
Dissecting the Role of Immune
Checkpoint Regulation Patterns in
Tumor Microenvironment and
Prognosis of Gastric Cancer
Zili Zhen1,2,3, Zhemin Shen1 and Peilong Sun1,3*

1Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, China, 2Department of Surgery, Shanghai
Medical College, Fudan University, Shanghai, China, 3Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan
University, Shanghai, China

Many studies suggest that immune checkpoint molecules play a vital role in tumor
progression and immune responses. However, the impact of the comprehensive
regulation pattern of immune checkpoint molecules on immune responses, tumor
microenvironment (TME) formation, and patient prognosis is poorly understood. In this
study, we evaluated immune checkpoint regulation patterns in 1,174 gastric cancer (GC)
samples based on 31 immune checkpoint genes (ICGs). Three distinct immune checkpoint
regulation patterns with significant prognostic differences were ultimately identified.
Moreover, GC patients were divided into two subgroups according to immune
checkpoint score (ICscore). Patients with lower ICscore were characterized by a
favorable prognosis and enhanced immune infiltration as well as an increased tumor
mutation burden, non-recurrence, andmicrosatellite instability-high. Collectively, this study
indicated that immune checkpoint regulation patterns were essential to forming the
diversity of TME and a better understanding of that will contribute to assessing the
characteristics of TME in GC, which intends to improve the development of
immunotherapy.
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INTRODUCTION

On a global basis, gastric cancer (GC) is one of the most prevalent malignancies, ranking fifth in cancer
incidence and fourth in cancer-related causes of death (GBD 2017 Stomach Cancer Collaborators, 2020).
More than onemillion newGCpatients were diagnosed in 2020, with approximately 769,000 deaths (Sung
et al., 2021). Timely endoscopic resection or other radical surgery after diagnosis with early GC could
effectively control or even cure the disease under certain conditions, whose 5-year survival rate exceeded
90% (Smyth et al., 2020). For advanced GC, chemotherapy and some targeted agents, such as trastuzumab
for HER-2 positive tumors, contribute to the clinical efficacy (Janjigian et al., 2020; Zhu et al., 2021).
However, due to the cytotoxicity of agents and the limitation of benefit from targeted drugs, the outcome of
patients with advanced GC is relatively poor, with a median survival time of only about one year (Moehler
et al., 2021; Nakajima et al., 2021). New and effective therapies are therefore an urgent necessity.

The advent of immunotherapy, especially the development of immune checkpoint molecules, has
revolutionized traditional cancer therapies (Sharma and Allison, 2015b; a). Immune checkpoints can
be activated, in which costimulatory proteins transmit signals to promote immune responses to
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pathogens. In contrast, inhibitory properties are the opposite,
such as PD-1/PD-L1, and CTLA4 (Ohaegbulam et al., 2015;
Postow et al., 2015; Liu and Zheng, 2018). Blocking the
binding of PD-1 and PD-L1, and anti-CTLA4 antibodies can
restore the antitumor activity of T cells and further kill tumor
cells (Bagchi et al., 2021). Additional novel immunostimulatory
checkpoint molecules are now progressing into clinical trials,
including CD40, CD27, GITR, OX40, ICOS (Han and Vesely,
2019). These molecules can regulate the interaction of innate or
adaptive immune cells, such as activation, suppression, and even
apoptosis (Dostert et al., 2019; So and Ishii, 2019).

Immunotherapy has gradually become an important
therapeutic option for advanced GC. In Chinese and Japanese
guidelines, immunotherapy is considered the third-line treatment
for unresectable, advanced metastatic GC. Nivolumab and
Pembrolizumab, anti-PD-1 monoclonal antibodies, have been
approved for third-line (or greater) therapy of PD-L1 positive
advanced GC based on the results of large studies (Kang et al.,
2017; Fuchs et al., 2018). However, there are few basic or clinical
studies on immune costimulatory molecules for GC. The agonist
antibodies of these molecules to activate the immune system to
kill tumors may become a novel target for the treatment of
advanced GC. Previous studies only focused on the function
of a specific immune checkpoint molecule in GC, whereas a range
of immune checkpoint molecules modulates the antitumor effect
of the immune system in a highly coordinated manner. Thus,
exploring the regulation impacts of multiple immune checkpoints
on tumors and specific immune characteristics are instrumental
in enhancing the comprehensive understanding of immune
checkpoints for GC. The genomic information of 1174 GC
samples was integrated to evaluate the regulation patterns of
immune checkpoint genes (ICGs) and the correlation between
the patterns of immune checkpoints and the characteristics of
immune cell infiltration. Besides, we further quantified individual
GC patients’ immune checkpoint regulation patterns.

MATERIALS AND METHODS

Collection and Preprocessing of Gastric
Cancer Gene Expression Data
The gene expression profiles and clinical characteristics of 1174 GC
samples were obtained from the Cancer Genome Atlas (TCGA)
database and Gene-Expression Omnibus (GEO) database, including
TCGA-STAD (N = 371), GSE57303 (N = 70), GSE62254 (N = 300),
and GSE84437 (N = 433). RNA-sequencing from the TCGA cohort
was normalized to transcripts per kilobase million values. The
ComBat algorithm in the “SVA” R package was utilized to
eliminate batch effects between distinct datasets. We acquired
somatic mutation data and copy number variation (CNV) of GC
samples in the TCGA cohort from the UCSC Xena database.

Unsupervised Clustering for 31 Immune
Checkpoint Genes
We selected 31 ICGs detected in the five integrated GC datasets to
identify different immune checkpoint regulation patterns. These

31 genes included 12 costimulatory molecules (CD27, CD28,
CD40, CD40LG, ICOS, ICOSLG, TNFRSF18, TNFRSF4,
TNFRSF9, TNFSF18, TNFSF4, TNFSF9), and 19 coinhibitory
molecules (ADORA2A, BTLA, CD160, CD274, CD276, CD70,
CD80, CD86, CTLA4, HAVCR2, KIR3DL1, LAG3, LGALS9,
PDCD1, PDCD1LG2, TNFRSF14, TNFSF14, VSIR, VTCN1).
Of these, CD160, CD274, CD276, CD40LG, CD70, CD80,
CD86, ICOSLG, LGALS9, PDCD1LG2, TNFRSF14, TNFSF14,
TNFSF18, TNFSF4, TNFSF9, VSIR, and VTCN1 were ligand,
whereas ADORA2A, BTLA, CD27, CD28, CD40, CTLA4,
HAVCR2, ICOS, KIR3DL1, LAG3, PDCD1, TNFRSF18,
TNFRSF4, and TNFRSF9 were receptors. Gene network
analysis was performed using STRING database (https://string-
db.org/). The unsupervised learning, specifically the consensus
clustering algorithm, was performed cluster analysis on the
expression of 31 ICGs to identify different immune checkpoint
regulation patterns. These GC patients were classified for further
analysis based on the patterns.

Functional Enrichment Analyses
Metascape (http://metasape.org) was utilized to analyze process
and pathway enrichment of 31 ICGs, including Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),
Hallmark and Reactome (Zhou et al., 2019). The enrichment
criteria were p-value < 0.01, minimum count >3, and enrichment
factor >1.5. Gene set variation analysis (GSVA) was performed to
probe the variation in biological processes between various
immune checkpoint patterns using the “GSVA” R package.
The gene sets of “c2. cp.kegg.v7.2. symbols”, “h.all.v7.5.1.
symbols”, “c2. cp.reactome.v7.5.1. symbols” were utilized for
GSVA analysis (Subramanian et al., 2005; Liberzon et al.,
2011). GO and KEGG enrichment analyses were performed
for differentially expressed ICGs annotation with the
“clusterProfiler” R package. Adjusted p-values less than 0.05
were considered statistically significant. Reactome pathway
enrichment analysis was performed on differentially expressed
ICGs according to the threshold conditions of p-value<0.05 and
false discovery rate (FDR) < 0.05 (Jassal et al., 2020).

Estimation of Immune Cell Infiltration
We implemented the single sample gene set enrichment analysis
(ssGSEA) algorithm to quantify the relative abundance of
immune cell infiltration in the tumor microenvironment
(TME), including 28 immune cell subtypes (Barbie et al., 2009;
Charoentong et al., 2017). Also, the CIBERSORT algorithm was
utilized to analyze the infiltration of immune cells (Newman et al.,
2015). We performed the ESTIMATE algorithm to estimate the
immune and stromal components of the GC samples (Yoshihara
et al., 2013).

Generation of Immune Checkpoint Score
(ICscore) Signatures
Immune checkpoint-related genes were extracted from the
intersection of differentially expressed genes (DEGs)
between various immune checkpoint regulation patterns.
Consistent clustering for the above genes divided GC
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patients into different groups for further analysis. Principal
component analysis was utilized to construct immune
checkpoint signatures, in which principal components
(PC) one and two were served as signature scores. The
superiority of this method was to focus the score on the

collection with the most significant related (or anti-
correlated) gene block in the collection, while reducing
the contribution from genes that were not tracked with
other collection members. We applied the following
formula to clarify ICscore:

FIGURE 1 | Landscape of genetic and expression variation of ICGs in GC. (A) Interaction of several specific immune checkpoint molecules. (B) Potential biological
function enrichment of 31 ICGs. (C) The CNV variation frequency of ICGs in TCGA-STAD cohort. (D) The location of CNV alteration of ICGs on 23 chromosomes in
TCGA-STAD cohort. (E) The mutation frequency of 31 ICGs in GC patients from TCGA-STAD cohort. (F) The expression of 31 ICGs between normal tissues and GC
tissues. *p < 0.05, **p < 0.01, ***p < 0.001.
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ICscore � ∑(PC1i + PC2i),
where i represented the ith immune checkpoint-related genes.

Statistical Analyses
All statistical analyses were carried out in R 4.0.2. One-way
ANOVA was utilized for multiple comparisons. Wilcox rank
test was applied to compare variables between two groups.
Kaplan–Meier (K-M) survival analysis and log-rank test were
applied for survival analysis under different signatures. Spearman
and distance correlation analyses were performed to analyze the
correlations coefficients between the immune cell infiltration and
expression of ICGs. Multivariable Cox regression model was
carried out to identify the independent prognostic factors. We
used the maftools package to display the mutation landscape. The
RCircos in R package was utilized to plot the copy number
variation landscape of 31 ICGs in 23 pairs of chromosomes.
p-value < 0.05 indicated significant differences.

RESULTS

Landscape of Genetic Variation of Immune
Checkpoint Genes in Gastric Cancer
A total of 31 ICGs, including 17 ligands and 14 receptors, were
initially explored for their role in GC in this study
(Supplementary Table S1). Figure 1A presents the interaction
of immune checkpoint molecules between T cells and tumor cells
or antigen-presenting cells (APC). The GO enrichment analysis
based on Metascape suggested that the 31 genes were enriched in
the biological process of T cell activation regulation (Figure 1B,
Supplementary Figure S1A). Examination of the CNV alteration
suggested a prevalent CNV alteration in 31 ICGs (Figure 1C). Of
these, the copy number of LGALS9, CD160, KIR3DL1, VSIR,
TNFSF4, TNFSF18, CD40, and CD40LG was increased, while
PDCD1, VTCN1, TNFSF9, CD70, and TNFSF14 had an overall
frequency of CNV loss. The position of CNV alteration of some
ICGs on the chromosome is displayed in Figure 1D. Also, we
detected the frequency of somatic mutations in 31 ICGs in GC. Of
433 samples examined, 69 (13.63%) presented genetic alterations,
mainly missense mutations. The highest mutation frequency was
observed in TNFRSF9, followed by CD276 and KIR3DL1
(Figure 1E). Some ICGs had a significant mutation co-
occurring relationship, such as CD274 and PDCD1LG2
(Supplementary Table S2). Interestingly, the mutation of
TNFRSF9 with the highest mutation frequency was closely
related to the expression of its ligand TNFSF9. TNFSF9 was
significantly upregulated in TNFRSF9-mutant tumors compared
to wild-type tumors (Supplementary Figure S1B). The
expression levels of several other ICGs in the TNFRSF9-
mutant and wild-type groups are quite different
(Supplementary Figures S1C–E). We next performed a
transcriptome comparison between GC tumor tissues and
adjacent normal tissues to identify differentially expressed
ICGs between these two groups. Apart from the
downregulation of VSIR in tumor tissues, most ICGs were
highly expressed in tumor tissues in relation to the adjacent

normal controls (Figure 1F). These results revealed extensive
variation in immune checkpoint molecules’ expression and
genetic characteristics between GC tissues and normal tissues,
suggesting that aberrant expression of ICGs plays a vital role in
GC occurrence and progression.

Construction of the Immune Checkpoint
Patterns Mediated by 31 Immune
Checkpoint Genes
Four datasets with clinical information (GSE57303, GSE62254,
GSE84437, and TCGA-STAD) were integrated as a meta-cohort
dataset to explore the immune checkpoint signature
(Supplementary Table S3). We performed K-M analysis and
univariate Cox regression analysis to clarify the prognostic values
of 31 ICGs in GC patients (Supplementary Figure S2,
Supplementary Table S4). A depiction of ICGs interactions and
their prognostic significance for GC patients was presented in the
ICGs network (Figure 2A). The interaction between immune
checkpoint molecules was shown in a STRING protein–protein
interaction network (Figure 2B). Significant positive associations
were found among most of these ICGs, and only a few genes
expression, such as VTCN1, were negatively correlated with other
ICGs expressions. TNFSF14, TNFSF18, TNFSF4, CD40LG, CD276,
and VTCN1 severed as poor prognostic markers, while other genes
were beneficial to the prognosis.

The above results suggested that the crosstalk between various
ICGs played a critical role forming various immune checkpoint
patterns and was particularly relevant to the cancer progression of
and immune response. Hence, we implemented consensus
clustering analysis to classify samples with different immune
checkpoint patterns based on the expression of ICGs
(Figure 2C, Supplementary Figures S3A–I). Three different
immune checkpoint patterns were determined, including 194
samples in cluster A, 503 samples in cluster B, and 477 samples in
cluster C, termed ICGcluster A–C, respectively. Compared with
the other three clusters, ICGcluster A exhibited an apparent
survival advantage, followed by ICGcluster B, while ICGcluster
C had a relatively poor prognosis (Figure 2D). There were
significant differences in ICGs transcription profiles across the
three immune checkpoint patterns (Figure 2E). The main
characteristic of ICGcluster A was an extraordinary increase in
the expression of ICGs, except for CD276 and VTCN1. The
expression of ICGs in ICGcluster B was also high. Conversely,
ICGcluster C manifested lower expression levels of ICGs. The
unsupervised learning approach was performed to classify these
samples into three classes with significant distribution differences
after dimensionality reduction (Figure 2F). The expression of
most ICGs in the three patterns showed high expression in
ICGcluster A, low expression in ICGcluster C, and middle
expression in ICGcluster B (Figure 2G).

Moreover, we conducted an in-depth analysis of the
GSE62254 cohort to explore the characteristics of immune
checkpoint patterns in different clinical features and biological
behaviors. Similarly, ICGcluster A and ICGcluster B were
significantly associated with prolonged survival, while
ICGcluster C had a poorer survival (Supplementary Figure
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S3J). There were also remarkable differences in the expression of
ICGs between the three patterns (Supplementary Figure S3K).
Various immune checkpoint patterns could be distinguished
through unsupervised learning methods (Supplementary
Figure S3L). For survival status, ICGcluster C has the highest
mortality rate, followed by ICGscluser B, and ICGcluster A has
the lowest (Figure 2H). ICGcluster A gathered most patients with
microsatellite instability (MSI) subtypes, with the least number of
microsatellite stability (MSS)/TP53-subtype patients; on the
contrary, MSS/TP53-subtype patients accounted for the
majority of ICGcluster C, and the number of MSI subtype
patients decreased sharply (Figure 2I). The above results

indicated that the better prognosis of ICGcluster A patients
was relevant to the immune activation caused by MSI.

Analysis of Functional Characteristics in
Distinct Immune Checkpoint Patterns
We conducted GSVA enrichment analyses to explore the biological
behaviors among these distinct immune checkpoint patterns.
ICGcluster A was remarkedly enriched in immune response and
activation pathways, such as T cell receptor signaling pathway, B cell
receptor signaling pathway, natural killer (NK) cell mediated
cytotoxicity, antigen processing and presentation, cytokine receptor

FIGURE 2 | Establishment of the immune checkpoint patterns mediated by 31 ICGs. (A) The interaction between ICGs in GC and corresponding prognostic
significance. (B) The protein-protein interaction network of ICGs using the STRING. (C) Consistent clustering matrices based on 31 ICGs for k = 3. (D) Survival analyses
for the three immune checkpoint patterns based on 1174 GC patients. (E) The heatmap of 31 ICGs expression using unsupervised clustering. (F) Principal component
analysis for the transcriptome profiles of three immune checkpoint patterns, showing a remarkable difference on transcriptome between different patterns. (G) The
expression of 31 ICGs in three clusters. (H) The proportion of survival status in the three patterns. (I) The proportion of molecular subtypes of the GSE62254 cohort in
each pattern.
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FIGURE 3 | Functional enrichment analysis of three immune checkpoint regulation patterns. (A–C) GSVA enrichment analysis showing the activation states of
biological pathways in distinct immune checkpoint regulation patterns. (D) The abundance of each TME infiltrating cell in three immune checkpoint regulation patterns
using ssGSEA. (E) The abundance of immune cell infiltration of GSE62254 cohort using CIBERSORT. (F–H) The contents of immune cells and stromal cells in GC
samples of GSE62254 cohort using ESTIMATE. (I,J) Functional annotation for immune checkpoint-related genes using GO and KEGG enrichment analysis.
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interaction, NOD like receptor signaling pathway, and Toll like
receptor signaling pathway, as well as apoptosis (Figures 3A,B).
Likewise, ICGcluster B presented similar immune response
enrichment pathways to ICGcluster C (Figure 3C). In addition,
some immune-related pathways such as interleukin signaling and
interferon response were considerably enriched in ICGcluster A based
on Hallmarker and Reactome gene sets (Supplementary Figure S4).
In contrast, the clusters with poor prognoses were prominently related
to cancer metabolism and progression, including the PPAR signaling
pathway. Subsequently, the analysis of immune cell infiltration under
various immune checkpoint patterns suggested ICGcluster A was rich
in adaptive immune cells (activated B cells, activated CD4+/CD8+
T cells, gamma delta T cells, regulatory T cells, T follicular helper cells,
type 1/2/17 T helper cells) and some tumor-related innate immune
cells (activated dendritic cells, NK cells, CD56 bright NK cells, CD56
dim NK cells, macrophages, MDSC) (Figure 3D). The CIBERSORT
and ESTIMATE algorithm were utilized to evaluate further the
immune infiltration and TME of samples from the GSE62254
cohort. Among the three patterns, T cells CD4 memory resting
were more prominent in ICGcluster C, while T cells CD4 memory
activating were accentuated in ICGcluster A, which could also be
observed in macrophages M1. Both eosinophils and T cells gamma
delta presented the lowest infiltration tendency in ICGcluster C, the
opposite of plasma cells and activated giant cells (Figure 3E). Other
cohorts also showed roughly the same trend (Supplementary Figure
S5A–C). The evaluation of the TME suggested that the proportion of
immune cells and stromal cells, as well as the ESTIMATE score, were
higher in ICGcluster A than ICGcluster B, and the lowest was
ICGcluster C (Figures 3F–H). However, the difference between
stromal scores between ICGcluster A and ICGcluster B was much
smaller than the difference between immune scores. The same
situation occurred in the TCGA-STAD cohort (Supplementary
Figure S5D). Notably, there was no significant difference in
stromal scores between ICGcluster A and ICGcluster B in the
GSE84437 and GSE57303 cohort (Supplementary Figure S5E,F).
The above results indicated that ICGcluster A had the most robust
immune response among the three patterns.

To further probe the potential genetic alteration and biological
behaviors of various immune checkpoint patterns, we identified 1,248
immune checkpoint phenotypes related to DEGs using the limma
package (Supplementary Figure S6A). GO enrichment analysis
suggested that the DEGs were associated with the biological
processes of lymphocyte regulation, activation, adhesion, and the
molecular functions of immune receptor activation (Figure 3I).
Simultaneously, according to KEGG enrichment analysis, these
genes were significantly enriched in signal pathways relevant to
immune response (Figure 3J). Reactome gene sets enriched in
DEGs mainly including immune system (Supplementary Table
S5). The results confirmed that the overlapped DEGs were
characterized by immune checkpoint and immune response and
could be considered immune checkpoint-related genes.

Establishment of Immune Checkpoint
Score Signatures
We obtained two stable transcriptome phenotypes through
unsupervised consensus clustering analysis of these 1,248

representative immune checkpoint-related genes, defined as
geneCluster A and geneCluster B (Figure 4A, Supplementary
Figure S6B–J). Survival analysis showed significant survival
differences between these two immune checkpoint gene
signatures in GC samples (Figure 4B). The geneCluster A was
verified to be relevant to favorable prognosis, whereas geneCluster B
was closely correlated with worse outcomes. The characteristic genes
of immune checkpoints showed all significantly high expression in
geneCluster A but were all low expressed in geneCluster B
(Figure 4C). We found marked differences in ICGs expression
between the two immune checkpoint gene signature subgroups,
which was in agreement with the expected results of the immune
checkpoint patterns (Figure 4D).

Given the heterogeneity and complexity of immune
checkpoints, a scoring system that quantified the immune
checkpoint regulation patterns of individual GC patients,
termed as ICscore, was established on the basis of these
phenotype-related genes. We used an alluvial diagram to
visualize the changes in the attributes of individual patients
(Figure 4E). To clarify the characteristics of the ICscore
signature, we assessed its correlation with immune cell
infiltration and the above two signatures. ICscore signature
was negatively connected with most immune cell infiltration;
the lower such a score, the more pronounced the immune
checkpoint phenotype (Figure 4F). Consistently, ICGcluster A
presented the lowest median ICscore compared to the other
clusters, demonstrating that low ICscore could be strongly
associated with immune activation-related signatures
(Figure 4G). Also, geneCluster A showed a lower median
score while geneCluster B had a higher median score (Figure 4H).

We further evaluated the value of ICscore in predicting the
prognosis of GC patients. We divided patients into low or high
ICscore groups on the basis of the best cutoff value of -14.43
(Figure 4I). Patients with lower ICscore presented better
outcomes, with 5-year survival rates higher than patients with high
ICGscore (71.1 vs 47.7%) (Figure 4J). Patients with higher ICscore
have significantly higher mortality and shorter overall survival time
(Figure 4K).Whether the ICscore could be utilized as an independent
prognostic factor for GC was detected by univariate Cox and
multivariate Cox regression analysis (Supplementary Figures
S6K,L). In addition to age, stage, M stage, and molecular subtype,
ICscore was an independent prognostic biomarker for predicting GC
patients [HR 2.68 (1.83–3.93)].

Characteristics of Immune Checkpoint
Score Signatures in Tumor Mutation
Burden (TMB)
The relationship between the tumor genome somatic mutations and
the immune response came into increasing focus in recent years. We
conducted related comparisons and found that the TMB in the low
ICscore group was higher (Figure 5A). Specifically, there was an
inverse correlation between ICscore and TMB; accordingly, there was
a higher proportion of low TMB in geneCluster B samples
(Figure 5B). After evaluating the survival of GC patients with
distinct TMB, we found that the prognosis of patients with low
TMB was worse than that of patients with high TMB (Figure 5C).
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FIGURE 4 | Establishment of ICscore signatures. (A) Consistent clustering matrices based on 1,248 immune checkpoint-related genes for k = 2. (B) Survival
analyses for immune checkpoint gene signatures based on 1174 GC patients. (C) Unsupervised clustering of overlapping immune checkpoint-related genes to classify
patients into two genomic subtypes. (D) The expression of 31 ICGs in two clusters. (E) Alluvial diagram showing the changes of ICGcluster, geneCluster, ICscore and
survival status. (F) Correlations between ICscore and the TME infiltrating cell. (G–H) Differences in ICscore among three ICGclusters and geneClusters. (I) GC
patients were divided into two subgroups according to the optimal cutoff value of ICscore. (J) Survival analyses for low and high ICscore patient groups. (K) Survival
distribution of low and high ICscore patient groups.
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Additionally, TMB and ICscore were assessed to evaluate the
prognosis of patients. Patients with high TMB and low ICscore
had a particularly favorable prognosis, far better than other
groups, indicating that the increase of TMB and immune cell
infiltration had a synergistic effect on improving outcomes
(Figure 5D). The genomic analysis of GC patients in distinct
ICscore groups suggested that genomic alterations occurred in all
samples in the low ICscore group, while only 85.95% of the high
ICscore group had changes (Figures 5E,F). The considerablymutated
gene landscapes showed that ARID1A (57% vs 17%) and PIK3CA
(41% vs 10%) had higher somatic mutation rates in the low ICscore
group, while TP53 (36% vs 42%) had a higher somatic mutation rate
in the high group. and the ICscore value of N3 patients was also
significantly higher than N0.

Correlation Between Immune Checkpoint
Score Signatures and Clinical
Characteristics
There is complete clinical information of GC patients in TCGA
cohort, including survival status, TNMstage,molecular subtypes, and
immune subtypes. For patients in different ICscore groups, the
mortality rate of patients in the low-risk group was strikingly
lower than that of the high-risk group. Correspondingly, the
ICscore value of dead patients was also markedly higher than that
of alive patients (Figure 6A). The proportion of patients with lymph
node metastasis in the high-risk group also increased remarkably.

The ICscore value of patients with N3 was higher than patients
without lymph node metastasis (Figure 6B). Considering the low-
risk group, the stage of patients in the high-risk group was more
aggressive, and the ICscore of stage I was lower than other stages
(Figure 6C). Besides, patients in the high-risk group had a more
significant proportion of relapses, and the ICscore of relapsed patients
was relatively high (Figure 6D). Based on the molecular subtypes of
TCGA cohort, the highly MSI subtype, characterized by better
prognosis, was marked associated with lower ICscore, whereas
MSI-Low and MSS had a higher ICscore (Figure 6E). In
GSE62254 cohort, the ICscore of each molecular subtype was
significantly different (Supplementary Figure S7). MSI subtype
associated with immune checkpoint therapy had the lowest
ICscore and EMT subtype related to immune privilege had the
highest ICscore. In addition, the low ICscore group had the largest
proportion of MSI subtype, which was helpful for immunotherapy.
Previous studies divided cancers in the TCGA cohort into six
immune subtypes, including Wound Healing (C1), IFN-gamma
Dominant (C2), Inflammatory (C3), Lymphocyte Depleted (C4),
Immunologically Quiet (C5), and TGF-beta Dominant (C6)
(Thorsson et al., 2019). We observed that the low-risk group was
particularly highlighted in the C2 subtype, while some C1 subtype
appeared in the high-risk group (Figure 6F). The C2 subtype had the
highest M1/M2 macrophage polarization and strong CD8 signal,
which revealed that the better outcomes of the low-risk group were
related to a robust immune response. The ICscore of C2 subtype was
also lower than that of other immune subtypes. We evaluated the

FIGURE 5 | Characteristics of ICscore signatures in TMB. (A) Differences in TMB between high and low ICscore groups. (B) The relationship between ICscore and
TMB. (C) Survival analyses for low and high TMB patient groups in TCGA-STAD cohort. (D) Survival analyses for patients with different degrees of TMB and ICscore.
(E,F) The waterfall plot of TMB established by those with high ICscore and low ICscore.
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immunophenotypic scores (IPS) of different ICscore groups. In the
case of PD-1 positive, the IPS of the low-risk group was higher,
whereas there was no difference in the IPS of the two groups when
PD-1 negative (Figures 6G–J). Targeted treatment of PD-1 hadmore
incredible therapeutic benefits for patients in the low-risk group.

DISCUSSION

Accumulating evidence reveals that either activation or inhibition of
immune checkpoints plays an essential role in antitumor efficacy.
Although the function of some specific immune checkpoint
molecules has been elucidated in tumor immunity, the
characteristics of the overall immune response atlas mediated by
immune checkpoint molecules have not yet been fully uncovered.
Therefore, identifying various immune checkpoint regulation
patterns in the TME will gain new insights into the tumor
immunity and promotes the future precision immunotherapy.

This study determined three different immune checkpoint
regulation patterns, characterized by immunophenotypes with
varying degrees of anti-cancer properties. ICGcluster A was a
signature with adaptive immune activation, corresponding to the
immune-inflamed phenotype. In contrast, the ICGcluster C
featured immunosuppression, a trend of the immune-desert
phenotype (Hegde et al., 2016; Son et al., 2020). The stromal
score in ICGcluster B was relatively high, suggesting the immune-

excluded phenotype. The immune-inflamed phenotype, also
known as the hot tumor, was manifested by a mass infiltration
of activated immune cells in the TME, leading to robust immune
responses (Gajewski et al., 2013; Turley et al., 2015; Chen and
Mellman, 2017). Although there were sufficient immune cells in
the immune-excluded phenotype, the immune cells are confined
in the stroma surrounding the tumor cells instead of penetrating
their parenchyma, demonstrating the incapability to kill tumor
(Salmon et al., 2012; Joyce and Fearon, 2015). The immune
tolerance exhibited by the immune-desert phenotype is closely
related to the deficient activation of T cells (Kim and Chen, 2016).
Consistent with the above discussion, there was a higher
proportion of microsatellite instability in ICGcluster A, while
ICGcluster C exhibited the MSS/TP53- status, indicating an
unresponsive immune state (Wang et al., 2020). The
characterization of immune cell infiltration in the TME in
each cluster identified the reliability of our classification of
distinct immune checkpoint regulation patterns.

In addition, the differences of mRNA transcriptome among these
three immune checkpoint regulation patterns were related to
immune-related biological pathways. The DEGs were regarded as
immune checkpoint-related genes. Similar to immune checkpoint
regulation patterns, three genomic subtypes were identified based on
immune checkpoint-related genes. Genomic subtypes suggested that
immune checkpoint regulation was necessary to establish distinct
tumor immune microenvironmental landscapes. Thus, a

FIGURE 6 |Correlation between ICscore signatures and clinical characteristics. (A–F) The proportions and differences of survival status (A), N stage (B), Stage (C),
recurrence (D), MSI (E), and immune subtype (F) in distinct ICscore groups (G–J) IPS of different ICscore groups in various CTLA4/PD-1 status.
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comprehensive assessment of immune checkpoint regulation
patterns could enhance our understanding of immune cell
infiltration in the TME. Given the individual heterogeneity, we
established a reliable and powerful ICscore system to assess the
immune checkpoint regulation pattern in individual GC patients.
The immune checkpoint regulation pattern characterized by the
immune-desert phenotype exhibited higher ICscore, whereas
patterns characterized by the immune-inflamed phenotype had
lower ICscore. Furthermore, ICscore was an independent
prognostic biomarker for GC. The MSI subtype, especially MSI-
High, sensitive to immunotherapy, was strikingly correlated with
lower ICscore (Lin et al., 2020; Yang et al., 2021). More remarkably,
patients in the low ICscore group exhibited high-intensity
proportions of IFN-gamma Dominant, which contributes to
antitumor proliferation, inhibition of angiogenesis, and
immunomodulatory effects (Mimura et al., 2018; Thorsson et al.,
2019; Jorgovanovic et al., 2020; Zhen et al., 2021).

There was a notably negative correlation between ICscore and
TMB. The combination of high TMB and low ICscore promoted the
tumor immune response, resulting in a better prognosis for such
patients. Among all molecular subtypes, the EMT subtype had the
highest ICscore, suggesting a critical role for stromal activation in
immune checkpoint therapy. Studies have shown that activation of
the EMTpathway leaded to reduced delivery of T cells to tumor cells,
thus impairing tumor-killing effects (Mak et al., 2016; Tauriello et al.,
2018). Collectively, these results suggested that the immune
checkpoint pattern is essential to regulate the responses of stroma
and immune cells in the TME and impact the therapeutic effect of
immune checkpoint therapy itself.

Some studies on signatures for predicting the prognosis of GC
and evaluating TME have previously been published. Zhao et al.,
(2021)established a 14-gene signature to assess the overall survival
of GC based on univariate Cox and LASSO Cox regression analysis
of immune-related genes Although this study could predict
prognosis, the main function of the 14 genes used was not to
regulate immunity. Yan et al., (2020)performed ssGSEA analysis to
evaluate 28 types of immune cell components of GC samples in the
GEO cohorts, and identified the immune scores using LASSO Cox
regression analysis The study involved only a small sample size and
did not assess the relationship between scores and immune
infiltration. Jiang et al., (2021)applied the CIBERSORT
algorithm to evaluate immune cells and establish a tumor
immune infiltration score, which was used to predict patient
prognosis and chemotherapy responsiveness Relatively, our
study was more targeted, starting from immune checkpoint
molecules to cluster and build a signature for prognosis
judgment, and eventually returning to the guidance of
immunotherapy. Kim et al., (2018) identified MSI-H and EBV
(+) as biomarkers of response to pembrolizumab in patients with
metastatic GCCheong et al., 2022) utilized the NTriPath algorithm
to construct a GC-specific 32-gene signature for typing Molecular
subtypes were associated with response to 5-fluorouracil,
platinum-based chemotherapy, and immune checkpoint
blockade. Our study also focused on activated immune
checkpoints. Each study has a different focus and may
contribute to research or clinical practice in the diagnosis and
treatment of GC.

Some limitations also exist in this study. Firstly, this study only
applied bioinformatics and immune infiltration algorithms to
study the GC transcriptome but did not conduct basic
experiments. Due to inconsistent sequencing across different
GC cohorts, some molecules that may have important
functions were removed during the selection process of ICGs.
Therefore, our follow-up studies on immune checkpoint therapy
for GC will also actively make up for the above deficiencies by
using external cohorts and basic experiments.

Altogether, ICscore could be computed to comprehensively
assess the immune checkpoint regulation pattern of individual
GC patients and understand the corresponding immune cell
infiltration characteristics of the TME, further determine the
tumor immunophenotype and guide clinical practice more
effectively. ICscore could serve as an independent prognostic
biomarker for predicting patient survival and clinical response to
immunotherapy treatments. Changes in the regulation pattern of
immune checkpoints by altering immune checkpoint molecules
or related genes could modify the immune cell infiltration
characteristics in the TME. This strategy could enhance the
immune response to GC, which contributed to developing
novel immune-targeted therapeutics.
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