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Abstract

Despite the volume of experiments performed and data available, the complex biology of coronavirus SARS-COV-2 is not yet
fully understood. Existing molecular profiling studies have focused on analysing functional omics data of a single type,
which captures changes in a small subset of the molecular perturbations caused by the virus. As the logical next step,
results from multiple such omics analysis may be aggregated to comprehensively interpret the molecular mechanisms of
SARS-CoV-2. An alternative approach is to integrate data simultaneously in a parallel fashion to highlight the
inter-relationships of disease-driving biomolecules, in contrast to comparing processed information from each omics level
separately. We demonstrate that valuable information may be masked by using the former fragmented views in analysis,
and biomarkers resulting from such an approach cannot provide a systematic understanding of the disease aetiology.
Hence, we present a generic, reproducible and flexible open-access data harmonisation framework that can be scaled out to
future multi-omics analysis to study a phenotype in a holistic manner. The pipeline source code, detailed documentation
and automated version as a R package are accessible. To demonstrate the effectiveness of our pipeline, we applied it to a
drug screening task. We integrated multi-omics data to find the lowest level of statistical associations between data features
in two case studies. Strongly correlated features within each of these two datasets were used for drug–target analysis,
resulting in a list of 84 drug–target candidates. Further computational docking and toxicity analyses revealed seven
high-confidence targets, amsacrine, bosutinib, ceritinib, crizotinib, nintedanib and sunitinib as potential starting points for
drug therapy and development.

Key words: COVID-19; SARS-CoV-2; machine learning; multi-omics; data integration; data harmonisation; multivariate
analysis.

Introduction

A new strain of coronavirus SARS-Cov-2 was identified in late
2019, which is responsible for the disease COVID-19 and the
subsequent global pandemic. A significant amount of resources
have been invested into studying this virus in order to limit
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its spread and negative impact on humans, resulting in a large
quantity of publicly accessible epidemiological and molecular
data (104 872 articles indexed in PubMed at this time of writing)
[7]. While many of these molecular studies generate valuable
data [3, 11, 19], we consider that a large quantity of existing
studies observe data from a narrow perspective, generating a
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single, specific category (or modality) of data corresponding to
a single omics type.

Single-omics or ‘unimodal’ views of data contrast strongly
with the known heterogeneity of biological systems. Complex
traits and diseases such as COVID-19 are often a result
of composite interplay between the genome, environment
and multiple layers of functional genomics, for example the
lipidome, metabolome, proteome and transcriptome. Highly
complex signalling networks arise as a result of these inter-
actions, and it is rarely straightforward to understand how their
different components interact to produce a phenotype. High-
throughput data generated from multiple functional layers of
a biological system is known as ‘multi-omics’ or ‘multi-modal’
data that can be generated from the same of different cohorts of
samples.

Accordingly, we consider the possibility of obtaining addi-
tional and novel information by integrating multiple omics
datasets together. We define this as a ‘multi-modal harmon-
isation’ approach to homogenise and analyse data on the
same scale, which is expected to capture a holistic view of the
biological system under study, as opposed to more conventional
sequential data aggregation or merging. Predicted advantages
include greater data resolution, reduced noise and the ability
to answer questions that a single data modality cannot, as
demonstrated by existing studies [2, 18, 43]. Furthermore, the
user will also have a higher degree of confidence in the results
due to their concordance on separate data categories.

Data analysis is often performed on an individual, highly
nuanced omics dataset using context-specific bioinformatics
pipelines. Pipeline specificity, along with the significant differ-
ences across different omics data, hinders their direct com-
parison under normal circumstances. Generally, high-level data
integration is performed after quantitative information across
datasets have been reduced to a set of qualitative data, often
resulting in a list of biological pathways. At this point, biolog-
ical signal is weakened due to this information loss. Therefore,
approaches that can unify and compare datasets simultaneously
are favourable. In this article, we will be using the term ‘harmon-
isation’ [9] to refer to multi-modal data integration for finding
the lowest level of statistical association between features of
multiple data type.

We have previously reviewed and labelled data harmonisa-
tion strategies [9] that fall into two broad categories: (i) meth-
ods with restricted scopes impose specific assumptions and
operate on a specific combination of omics data only and are
of limited use in our data analysis context; (ii) methods with
unrestricted scopes include less constraints (such as method-
specific assumptions and data transformations) and can be sub-
divided into supervised and unsupervised methods. Supervised
methods require the outcome, in this case, biological category,
to be known while unsupervised methods such as JIVE [27],
iCluster [38], MOFA [1], seurat [41], LIGER [48] NMF [54], iNMF
[53] and SNF [46] do not. However, the greater flexibility of
unsupervised methods is balanced by their lower classification
performance relative to supervised methods [39]. Since the bio-
logical categories in our multi-omics dataset are known, we
considered supervised methods. Among these methods, Net-
ICS [12] and DeepMF [6] require prior information or manual
parameter tuning. In comparison, Data Integration Analysis for
Biomarker discovery using a Latent cOmponent (DIABLO) [39]
does not have these disadvantages. An additional advantage of
DIABLO is that it reports low-level feature associations across
omics data.

At the same time, we identified a significant gap in the field.
While a few methods exist to address the problem of low-level
feature harmonisation, there does not yet exist an ‘off-the-shelf’
pipeline to perform this process. We filled this gap by writing an
input-to-feature pipeline applying state of the art algorithms in
data harmonisation [35, 39] and made it publicly available as a
git repository and an R package [8].

We present two multi-omics case studies to illustrate one
possible application of our pipeline on drug screening. We
focused on harmonising low-level biological features across (i)
a dataset with SARS-CoV-2 proteome and translatome data and
(ii) another dataset with SARS-CoV-2 lipidome, metabolome,
proteome and transcriptome data. Low-level biological features
in this context correspond to individual biological molecule
identities, for example a lipid, metabolite, peptide or transcript.
In each of our case studies, we compared these features across
each omics measurement directly, in contrast to most existing
methods that are prone to information loss from simplifying
data to a high level for comparison.

To show the relevance of our pipeline in biomedical applica-
tions, we applied it in the context of drug screening. As part of
our downstream processes, we took correlated features output
by our pipeline and applied prior knowledge as well as computa-
tional modelling as downstream analyses. Among existing drug
databases, we selected DrugCentral [44] for its open accessibility
and ease of use. For performing molecular docking simulations
of drug–target combinations, we selected four computational
methods, SWISSDOCK [14], PATCHDOCK [37], MTiAUTODOCK
[22] and Achilles Blind Docking [36]. While each method uses a
different strategy, our goal is to obtain a consensus among the
docking methods to refine our final list of screened drugs. At
the same time, we independently validated our drug associa-
tions with SARS-CoV-2 by exploiting the wealth of SARS-CoV-
2 literature and clinical trials [Table S1]. We considered that
concordance among all the above factors would result in a higher
degree of confidence in the final results.

We supplemented these downstream processes with a liter-
ature survey of reported COVID-19 drug–target associations. We
showed that many of these studies involved in silico validation of
COVID-19 related drug–target combinations, implicating existing
drugs or their analogues as potential drugs against SARS-CoV-2
infection [45]. Investigating these further revealed that clinical
trials on many of these drugs are on-going [Table S1]. Most of
our surveyed drugs target the SARS-CoV-2 main protease, where
others targeted host proteins. Within this realm, few drugs were
capable of acting on both the virus and host. Some of the
popular methods for identifying the drug–target combinations
are molecular docking, implementation of machine learning and
deep learning techniques and pathway analysis.

In our pipeline, we apply a multivariate approach to har-
monise multi-omics data and detect signals contributing to
the viral state in two COVID-19 case studies. To illustrate the
utility of our pipeline, we show that a list of features can be
generated for downstream analysis from generic input data.
To demonstrate its effectiveness, we show that it recapitulates
published results from algorithms that were specially designed
for these respective studies. From this, novel information on
the molecular mechanisms of SARS-Cov-2, which is not possi-
ble to obtain with individual omics data, is applied to a drug
screen. Furthermore, the generalisability of our pipeline makes
it highly adaptable to investigating quantitative multi-omics
datasets and is not restricted specifically to a SARS-CoV-2 sys-
tem [10].
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Figure 1. Graphical abstract of the publication.

Materials and methods

Data review, processing and analysis

Data selection

When selecting test case datasets for our pipeline, we consid-
ered several criteria. First, the data should contain at least two
separate omics data. Second, the data would be quantitative.
Third, the data would contain at least two biological classes or

treatment conditions. Fourth, the data must be publicly accessi-
ble in a machine-readable format. Fifth, metadata must be sim-
ilarly accessible and unambiguous. For the system under study,
we narrowed our scope to datasets associated with SARS-CoV-2
to highlight the utility of our pipeline in a drug screening exam-
ple. We surveyed datasets that met all criteria simultaneously
within this system and selected two specific case studies. How-
ever, we note that the pipeline is generic and applicable across
systems.
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Table 1. Experimental design of case study 1 [3]. There are three
biological replicates and eight treatment conditions, for a total of 24
samples in the whole dataset

Infection state Timepoint (hour)

Control 2
Control 6
Control 10
Control 24
Infected 2
Infected 6
Infected 10
Infected 24

Table 2. Experimental design of case study 2 [31]. There are 49–51
biological replicates and 2 treatment conditions, for a total of 100
samples reanalysed

Infection state

Less severe
More severe

Data description

Two independent case studies are featured, each involving SARS-
CoV-2 data. Both case studies, including links to source data,
detailed documentation, R code and all steps to reproduce our
analyses, are in a publicly accessible git repository https://gitla
b.com/tyagilab/sars-cov-2. Our raw R data objects are included
and can be loaded directly for the user to inspect low-level
technical details and the underlying structure of the data. All
figures in this manuscript that are directly generated by our
pipeline can be reproduced by running the script https://gitlab.
com/tyagilab/sars-cov-2/src/make_manuscript_figures.R.

Case study 1 For our first case study, a multi-omics dataset
containing proteome and translatome data is available from
[3]. SARS-Cov-2 virus was grown in cell culture of human
colon carcinoma cell line CaCo-2, using published methods [3]
and performed in three biological replicate cell cultures, then
repeated for uninfected controls. The supernatant of infected
cells was repeatedly sampled at four different timepoints and
was repeated for uninfected cells as a control, yielding a total
of eight treatment conditions, and a total of 24 samples. Prior
to filtering, the raw data contained a total of 6381 proteomic
features and 2715 translatomic features.

Case study 2 A second case study incorporating four omics
datasets on patients infected with SARS-Cov-2 is also available
to illustrate the utility of our pipeline [31]. A total of 100 patients
with SARS-CoV-2 were categorised based into two classes (more
severe and less severe) based on their condition using a com-
posite metric developed by the original authors of the study.
Before filtering, raw data contained a total of 3357 lipids, 150
metabolites, 517 peptides and 13 263 transcripts. In both case
studies, data preprocessing steps and the flow of data through
the pipeline are conceptually identical.

Data preprocessing

Data were downloaded from the original publications and refor-
matted into matrices of values using the python pandas software
package [32, 49]. Data filtering was carried out by removing
features that were not represented in every sample class. The
non-linear iterative partial least squares (NIPALS) algorithm was

used to impute remaining missing data values where applicable
(proteome and translatome in case study 1, transcriptome in
case study 2) [35]. In case study 1, principal component analysis
(PCA) before and after multilevel decomposition for cell culture
was used to assess the effect of the longitudinal study design
[26].

Multivariate data analysis

Filtered, normalised abundance measurements of omics fea-
tures were provided as input data and sample group information
as input metadata. In addition, cell culture information was
provided to account for the effect of repeated measurements on
the same cell culture in case study 1.

In this study, we used a specific class of partial least squares
(PLS) analysis methods and a sparse variant, which performs
internal feature selection rather than operating on the full data
matrix [24]. PLS can be applied to discover relationships between
two matrices of data and unlike many methods is suited to the
case of n << p, where the number of variables or features p
outnumber the number of samples n. Therefore, it is particularly
useful in biological data analysis, where for example, a single
biological sample may be associated with thousands of genes of
interest.

We considered two types of supervised PLS approaches: PLS
discriminant analysis (PLSDA and sparse PLSDA) to perform
supervised analysis on each single omics dataset [23] and multi-
block sPLSDA, also known as DIABLO [39], to integrate the multi-
omics datasets. Generalising sPLSDA to multiple blocks of omics
data allows us to capture the correlations between features
across different omics data.

In case study 1, a multilevel decomposition was used to
remove individual variation caused by repeated measurements
before variable selection and classification are performed simul-
taneously in the multivariate models. Features of interest con-
tributing to each condition are output, along with their con-
tribution weights. Performance of the model was evaluated by
observing error rate and supplemented by area under the curve
generated by cross-validation. It was also possible to survey the
stability of selected variables.

Required input parameters include the number of compo-
nents in these latent variable models, distance metrics and the
optimal number of features to select. We tuned these parameters
using ‘leave-one-out’ cross-validation.

The outputs of sPLSDA and DIABLO are lists of features
per omics data, which strongly discriminate between biological
categories in the experiment. Features are first linearly com-
bined into components, which enable us to reduce data dimen-
sion, similar to PCA. Variable loadings correspond to coefficients
assigned to each variable when calculating each component
(their absolute value indicate the importance of each variable
to define a component) and are used as a metric for measuring
their contribution towards a biological outcome or state. In the
case of DIABLO, the features that are highly correlated across the
different omics data are expected to be informative.

The mixOmics R software package and its set of methods was
used for multivariate data analysis [33, 35]. Detailed documenta-
tion with examples are available at the mixOmics website: www.
mixOmics.org.

Computational validation of drug–target combinations

To place this information in a medical context, the most distin-
guishing features returned by our pipeline were investigated for

https://gitlab.com/tyagilab/sars-cov-2
https://gitlab.com/tyagilab/sars-cov-2
https://gitlab.com/tyagilab/sars-cov-2/src/make_manuscript_figures.R
https://gitlab.com/tyagilab/sars-cov-2/src/make_manuscript_figures.R
www.mixOmics.org
www.mixOmics.org
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their potential as drug targets. For this purpose, we selected sev-
eral protein–ligand docking methods, SWISSDOCK [14], PATCH-
DOCK [37], MTiAutoDock [22] and Achilles Blind Docking [36].
Instead of using a single protein–ligand docking method, we
used all methods and compared their output. Should a potential
drug target be identified by all methods, a higher degree of
confidence would be obtained. Finally, these drugs were also
cross-referenced against existing studies and clinical trials.

SWISSDOCK (based on the EADOCK ESS algorithm) measures
the binding affinities of ligand–target interactions. It generates
multiple clusters with respect to the binding sites and ligand–
target interactions [14]. SWISSDOCK is calibrated for drug design
and is effective for small and rigid ligands. As input, Protein
Data Bank (PDB) [4] identifiers of the drug and target names are
required. Within input parameters, a flexibility of Åwas specified
and no region of interest was selected. The server retrieves
protein and ligand details from their respective databases to
perform docking calculations, which results in the generation of
the docked structure, a protein–ligand complex.

PATCHDOCK is a freely accessible web server and measures
geometric complementarity for performing structure predic-
tion of protein–small molecule complexes and protein–protein
complex [37]. As input, ‘.pdb’ files of the drug and targets are
required. Within input parameters, clustering root mean square
deviation was set to four (default). A series of molecular transfor-
mations were performed and the best shape complementarity
was obtained.

MTiOpenScreen is a web server exclusively for molecular
docking and virtual screening [22] of drug molecules by their
lowest energy score. Docking is performed using MTiAutoDock
and screening with AutoDock Vina [22]. As input, ‘.mol2’ files
of the drug and target are provided. Within input parameters,
hetero atoms are replaced with hydrogen atoms by MGLTools
[13].

The Achilles Blind Docking Server is available at http://
bio-hpc.eu/software/blind-docking-server/ and implements
the BINDSURF algorithm [36] to calculate binding energies. It
performs a comprehensive iteration of docking calculations
over the protein surface in order to find the pockets with best
binding affinities [36]. Many different docking simulations are
performed on each alpha carbon of the protein, enabling the
detection of new binding spots. Results are clustered according
to spatial overlapping of the listed drug–target poses and the
highest affinity selected. As input, ‘.pdbqt’, ‘.mol2’ or ‘.pdb’ files
are accepted. Manual preparation was needed depending on the
molecular attributes of the input.

In silico pharmacokinetic analysis of the drugs was done by
analysing their absorption, distribution, metabolism, and excre-
tion (ADME) properties and was carried out using admetSAR
tool [52]. As input, simplified molecular input line entry system
formatted entries of the drugs were submitted, and the results
showed the viability of the drug. The tool requires no input
parameters.

Crystal structure generation

A known crystal structure is required for docking analysis. A
protein we identified (Uniprot ID: O94956) lacked a known crystal
structure entry in the PDB database. Another protein (Uniprot
ID: P35869) was too large for molecular docking analysis. Hence
a crystal structure was generated using homology modelling for
protein O94956, and the crystal structure for protein P35869 was
modelled using only chain A of the same [47]. The templates
were ranked based on the similarity, and the top one was used

for the modelling of the proteins. The modelling was done using
SWISSMODEL, which works based on target-template alignment
using ProMod3 [47]. The output comprises the project report and
final PDB structure of the modelled protein.

Software availability

All steps, code, parameters, command line arguments and soft-
ware versions used to generate the multi-omics data integration
results in this paper are publicly available in an open source
software repository (MIT License) hosted on gitlab at https://gi
tlab.com/tyagilab/sars-cov-2. Documentation is available at the
same location, licensed as CC-BY-3.0 AU. The snapshot of the
repository that produced the data generated in this paper is
available at https://doi.org/10.5281/zenodo.4562010.

All third-party software (SWISSDOCK [14], PATCHDOCK [37],
MTiAutoDock [22], Achilles Blind Docking [36], admetSAR [52],
SWISSMODEL [47]) used to validate drug–target combinations
are published and available at their respective websites.

Data availability

For the first case study, translatome data are available from the
source publication [3] as SupplementaryTable1 and proteome
data are available as SupplementaryTable2. For case study 2, the
authors provided their data in ansqldatabase.

For the second case study, all data are available as a set
of sql tables [31]. Preprocessing code and documentation to
reformat these data into a format compatible with our pipeline
are available in our gitlab repository.

Results
Validating data quality before analysis

Infected cells express the ACE-2 receptor for SARS-CoV-2 entry

SARS-Cov-2 is known to use the angiotensin converting enzyme
2 (ACE-2) receptor to enter human cells [17]. The Caco-212 cell
line selected in case study 1 expresses ACE-2 and is known
to support growth of a related virus SARS-Cov-1 [30]. As an
additional layer of validation, we examined the proteomics data
in case study 1 and observed that ACE2 protein was present in
all samples (not shown). Viral transcript load was also observed
to increase over time (not shown), matching the authors’ obser-
vations [3].

Filtering and imputing missing values

Before analysis, we assessed data quality to ensure that it was
suitable for testing our hypothesis. We discovered a high propor-
tion of missing values within the translatome data as well as a
significant quantity of variation between individual cell cultures
in all data. We addressed these issues with the following steps.

To overcome the missing value problem, we used a two-
step approach. We first filtered out all features that were not
represented at least once per class for a sample. As a result, in
case study 1, the proportion of missing values was reduced from
47% to 17% within translatome data and did not affect proteome
data. In case study 2, the proportion of missing values was 0.5%
for transcriptomics data. Next, we then imputed these data with
the NIPALS algorithm [42, 50, 51]. For consistency within case
study 1, we repeated this with proteome data even though the
proportion of missing values was low (<0.01%).

We next decided to investigate if the imputation introduced
unwanted technical variation into the dataset, which would bias

http://bio-hpc.eu/software/blind-docking-server/
http://bio-hpc.eu/software/blind-docking-server/
https://gitlab.com/tyagilab/sars-cov-2
https://gitlab.com/tyagilab/sars-cov-2
https://doi.org/10.5281/zenodo.4562010
Supplementary Table 1
Supplementary Table 2
an sql database
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any downstream analyses. To assess similarity, we used two sub-
jective metrics, with the expectation that similarity between the
unimputed and imputed data should be high. First, we examined
the data with PCAs before and after imputation and noted no
significant differences (Figure S1). Next, we plotted a heatmap of
correlations between the principal components before and after
imputation (Figure S1). The correlations between components
were consistent before and after imputation for proteomics
data, which is unsurprising given the small quantity of values
imputed. Within translatomics and transcriptomics data, corre-
lations were consistent across at least the top five components
accounting for the majority of variation in the data.

Removing unwanted technical variation from primary data that
might impact downstream analysis

We then considered the implications of case study 1 being
longitudinal. Classical methods assume sample independence
across the datasets and are therefore less appropriate in our
context of analysis. To determine the extent of the effect of
these repeated measurements on the same cell cultures, we
first perform a multilevel decomposition as the first step of
our analysis [26]. Using this to account for variation within the
samples, we then performed a PCA of the decomposed data. For
comparison purposes, we performed a PCA on the unadjusted
data. As expected, we identified a strong cell culture effect in
the original data, which was reduced in the decomposed data
(Figure S2). Thus, having shown that the individual variation
was present in the data, we adjusted for the repeated sample
measurements in the remainder of the analyses.

Multivariate single-omics analysis of primary data
reveals pathways associated with viral infection and
cellular stress

We first used a single-omics strategy to identify features highly
contributing to each biological condition surveyed. We applied
PLSDA and its sparse variant sPLSDA on each individual omics
dataset, while accounting for the repeated measurements within
each cell culture in case study 1. Visualising the first few com-
ponents of these methods reveals several distinct sample group-
ings, with the main distinction in case study 1 being sam-
ples 24 hours post-infection versus all other samples, while in
case study 2 a spectrum of values is shown by disease severity
(Figures 2, S3, S4, 3, S5 and S6). Across PLSDA and sPLSDA within
both case studies, this pattern is similar, matching the indepen-
dent observations of the laboratories that originally generated
the data [3, 31]. For case study 1, multiple secondary distinctions
are also visible between data groups in both omics datasets,
mostly between groups of time points from either infected or
uninfected samples. The resulting feature lists are also gener-
ated for downstream analyses such as pathway enrichment and
are available in the git repository.

Multivariate multi-omics analysis of primary data
reveals a harmonised multi-modal signature

Having assessed the major sources of variation and features of
interest contributing to biological conditions within the individ-
ual blocks of omics data (Figures 2 and 3), we used this infor-
mation to guide our multi-omics data harmonisation. In each
case study, we applied DIABLO to identify a highly correlated
multi-omics signature in the data [39]. The DIABLO analysis was
carried out in a conceptually similar way to the previous sPLSDA,

except with multi-omics data as input instead of single-omics.
We illustrated the correlation between features across these
omics blocks with circos plots (Figures 4 and S7).

Multi-omics analyses achieve a lower error rate than
single-omics

To objectively assess the performance of PLSDA, sPLSDA and
multi-block sPLSDA (DIABLO) in case study 1, we compare the
error rate per component and show that in all cases error rate
was low (Figures 5, S19, S11 and S12). Using ‘leave-one-out’ cross-
validation, we showed in all single-omics analyses that four
components in case study 1 were sufficient to obtain a clas-
sification error rate approaching 0 with the centroids distance
metric. In the case of the combined datasets, we achieved a
slightly better performance with eight components and the
Mahalanobis distance metric. We repeated these steps for case
study 2 and show that an analogous pattern is visible, where
error rates for single-omics analyses are higher compared to
multi-omics analyses with two components with the centroids
distance metric.

As a supplementary layer of validation, ROC curves showing
classification accuracy (Figures S13 and S14) are available, but we
note that these have limited applicability in the context of the
method, which already internally specifies the prediction cutoff
to achieve maximal sensitivity and specificity [35].

Our generic pipeline recapitulates results from
published studies using custom pipelines

We compared our highly correlating multi-omics feature values
to those in our case studies and showed that our strongly corre-
lated multi-omics features overlap with highly scoring features
identified in the original analyses (Figure 6).

In the first case study [3], the authors provided features
ranked by two-sided, unpaired t-tests with equal variance
assumed. First, we filtered this list by removing all features
that were below or equal to a P-value threshold of 0.05. Next, we
matched the 170 features we discovered through our pipeline
to these features implicated as significantly differentially
abundant in the original analysis. We find that the median of
our subset of 170 features fall below the median P-value scores
identified in the original analysis, suggesting that our pipeline
identifies a subset of the more significant features. In particular,
our pipeline recovers SRSF10, MAVS and GSTP1, which are
important proteins associated with key pathways highlighted by
the original study [3] due to their roles in pre-mRNA processing
pathways essential for SARS-CoV-2 replication, viral processes
and apoptotic regulation, respectively.

In the second case study [31], the authors ranked features
by an importance score with their tree-based classifier. First,
we filtered this list by removing all features that were assigned
an importance score of 0. Next, we matched the features we
discovered through our pipeline to these features found by the
original analysis. We find that a subset of 24 features fall above
the median score of importance among important features iden-
tified in the original analysis. In particular, our pipeline recovers
quinolinic acid, which was an important metabolite highlighted
in the original study [31] due to its role in immune function [16,
40] and COVID-19 severity [29].

We note that in each case, our list of features is compara-
tively small compared to the full range of significant features
identified by the original studies. However, we emphasise that
our approach works by selecting subsets of features. When
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Figure 2. PLSDA plots on individual blocks of omics data. Case study 1: (A) proteome, (B) translatome; case study 2: (C) lipidome, (D) metabolome, (E) proteome,

(F) translatome. The first component is plotted as the horizontal axis and the second component is plotted as the vertical axis, together accounting for approximately

20–50 % of the variation in the data across all cases. Background colour indicates prediction area. For case study 1, the main source of variation within each block of

data appears to be the differences between samples 24-hour post infection and all other samples. In case study 2, a spectrum of cases on disease severity is visible.
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Figure 3. PLSDA plots on individual blocks of omics data. Case study 1: (A) proteome, (B) translatome; case study 2: (C) lipidome, (D) metabolome, (E) proteome,

(F) translatome. The first component is plotted as the horizontal axis and the second component is plotted as the vertical axis, together accounting for approximately

20–50 % of the variation in the data across all cases. Background colour indicates prediction area. For case study 1, the main source of variation within each block of

data appears to be the differences between samples 24-hour post infection and all other samples. In case study 2, a spectrum of cases on disease severity is visible.
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Figure 4. DIABLO (Multi-block sPLSDA) integrating multi-omics data. (A) Each block of omics data within case studies 1 (A) and 2 (B) is plotted for side-by-side

comparison. A clustered image map shows the relationships across sample groups within case studies 1 (C) and 2 (D). Circos plot, built on a similarity matrix

demonstrates the correlation between different proteins and transcripts, with a visualisation cutoff of 0.95 correlation score. Positive correlations are in red and

negative correlations are in blue. For (E) case study 1, the proteome block is in blue and translatome block is in green. For (F) case study 2, the lipidome block is in blue,

metabolome block is in green, proteome block is in red and transcriptome block is in orange. Line graphs on the outside of the circos plot represent expression levels

of their corresponding features and are coloured by their biological sample class.
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Figure 5. Minimum error rates obtained for each single-omics and analysis. Orange boxplots show the error rate distribution for single-omics analyses and overlaid

blue line shows the minimum error rate obtained from the multi-omics analysis for (A) case study 1 and (B) case study 2. Note that further details on the individual

error rates per omics data block are in Supplementary Figures S10, S11 and S12.

Figure 6. Important features in original analyses recapitulated by our pipeline. Orange boxplots show p-values (case study 1) and feature importance score (case study

2) distributions for the original analyses. Overlaid blue boxplots show the subset of features identified by our pipeline for (a) case study 1 and (b) case study 2.

contrasted against the original data, we illustrate that a subset
of the most informative features were selected in each case. Fur-
thermore, our generic pipeline was shown to partially recapitu-
late results obtained from two conceptually unrelated methods
on separate experimental systems, including an algorithm that
was specifically tailored to case study 2. Therefore, we demon-
strate that our aim of providing an agnostic, flexible pipeline for
analysing multi-omics data is achieved.

Predicting drug targets from a harmonised multi-modal
signature

Having demonstrated that our multi-omics pipeline is effective,
we exploit our findings from the reanalysis of both case studies
to explore potential drugs for SARS-CoV-2. We first filtered our
list of correlated multi-omic features on a threshold of ¡ -0.5
or ¿ +0.5 (Figure 4) and checked these against the DrugCentral
database [44], resulting in the identification of 84 drug and target
combinations [Table S1].

A literature survey reveals COVID-19 associations with our list of
predicted drugs

Many of these drugs are already reported by existing preprints
or publications. A large number of the drugs we reported are
also undergoing clinical trials [Table S1]. We also report a few

drugs that have not yet been identified by the literature, which
may be of interest for further investigation. Among these are
aspartic acid, asulacrine, carubicin and daunorubicinol. A possi-
ble explanation may be a limitation of the DrugCentral database
[44], which records specific protein targets but does not at time
of accession contain coronavirus entries.

Computational validation predicts the most likely drug–target
interactions

To further validate our results and to characterise these proteins
further, computational ligand–target docking analyses were car-
ried out. Four independent methods SWISSDOCK [14], PATCH-
DOCK [37], MTiOpenScreen [22] and Achilles Blind Docking [36]
were used to increase confidence in the results, as each algo-
rithm approaches docking with a different strategy (Figure 7).
Furthermore, we considered that a consensus among all algo-
rithms would provide an additional layer of validity.

SWISSDOCK outputs the full fitness score and binding
affinities of the ligand–target combinations. Lower fitness
scores and binding affinities indicate stronger ligand–target
interactions. For SWISSDOCK, etoposide phosphate, asulacrine
and amsacrine had the highest scoring fitness scores in case
study 1. Pazopanib, crizotinib and tranilast scored highly in
case study 2. With the exception of tranilast, all of these
drugs inhibit DNA, RNA and protein synthesis. Meanwhile
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Figure 7. A flowchart visualising the steps taken in the pipeline. Functional omics data were obtained and filtered before harmonisation. The resulting protein list was

searched against a drug database and a list of targets was identified. Using this list, docking analyses were performed with drug–target ligand combinations. These

were further assessed for toxicity. Stage 1 demonstrates data selection as well as preparation, Stage 2 shows the main body of the pipeline and Stages 3 and 4 represent

downstream analyses
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PATCHDOCK reports ligand–target affinity in terms of geometric
complementarity. The top few ligands reported by PATCHDOCK
in case study 1 are erlotinib, ruxolitinib and afatinib, all of which
are tyrosine kinase inhibitors. In case study 2, somatostatin,
pasireotide and lanreotide are returned, all of which are growth
hormone inhibitors. MTiAutoDock on the other hand searches
for the ligand–target combination with the lowest complex
energy score. Nintedanib, amsacrine and dasatinib are the
best performing drugs in case study 1 by this criteria, while
bosutinib, fentiazac and pasireotide are identified as highly
scoring drugs in case study 2, all of which are growth hormone
inhibitors, tyrosine kinase inhibitors or biomolecular synthesis
inhibitors. Finally, Achilles Blind Docking returns results based
on binding energy, where a lower score represents better ligand–
target interactions. Achilles Blind Docking returns nintedanib,
midostaurin and idarubicin as its best targets for case study
1 and sulfobromophthalein, nintedanib and midostaurin for
case study 2. Compared to the top results of other algorithms,
these drugs are more varied in their mechanisms of action,
where midostaurin is a protein kinase inhibitor, idarubicin is a
topoisomerase inhibitor and sulfobromophthalein is an enzyme
inhibitor but not typically used as a drug.

Due to the diversity of objective metrics used by these
molecular simulations, their results are not directly comparable.
Therefore, we ranked their results and reviewed overlapping
drugs across all methods. The full list and objective metrics
are available [Table S1]. Three drugs, amsacrine, ceritinib and
crizotinib, are common across all top ranked lists in case study 1.
In case study 2, bosutinib, nintedanib, midostaurin and sunitinib
are common. Examining these further shows that amsacrine
disrupts DNA topoisomerase II activity, while bosutinib, ceritinib,
crizotinib, nintedanib, midostaurin and sunitinib target and
inhibit various kinases, subsequently suppressing cell growth
and division. In addition, these drugs are also used to suppress
tumour growth in cancer. We investigated existing work to gain
insight into this observation and found an independent study
on similar biological material, which discovered that infection
triggers cell growth pathways, and drugs suppressing these
inhibit viral replication [20].

Regarding the remaining candidate drugs, a careful review of
existing studies that predict COVID-19 related drug associations
supplements these findings. Each of these drugs have a reported
association with SARS-CoV-2 in either a peer-reviewed study,
preprint or clinical trial. Most of the drugs were found to target
the main protease of SARS-CoV-2, and some target host proteins.
Few drugs acted on both virus and host targets. We observed that
many of these drugs are already in clinical trials for COVID-19.

Most drugs are predicted to have physiochemical properties suitable
for humans

To obtain additional evidence supporting drug suitability
with human physiology, we examined drug pharmacokinetic
properties. Adsorption, distribution, metabolism, excretion and
toxicity (ADME/T) properties of the drug were assessed with
the ADMET structure activity (admetSAR) algorithm [52] [Table
S3]. Despite good docking results, lanreotide, mitoxantrone,
octreotide, pasireotide, teniposide and midostaurin have
severe side effects, suggesting that they should not be used
under normal circumstances. Of the highest ranked drugs
across the case studies, only midostaurin was found to have
physiochemical properties that would limit effectiveness in
humans.

We note that lanreotide, octreotide, pasireotide and somato-
statin were excluded from SWISSDOCK analysis as they were
irretrievable from its associated database. Moreover, these drugs
were not in clinical trials and other than somatostatin all these
other drugs had considerable side effects as assessed by the
ADMET analysis.

Discussion
Our study shows that by applying our pipeline with its array
of variety of multivariate approaches from a single-omics and
multi-omics angle, we were able to identify a list of 84 potential
drug–target combinations for COVID-19 across two separate case
studies on two different systems (Figure 7, Figure S17). In case
study 1, our findings suggested that a small but distinct set
of proteins was sufficient to represent the cell state 24 hours
post-viral infection and that late-stage viral infection was the
main source of variation in the data. Similarly, in case study 2,
a subset of multi-omics features characterised the state of the
patient (less severe, more severe). Both sets of features over-
lapped with highly scoring features identified in both indepen-
dent analyses. Supplementing these findings with an ensemble
of in silico molecular docking methods and pharmacokinetic
screens further narrowed down this list to seven drugs in total
across both case studies: amsacrine, bosutinib, ceritinib, crizo-
tinib, nintedanib, midostaurin and sunitinib target and inhibit
various kinases.

However, in the original publication from which the source
data for case study 1 was obtained, pladienolide B, 2-deoxy-
d-Glucose, ribavirin and NMS-873 were identified as potential
drugs of interest [3], which target various components of the
RNA processing and protein machinery, along with glycolysis.
In contrast, our list of highest scoring candidates is the anti-
cancer drugs amsacrine, ceritinib and crizotinib targeting cell
cycle and cell growth pathways, which is supported by some
experimental [20] and theoretical evidence [5, 34]. In the first
scenario, inhibiting cell metabolism, RNA splicing and transla-
tion would limit many biological processes in the cell, including
that of some viruses [15]. In the second scenario, cell growth
and cell cycle pathways are inhibited, which are known to limit
replication of some viruses such as Ebola and influenza [21, 28],
including SARS-CoV-2 [20]. While different results are obtained,
in each scenario, experimental evidence supports these and
further illustrates how multi-omics data harmonisation views
data at an angle that is not normally accessible. The authors
of case study 2 did not directly conduct drug discovery and
therefore provided no screened drugs for us to compare ours to.

It is important to note that an in vitro human cancer cell line
was used in case study 1. Cancer cell lines, as well as in vitro cell
cultures, experience distinct physiological and environmental
conditions compared to cells in a human body. Furthermore, the
possibility that these anti-cancer drugs were identified due to
the nature of system under study cannot be ruled out, though
cell growth pathways are indeed shown to be upregulated in
SARS-CoV-2 infection [20]. We also analysed an additional case
study on a system not involving cancer cells but patients [31],
with similarities in results.

To place our results in a broader context, we also compared
our analysis of case study 1 [3] with two other multi-omics
studies that identified SARS-CoV-2 phosphorylation sites [11]
and SARS-CoV-2 RNA modification sites [19]. Although direct
comparison of our results with these published data is not
possible, we note that all these studies highlight several features
of interest. ORF1a polyprotein, S glycoprotein, Accessory protein
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3a, Nucleocapsid protein, non-structural protein 3 and non-
structural protein 12 as well as their associated genes are impli-
cated to have a degree of regulation, suggesting that these have
important roles in viral biology. Therefore, this further illustrates
that multi-omics perspectives reveal previously unknown RNA
and protein modifications, which most studies do not account
for. Furthermore, investigating this less-studied regulatory layer
may yield further information critical to our understanding of
SARS-CoV-2 biology and drug targeting.

Unwanted variation from technical sources or from repeated
measurements on the same individual is common in biological
datasets, which may decrease the accuracy of results or lead
to false conclusions [25]. In case study 1, the main biological
sources of variation in the data were masked, requiring a modi-
fied approach. Hence, accounting for repeated measurements on
the same samples [26], or batch effects (as is the case in many
publicly available datasets) caused by experimental design, is
necessary before downstream data analysis. Individual omics
datasets intended for any analyses should be first assessed
individually to avoid misleading conclusions.

Conclusion
We demonstrate with two independent case studies that our
multi-modal data harmonisation pipeline easily generates a
list of pertinent biological features for downstream analyses
without using algorithms specifically tailored to the datasets.
With its wide scope for input data independent of the system
under study, we applied it to accelerate our understanding of a
medically relevant biological system. Our method supplements
the valuable information obtainable with single-omics data and
creates new avenues for screening potential treatments due to
its cross-omics system-level perspective. Furthermore, in cases
where matched samples across omics data of two or more
modalities are available, our pipeline can also harmonise future
datasets regardless of the system under study. We emphasise
that it does not require customisation to fit a specific problem
other than parameter tuning.

Key Points
• First, we demonstrate with COVID-19 case studies that

to develop biomarkers from a system-level perspec-
tive, a holistic cross-omics approach is needed for
studying complex phenotype.

• Secondly, we present an open-access, reproducible,
flexible, machine learning multivariate approach to
extract relevant information from noisy and hetero-
geneous multi-omics data.

• To show the effectiveness and scope of our pipeline,
we apply it to high-throughput multi-omics data on
SARS-CoV-2, recover published results and identify
potential therapeutic drugs as well as targets.
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Supplementary data are available online at Briefings in Bioinfor-
matics.
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