud and noise were mainly concentrated in the Z-axis, which
may affect the fitting accuracy of the sphere target center in this direction to some extent.

Table 2. Statistics of fitting results of noisy point clouds.

Data Points CR
Error/mm

RMSE 1/mm Total Error 2 Iterations Runtime/ms
dX dY dZ

a 3751 50% 0.0000 0.0000 0.0000 0.0000 1.1020 24 654.1
b 3267 40% 0.0000 0.0000 0.0002 0.0002 0.9799 25 563.1
c 2783 30% 0.0000 0.0000 0.0000 0.0000 0.8362 23 392.0
d 2178 20% 0.0000 0.0003 0.2612 0.2612 0.6271 21 271.8
e 1573 10% 0.2437 −0.1620 −1.9100 1.9323 0.5343 19 112.8

1 RMSE was calculated by Equation (6), 2 total error at the end of the fitting.

It could be seen from the comparison of the fitting results of noise-free point cloud
and noisy point cloud when the point cloud was mixed with noise, the number of iterative
optimization of point cloud with coverage of more than 30% increases obviously, while
the number of iterative optimization of point cloud with coverage of less than 20% does
not change significantly. The accuracy of the fitting center was mainly affected by the
coverage rate. Whether there was noise mixed in the point cloud or not, the RMSE of the
fitting center was less than 0.01 mm when the coverage rate reached more than 30%. The
fitting accuracy of the point cloud with a 20% coverage rate was about 1 mm. The point
cloud with a 10% coverage rate was susceptible to noise, and the fitting accuracy would be
reduced to a certain extent after mixing with noise. The running time was mainly restricted
by the number of measuring points in the point cloud, but noise and coverage rate was not
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significantly affected. The more the number of measuring points, the longer the runtime
would be.

3.4. Realistic Point Cloud

In order to test the applicability of the proposed algorithm to real target balls, the
point clouds of five real sphere targets were acquired by TLS. The experimental site was
selected in a small square on the campus of Nanjing Tech University, where five sphere
targets with different distances were arranged, and the Faro Laser Scanner Focus3D X330
was used to collect their point clouds. The arrangement of the Target balls is shown in
Figure 7a. According to their distance from the scanner, they were named Target 1~5
respectively from near to far. The sphere target selected was Faro’s standard sphere target,
whose real geometric radius was 0.0725 m. The FARO Focus3D X330 was a high-speed
3D scanner with extra-long range, which could scan objects up to 330 m away even in
direct sunlight. Its nominal ranging error was ±2 mm, and ranging noise was 0.3 mm at
a distance of 10 and 25 m when the reflectivity was 90%. The point cloud of the whole
scene was obtained through single-site scanning according to the point spacing setting of
7.67 mm@10 m, as shown in Figure 7b. According to the measurement principle of a 3D
laser scanner, the spatial distribution of scanned point cloud showed divergence, that is,
the farther away from the scanner, the larger the point spacing and the smaller the spatial
density, which could be clearly shown in the orthographic projection of the scanned point
cloud in Figure 7b. From the original point clouds obtained without any denoising process,
point clouds of five sphere targets were manually extracted, as shown in Figure 7c.
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Figure 7. Acquisition of real sphere target point clouds. (a) Realistic experiment scene and sphere target arrangement.
According to their distance from the scanner, they were numbered 1~5 from near to far, and their distances from the scanner
and the numbers of measuring points contained in each point cloud were given. (b) Plane projection of the original point
cloud of the whole scene. It clearly revealed the spatial distribution of the experimental sphere target. (c) The real point
cloud of five sphere targets. The virtual spheres were used for auxiliary display.

In practical scanning work, the real geometric center of the sphere target could not be
measured directly, so its true value cannot be accurately obtained. In order to effectively
compare the fitted results of the proposed algorithm with other software or algorithms,
the geometric centers of five target spheres were extracted by the point cloud processing
software of Faro’s SCENE and regarded as reference values. In SCENE software, the fitting
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of the sphere target needed to set the radius of the sphere target in advance, which was
set as the real radius of the target ball (0.0725 m). Meanwhile, our algorithm and the least
square (LS) algorithm were used to fit the five point clouds, respectively, and the fitting
results were compared with the reference values, as shown in Table 3. Here, dX, dY, dZ
and dR were the absolute values of deviations between the fitted center and radius of the
sphere target and the reference value, respectively, and RMSE was the error value of the
fitted center, which could be calculated by Equation (5). The preset parameters required in
our algorithm were the same as those in Section 3.2. When LS was applied to fit, the initial
values of center and radius needed to be given, which were respectively set as the centroid
of the point cloud and the real radius of the sphere target.

Table 3. Comparison of fitting results of five point clouds.

Target
Our Algorithm/mm Least Squares/mm

dX dY dZ dR RMSE dX dY dZ dR RMSE

1 0.1115 0.0285 0.0666 0.0832 0.1330 0.3854 0.0241 0.1299 0.3480 0.4074
2 0.4377 0.1325 0.1392 0.3615 0.4780 0.3777 0.1454 0.1224 0.3120 0.4228
3 0.3654 0.4141 0.1136 0.4644 0.5638 4.8472 3.5357 1.5258 5.0020 6.1906
4 0.2010 0.5261 0.0027 0.8077 0.5632 0.3924 2.9402 0.6130 2.5100 3.0289
5 0.4966 0.7367 0.3502 0.5013 0.9549 1.0523 1.3143 1.2507 1.1236 2.0973

From the scanning and fitting experiments of real sphere targets, the following conclu-
sions could be drawn.

(1) The points and coverage rate of the point cloud were directly affected by the
distance between the sphere target and the scanner. It could be seen from Figure 8a that
as the distance between the sphere target and the scanner increased, both the number of
measuring points and the coverage rate decreased accordingly, which was determined by
the performance of the instrument. In actual scanning work, the coverage rate was usually
less than 40%. For example, Target 1, which was 3.316 m away from the scanner, had a
coverage rate of only 35%.

(2) Our algorithm was efficient in real sphere target fitting. From the iterative op-
timization times and runtime, our algorithm could complete the fitting after less than
20 iterative optimizations, and the runtime was less than 0.5 s, as shown in Figure 8b.

(3) The fitting accuracy of our algorithm was comparable to that of commercial
software SCENE. Under the assumption that the centers of the sphere targets by SCENE
were the true value, the deviation of X, Y and Z and RMSE of the fitted center of our
algorithm were all less than 1 mm, as shown in Table 3. From another perspective, the
applicability of our algorithm was better than that of commercial software SCENE. The
reason was that in SCENE’s fitting work, the true radius of the sphere target must first
be accurately set, but our algorithm only needed a rough estimate, and it would then
be automatically optimized. From the experiments we conducted, setting the radius in
our algorithm to a known value would improve the efficiency and fitting accuracy of the
algorithm to a certain extent. However, considering the versatility of the algorithm, it was
still chosen as an unknown parameter to be solved here.

(4) The fitting accuracy and noise immunity of our algorithm were better than that of
the least squares algorithm. It can be seen from Figure 7c that Target 1 and Target 2 had no
obvious noise. At this point, the fitting accuracy of the two methods was equivalent. Target
3~4 all contained obvious noises. Especially in the case of obvious outliers in Target 3,
our algorithm could still achieve a fitting accuracy of RMSE less than 1 mm, while LS had
an obvious large deviation, as shown in Figure 8c. The radius of the actual sphere target
used in the experiment was known. From the fitting error of radius, the fitting error of the
two algorithms was less than 1 mm when there was no obvious noise influence. However,
when there was obvious noise, our algorithm could still be applied stably, while LS was
greatly disturbed and had serious deviation, as shown in Figure 8d.
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4. Discussion
4.1. Parameters and Efficiency

The preset radius Rset of the sphere target directly affects the size of the initial space
constructed. In TLS work, the sphere target used usually has a fixed geometric radius, in
which case Rset could be easily determined. If the radius of the sphere target cannot be
determined, a fairly large value could be set. After several iterations of optimization, the
range of the radius could be basically determined. According to the experimental results,
Rset should be controlled within six times of the actual radius of the sphere target, so that
the comparatively accurate radius could be obtained after five iterations. If the value was
too large, the fitting accuracy would be low.

When updating the constraint space, the scaling factor α directly determines the
contraction speed of the constraint space, and the smaller the value is, the faster the
contraction speed is. The experimental results show that α was generally set to about 0.25
to ensure a good fitting effect. At the same time, the setting of α should take into account
the point cloud coverage. When the CR was more excellent than 20%, α could be reduced
to speed up the search. When the point cloud coverage was less than 20%, the α could be
increased to improve the accuracy of the solution.

The random search times Nloop directly determine the number of samples generated
in the finite constraint space, and its value was recommended to be between 500 and 1000.
If Nloop was too large, the number of sample points was too large, resulting in low fitting
efficiency; if Nloop was too small, the number of samples would be insufficient, resulting
in insufficient fitting accuracy. According to the experimental results, when Nloop was set
to 1000, all kinds of point clouds could be fitted within 1 s, which was acceptable to us,
as shown in Figure 9a. The value of Nopt should be adjusted to that of Nloop. If the value
of Nloop was relatively small, such as 500, the value of Nopt should be increased. If the
Nloop was correspondingly large, such as 1000, it should be possible to reduce the Nopt
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appropriately. According to the experimental results, when Nloop was set to 1000, an ideal
fitting result could generally be achieved within 30 times, as shown in Figure 9b.
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Figure 9. Runtime and iteration optimization times. (a) Iterations comparison of two kinds of simulated data. (b) Run time
comparison of two kinds of simulated data.

The total error threshold Emin was the preset condition for the end of the iteration.
In the iterative optimization process, if the Etotal of the current sample was detected to be
less than Emin, the iteration would end in advance, and this sample would be taken as the
optimal solution of the sphere target fitting. The value should not be too large, generally
less than 0.001. In the algorithm, the check judgment of iterative optimization accuracy was
set. If the fitting accuracy of two adjacent iterations was no longer improved, the judgment
would be terminated in advance. This judgment was very effective in the fitting process of
the noisy point cloud. As shown in Table 2, for the noisy point cloud, the Etotal at the end
of fitting did not reach Emin, but due to the influence of noise, the precision of Etotal in the
adjacent iterative process did not improve, so the fitting was ended before reaching the
preset iteration optimization number Nopt.

The time complexity of the proposed algorithm was O
(

Nloop ∗ Nopt

)
[52], and the

efficiency of the algorithm was directly restricted by Nloop and Nopt. It could be seen
from the experimental results that several parameters were not absolutely and completely
independent, but have some influence on each other. Therefore, the parameter reference
value given here was an empirical value, which should be adjusted appropriately according
to the actual situation in the practical application of the algorithm.

4.2. Robustness and Accuracy

Robustness was an important feature of an algorithm. It directly determines its
application scope. The proposed algorithm not only makes use of the point cloud data
itself but also considers the geometric characteristics of the target sphere, and realizes the
target sphere fitting, employing probability and statistic theory. As shown in Figure 10,
from the fitting process of 10 simulated sphere targets, regardless of whether there was
noise in the sphere target point cloud or not, with the optimization of the constraint space,
the total error Etotal would become smaller and smaller, that is, the fitting accuracy would
gradually improve. Generally, it would be basically stable after five iterations, and further
optimization would follow.
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The sphere target fitting method based on the least-squares completely depends on
the target sphere point cloud data, and the noise in the data was easy to cause the ill-
conditioned coefficient matrix, which leads to the decrease in fitting accuracy, especially in
the case of low coverage rate, it was easy to cause the fitting failure. Although the fitting
effect could be improved through error in variables (EIV), observation value weighting,
and other strategies, many prior assumptions of such methods were often untenable.
In practice, such as equal precision of all measurement points, weight determined by
reflection intensity or incident angle, etc. [53–57]. We find the solution from the perspective
of probability theory not only relies on the point cloud data but is based on considering
the geometric characteristics of the target sphere, through the global optimal parameter
estimation to find the best fitting results. This method not only avoids the defects of the
least square fitting method but also overcomes the influence of various noises on the fitting
accuracy. From the experimental results, when the coverage rate reaches more than 30%,
regardless of whether there was noise in the point cloud data, the proposed algorithm
could achieve a fitting accuracy of more than 0.01 mm, which was beyond the reach of all
current least-square fitting methods. When the coverage rate was less than 20%, the fitting
accuracy of the proposed algorithm was reduced to some extent, but it could reach the
accuracy of about 1 mm in point cloud fitting with mixed noise. In the verification process,
we also conducted fitting tests on point clouds with large noise such as 10 and 15 mm,
and found that the proposed algorithm could achieve fitting accuracy of more than 1 mm
as long as the coverage rate remained above 20%. This fully proves that the proposed
algorithm was practicable and could be used for fitting different sphere target point clouds.

5. Conclusions

Combined with the target sphere’s point cloud and geometric characteristics, a finite
random search algorithm was proposed for fast calculation of the center of the target sphere.
This algorithm was suitable for all types of sphere target point cloud data and had high
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fitting accuracy and operation efficiency. According to the experimental results, when the
coverage rate reaches more than 20%, regardless of whether the point cloud contains noise,
the rapid fitting could be completed within 1 s, and the fitting error was less than 1 mm.
When the coverage was less than 20%, the noise-free point cloud could also reach the fitting
error of less than 1 mm. When the coverage rate was less than 20%, the fitting error of
the noise-free point cloud could also reach within 1mm, while the fitting accuracy of the
noisy point cloud was basically within 2 mm, although the accuracy of noisy point cloud
decreases relatively.

Future research would focus on the problem of accurate fitting of noise point clouds
with low coverage. The noise was removed continuously in the iterative optimization pro-
cess through spatial clustering or error sorting methods to improve the fitting
accuracy further.
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