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EEG pattern recognition is an important part of motor imagery- (MI-) based brain computer interface (BCI) system. Traditional
EEG pattern recognition algorithm usually includes two steps, namely, feature extraction and feature classification. In feature
extraction, common spatial pattern (CSP) is one of the most frequently used algorithms. However, in order to extract the optimal
CSP features, prior knowledge and complex parameter adjustment are often required. Convolutional neural network (CNN) is
one of the most popular deep learning models at present. Within CNN, feature learning and pattern classification are carried out
simultaneously during the procedure of iterative updating of network parameters; thus, it can remove the complicated manual
feature engineering. In this paper, we propose a novel deep learning methodology which can be used for spatial-frequency feature
learning and classification of motor imagery EEG. Specifically, a multilayer CNN model is designed according to the spatial-
frequency characteristics of MI EEG signals. An experimental study is carried out on two MI EEG datasets (BCI competition III
dataset IVa and a self-collected right index finger MI dataset) to validate the effectiveness of our algorithm in comparison with
several closely related competing methods. Superior classification performance indicates that our proposed method is a promising
pattern recognition algorithm for MI-based BCI system.

1. Introduction

Brain computer interface (BCI) technology [1–3] uses
multiple brain function signals, including scalp Electroen-
cephalogram (EEG) [4], Local Field Potentials (LFPs) [5],
and Electrocorticography (ECoG) [6], to establish a direct
communication channel between human brain and external
devices. -is characteristic of BCI is extremely important for
patients with severe brain nerve damage, since the normal
communication channel for such patients has been blocked
[7]. Considering the convenience, safety, and cost, scalp EEG
is most frequently used in BCI fields. Among various BCI
control paradigms, motor imagery- (MI-) based BCI system
is a very important branch. Via MI-based BCI system, users
can control robots or external machines merely by move-
ment imagination, without the intervention of peripheral
nerve. Due to its great potential application value in motor

function rehabilitation [8], motor function assistance, and so
forth, MI-based BCI system has been widely concerned.

EEG pattern recognition is an important part of MI-
based BCI system; traditional EEG pattern recognition al-
gorithm mainly includes two steps, namely, feature ex-
traction and feature classification. In feature extraction
stage, common spatial pattern (CSP) algorithm [9–11] is the
most commonly used algorithm, but several factors would
affect the performance of CSP algorithm, such as the spatial
channels, frequency bands of sensorimotor rhythm signal,
and time windows. It is worth noticing that most of the
research efforts have been dedicated to optimizing the
frequency bands for significant CSP features extraction.
Filter band common spatial pattern (FBCSP) algorithm [12]
is a benchmark for spatial-frequency feature learning and
has been widely applied toMI EEG analysis. More recently, a
sparse filter band common spatial pattern (SFBCSP)
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algorithm [13] has been proposed to select most significant
CSP features in multiple frequency bands via sparse re-
gression. In the feature classification stage, many machine
learning algorithms, such as linear discriminant analysis
(LDA) [14], support vector machine (SVM) [13], and logistic
regression (LR) [15], are used to classify different EEG
patterns of motor imageries. We notice that some more
sophisticated algorithms have been also proposed for MI
EEG classification in recent years. Jiao et al. [16] developed a
sparse group representation model (SGRM) in which a test
sample can be estimated as a linear combination of samples
in a composite dictionary matrix composed by CSP features
from multiple subjects. Jin et al. [17] introduced a sparse
Bayesian extreme learning machine (SBELM) method for
MI-related EEG classification by combining the advantages
of both extreme learning machine (ELM) and sparse
Bayesian learning. As we can see that, for most traditional
MI EEG pattern recognition algorithms, feature extraction
and feature classification are separated; however, these two
stages usually have different objective functions; hence it is
easy to cause information loss [18].

-e convolutional neural network (CNN) is based on
deep learning theory and has been widely used in image
recognition [19], speech recognition [20], and other fields.
Its main characteristics are weight sharing and local per-
ception so that the number of weight parameters is greatly
reduced compared with the ordinary deep neural network.
In addition, CNN implements feature learning and classi-
fication in the network simultaneously, which is simpler and
clearer than the traditional pattern recognition method.
Furthermore, less information is lost in this procedure.

In the past few years, deep learning techniques, i.e., deep
neural networks, have been investigated to deal with
complex brain function signals [21]. In terms of the research
on MI EEG, the independent CNN and CNN-based hybrid
models are widely used. Lee and Choi [22] proposed
obtaining time-frequency representations of EEGs using
continuous wavelet transform (CWT) as the input of CNN
model. Tabar and Halici [23] applied short time Fourier
transform (STFT) method to convert EEG temporal series
into 2D images and used CNN and stacked autoencoders
(SAE) for MI EEG classification. Uktveris and Jusas [24]
used Fast Fourier Transform (FFT) energy map method for
CNN and achieved satisfactory results for four-class MI EEG
classification. Liu et al. [25] introduced a multiscale deep
CNN method to deal with the representation for MI EEG
signals. Hartmann et al. [26] investigated how CNN rep-
resented spectral features through the sequence of inter-
mediate stages of the network. Wang et al. [27] devised a
CNN-based method for MI EEG feature extraction and
adopted weak classifier for feature selection. Tan et al. [28]
trained a deep neural network with CNN and recurrent
neural network (RNN) for the EEG classification task. Yang
et al. [29] investigated the classification of multiclassMI EEG
signals by augmented CSP (ACSP) features and CNNmodel.
Tang et al. [30] constructed a 5-layer CNN model based on
the spatiotemporal characteristics of EEG for MI tasks
classification. In this paper, a novel deep learning approach
is proposed for classification of MI EEG signal. Unlike all

these above works, we do not use any complex algorithm,
such as CWT, STFT, FFT, and ACSP, for two-dimensional
feature map generation. Besides, different from the work in
[30] which studied the spatiotemporal characteristics of MI
EEG, this work offers an insight into the spatial-frequency
features of MI EEG. Furthermore, rather than exploiting the
spatial-frequency characteristics of EEG by FBCSP or
SFBCSP, we herein propose learning and classifying the
spatial-frequency features of MI EEG simultaneously in a
unified CNN framework. Specifically, we convert raw EEG
data to image representation by computing the energies of
multichannel EEG signals in multiple frequency bands at
first. Afterward, a novel multilayer CNN model is designed,
and the spatial characteristics of MI EEG are analyzed
according to the obtained weight parameters of convolution
layers. Finally, with a public dataset and a self-collected right
index finger motion imagination dataset, extensive experi-
mental comparisons are carried out between our method
and several closely related machine learning algorithms.

2. Materials and Methods

2.1. Dataset Description. In this study, in order to better
evaluate the effectiveness of the proposed algorithm, we used
two different datasets for analysis. -e first dataset is public
BCI competition III dataset IVa, in which EEG signals are
collected from five subjects (denoted by aa, al, av, aw, and ay)
using 118 electrode amplifier. -ere are two types of MI
tasks in the dataset, namely, right handMI and right footMI.
-e time duration of each MI trial is 3.5 seconds, and the
sampling rate is set to 1000Hz. For each subject, there are
280 MI trials (140 trials for hand MI and 140 trials for foot
MI) in total. More details about this dataset can be found at
http://www.bbci.de/competition/iii/. -e second dataset is
right index finger motion imagination dataset (denoted by
Finger Dataset) which was collected by us. In this dataset,
EEG signals are collected from five subjects (denoted by S1,
S2, S3, S4, and S5) using 21 electrode amplifier.-ere are two
types of MI tasks in the dataset, namely, finger movement
imagination and rest state.-e time duration of eachMI trial
is 4 seconds, and the sampling rate is also set to 1000Hz. It
should be noted that different subjects in this dataset have
different numbers of MI trials. For each subject, the exact
numbers of finger movement imagination and rest state
trials are denoted by the following: subject (finger movement
imagination, rest state) S1 (58, 58), S2 (59, 48), S3 (52, 63), S4
(56, 57), and S5 (62, 39). For the BCI competition III dataset
IVa, we selected the first 260 trials as the training set, the
following 10 trials as the testing set, and the last 10 trials as
the validation set. For this public dataset, to more reliably
evaluate the classification performance, we also imple-
mented 10-fold cross-validation to compute the average
classification accuracy. In each fold of 10-fold cross-vali-
dation, each part was for testing and the remaining nine
parts were for training (90%) and validation (10%). For
Finger Dataset with small sample size, we randomly selected
about 80% of the samples as the training set and the
remaining samples for testing and validation. -e numbers
of training samples, validation samples, and testing samples
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are denoted by S1 (92, 12, 12), S2 (85, 11, 11), S3 (93, 11, 11),
S4 (89, 12, 12), and S5 (81, 10, 10).

2.2. Methods

2.2.1. EEG Data Representation Transform. Before applying
CNN, we firstly convert raw EEG data to image represen-
tation. For Finger Dataset, since the sensorimotor rhythm
usually appears in the frequency bands of 8–14Hz (μ
rhythm) and 18–26Hz (β rhythm), we use bandpass filtering
to obtain 8–30Hz signal component from the original EEG
signal. In addition, EEG signals from 0.5 seconds to 2.5
seconds after the appearance of visual cue are usually used
for pattern analysis. In this study, the signals in this period
are also extracted for subsequent processing. After the above
processing, each sample can be represented as a matrix of
size 21 × 2000, in which 2000 is the number of sampling
points and 21 is the number of electrodes. It should be noted
that although the sensorimotor rhythm usually appears in
the frequency range of 8–30Hz, the frequency bands related
to MI tasks vary among different subjects, and the optimal
frequency band is mostly a local narrow band. In order to
learn more precise frequency information, we decompose
the EEG signal in the range of 8–30Hz into 10 subbands, the
width of each subband is 4Hz, and the overlap between
adjacent subbands is 2Hz. After that, each sample can be
represented as a matrix of size 21 × 10 × 2000, where 10 is
the number of frequency subbands. -en, for the EEG signal
in each frequency subband of each spatial electrode, we
calculate its signal energy as follows:

p � log(var(x)), (1)

where var(x) is the variance of EEG signal sequence x. -us,
each sample can be represented as a matrix of size 21 × 10,
and each element of the matrix represents the energy of EEG
signal in a certain subband of a certain EEG electrode. For
each subject in the dataset, we then normalize the EEG
energy as follows:

Pr
i,j �

Pr
i,j − mi,j

δi,j

, (2)

where P is the energy matrix of each sample, r denotes the
index of each sample, mi,j denotes the average energy of all
samples at this location, and δi,j is the corresponding
standard deviation. After the above steps of signal pro-
cessing, the original EEG signal is transformed into image
representation, in which the EEG electrodes are distributed
along the vertical axis and the frequency subbands are
distributed along the horizontal axis.

For BCI competition III dataset IVa, the raw EEG data is
also bandpass filtered within the range of 8–30Hz. It should
be noted that there are 118 electrodes in this dataset. In order
to reduce the burden of subsequent calculation and remove
the influence of redundant channels, according to the rec-
ommendation of literature [18], we extract the EEG signals
from 49 channels for subsequent analysis. After the above
processing, each sample can be represented as a matrix of
size 49 × 3500, in which 3500 is the number of sampling

points and 49 is the number of electrodes. Afterward, fre-
quency domain decomposition, 0.5 to 2.5 seconds’ time
period segmentation, energy extraction, and normalization
processing are also carried out. -en, each sample can be
represented as a matrix of size 49 × 10.

In order to observe the spatial-frequency characteristics
of EEG after preprocessing, for each subject in the two
datasets, we divided all samples into two groups according to
the categories of MI and calculated the mean value of each
group for comparison. Figure 1 and Figure 2 show the
distributions of EEG spatial-frequency energy characteristics
of subjects in Finger Dataset and the BCI competition III
dataset IVa under different MI states, respectively.

From Figure 1, it can be seen that, compared with the rest
state, the energy at the specific electrode decays when finger
MI is conducted, so there is a pattern difference in this area,
and this phenomenon mainly occurs on the opposite side of
the motion imagining limb, such as electrode C3 (index 10);
all of the above phenomena conform to the ERD theory [31].
Further observation shows that this pattern difference has
obvious frequency domain characteristics; for example, it is
most obvious in the 8–14Hz frequency band. From Figure 2,
it can be observed that the energy attenuation of hand
motion imagination is more intense than foot motion
imagination, so this relatively stable pattern difference ap-
pears in several local spatial-frequency blocks. It should be
noted that, from Figure 1 and Figure 2, there are different
forms of spatial-frequency pattern differences among dif-
ferent subjects. Specifically, the locations of significant
spatial-frequency blocks and degrees of differences are
different. All these factors will affect the final pattern rec-
ognition results. At the same time, we need to focus on
whether CNN model can learn spatial-frequency features
adaptively.

2.2.2. CNN Structure Design. -rough the descriptions in
the previous section, we can see that the MI EEG signal has
a very obvious spatial-frequency characteristic, which is
also consistent with the basic ERD theory, and has a rel-
atively stable pattern difference after being converted into
image form. In order to learn the MI EEG characteristics
adaptively and carry out pattern recognition, this section
designs a novel multilayer CNN structure, as shown in
Figure 3. -e proposed CNN model consists of five layers;
the first layer is the input layer which is specially designed
to capture the spatial-frequency characteristics of MI EEG
signals. Note that we do not use any complex algorithm and
retain the energy change information in spatial-frequency
domain more completely. -e next two layers are the
convolution layers, mainly for spatial-frequency feature
extraction. It should be noted that we use one-dimensional
convolutional filters in the first convolution layer for better
analysis of spatial features. -e last two layers are the fully
connected layer and the softmax layer; these two layers
mainly complete the classification task. To prevent over-
fitting, we implemented dropout regularization before the
output layer. -e specific description of each layer is as
follows.
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(1) Input layer: the input is the image form of the
preprocessed motor imagery EEG sample. For the
Finger Dataset, the input is the matrix of size 21 × 10,
where 21 is the number of electrodes and 10 is the
number of frequency subbands. For BCI competition
III dataset IVa, the input is the matrix of size 49 × 10,
where 49 is the number of electrodes and 10 is the
number of frequency subbands.

(2) Convolution layer C1: the main function of this layer
is to filter the input signal in the spatial domain (i.e.,
different electrodes are assigned with different
weight values). -erefore, one-dimensional convo-
lution operation (convolution of spatial electrodes
on the vertical axis) is carried out in this layer, and
the convolution kernel slides along the horizontal
axis. -is shows the characteristics of CNN, namely,
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Figure 1: Spatial-frequency energy distributions of EEG in different motor imagery states (Finger Dataset).
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weight sharing and local perception. It should be
noted that, since there is no hybrid of any time or
frequency domain information, by observing the
spatial filter obtained from this layer, we can un-
derstand part of the spatial characteristics of motor
imagery EEG. In this study, we use 6 spatial filters;

thus we can get 6 feature maps after spatial con-
volution. For the Finger Dataset, the convolution
kernel size is set to [21 × 1]. For the BCI competition
III dataset IVa, the convolution kernel size is set
to[49 × 1]. Since there are 10 frequency subbands,
the size of the feature map is [1 × 10].
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Figure 2: Spatial-frequency energy distributions of EEG in different motor imagery states (BCI competition III dataset IVa).
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(3) Convolution layer C2: this layer mainly combines the
features of the previous layer and learns more
complex and abstract spatial-frequency features. -e
convolution operation of this layer still adopts the
concept of local connection and weight sharing. Each
convolution operation uses two feature values from
all the feature maps of the previous layer and slides
along the horizontal axis. -e sliding step is also set
to two to reduce the number of parameters. In this
layer, we set up 12 filters in total, the size of the
convolution kernel is [2 × 6], and finally we obtain
12 feature maps of size [1 × 5].

(4) Full connection layer: this layer mainly connects the
convolution layer C2 and the final output layer. We
have set up 50 neurons in this layer. Because of the
full connection, each neuron is connected with all the
feature values of the previous layer.

(5) Output layer: the function of this layer is to output
the predicted MI category. Since this study only
involves two types of motor imagination, it only
contains two neurons, and each neuron is connected
with all neurons in the previous layer.

-e training of CNN model is realized by back propa-
gation algorithm. Given the input data, all neurons in the
network structure produce the activation values according to
the initial weight values, bias values, and activation function.
According to the output of the softmax layer, the loss
function value of the model is calculated.-en, the gradients
of the weight and bias terms are computed based on the
value of loss function. Afterward, the parameters of the
network are updated according to the gradient values. In this
study, we initialize the weight value of the network to a
random value in the normal distribution with the mean
value of 0 and the standard deviation of 0.1 and uniformly
initialize the bias value to 0.1. All neurons in front of the
output layer use the Rectified Linear Unit (RelU) as the
activation function, and its operation is as follows:

y � Re LU wΤx + b􏼐 􏼑 � max 0,wΤx + b􏼐 􏼑, (3)

where x is the feature vector,w is the weight value vector, b is
the bias value, and y is the output activation value. Many
studies have shown that the traditional sigmoid function has
the problem of gradient vanishing. However, using the RelU
activation function, which is similar to the neuron response
mechanism in the biological neural system, we can usually
achieve satisfactory training effect [32]. -e output layer
adopts the softmax model, and the specific operation of the
model is as follows:

zi � wix + b
i
, (i � 1, 2),

yi �
ezi

􏽐
2
j�1 ezj

.
(4)

Each output value of softmax model represents the
probability that the sample belongs to a certain category, and
the category with the maximum value is the category of the
final output. -e loss function uses cross entropy (CE):

H(p, q) � − 􏽘
x

p(x)ln(q(x)), (5)

where p and q are the probability distributions of the
predicted and original categories, respectively.

Gradient descent method is used to update weight and
bias terms, and the optimizer adopts adaptive Adam algo-
rithm. Note that, in order to prevent overfitting and achieve
better results in the test set, the dropout [33] operation is
performed before the output layer in this study. When
training the neural network, some neurons are discarded
according to a certain probability P(d), and the model is
trained according to the sparse network structure. In the
testing stage, all the neurons are used, but all the weights are
corrected to 1-P(d) times of the original weights. In this
study, we set P(d) to 0.5. Table 1 provides an overview of the
CNN model hyperparameters.

3. Experiments

As mentioned in Section 2, the function of the first con-
volution layer is mainly to filter the original input signal in
the spatial domain. According to the theory of ERD, the
brain area most related to motor imagery is usually located
on the opposite side of the motor imagery limb. In order to
intuitively understand the characteristics of the spatial filter
learned by CNN, for the Finger Dataset, we extract a filter
from each subject’s six filters for brain topographic map
illustration. Figure 4 shows the brain pattern distribution of
each spatial filter for five subjects in this dataset. It can be
seen from the figure that the electrode with the largest weight
is usually distributed near the “C3” channel; in another
word, the EEG signal in this area has the greatest impact on
pattern recognition. -is area is just on the opposite side of
the right index finger and is in the primary motor cortex.
-erefore, the first convolution layer of CNN can learn the
spatial characteristics of motor imagination EEG well. It
should be noted that the learning of the above parameters is
completely without manual operation, which is the result of
network parameter updating and iteration, so CNN shows
strong adaptive learning ability.

In this study, we train CNN model according to training
set and validation set. After training, the models of all the
subjects can converge effectively. Take subject S1 in the
Finger Dataset as an example, the change curve of classi-
fication accuracy is shown in Figure 5, the blue solid line
shows the classification accuracy of the training set, the red
dotted line shows the classification accuracy of the validation
set, the abscissa shows the number of iterations, and the
ordinate shows the classification accuracy. It can be seen
from Figure 5 that, after 1600 iterations, the classification
accuracy of training set reaches the highest value and then
remains stable, while the classification accuracy of validation
set has been kept at the highest value, so it can be considered
that the model achieves the best training effect after 1600
iterations, and the trainedmodel is considered as the optimal
classification model of subject S1.

In this study, we evaluate the classification performance
of CNNmodel according to the classification accuracy of test
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set. -e software and hardware platforms of the proposed
CNNmodel are Intel (R) Core (TM) i5-8500 3.00GHz CPU,
8.0GB RAM, Spyder, Python 3.6, and TensorFlow 2.0
(CPU). With two EEG datasets, extensive experimental
comparisons are carried out between our method and other
closely related approaches.

For BCI competition III dataset IVa, we firstly used the
fixed sample set segmentation for classification perfor-
mance evaluation, namely, 260 samples for training, 10
samples for testing, and another 10 samples for validation.
To evaluate the classification performance of our method
objectively, three other algorithms including CSP [9],
FBCSP [12], and SFBCSP [13] were adopted for perfor-
mance comparison. Note that CSP is the baseline method
for MI EEG pattern recognition; FBCSP and SFBCSP are
state-of-the-art methods for MI EEG spatial-frequency
feature learning, which are closely related to our method.
-e experimental settings for these competing methods are
listed as follows.

(i) CSP : EEG signals on 49 channels were extracted as
suggested in [18]. EEG data between 0.5 and 2.5 s
after the visual cue were used for feature extraction.
A bandpass filter with passband of 8 to 16Hz has
been applied to capture the μ rhythm [17]. -e
number of CSP filters was set to 2 [13]. -ree widely
used machine learning algorithms, including LDA,
SVM, and LR, were used for classification.

(ii) FBCSP : EEG signals on the same 49 channels as in
CSP were extracted. EEG data between 0.5 and 2.5 s
after the visual cue were used. 6 bandpass filters
having bandwidth of 6Hz in the range of 4 to 40Hz
with no overlap have been used, as described in [34];
these settings gave optimal results. Mutual infor-
mation-based feature selection has been performed
as it gave the best results in [35]; SVM was used for
classification.

(iii) SFBCSP : EEG signals on the same 49 channels as in
CSP were extracted. EEG data between 0.5 and 2.5 s
after the visual cue were used. 17 bandpass filters
having bandwidth of 4Hz with an overlap of 2Hz in
the range of 4 to 40Hz have been used, as in [13].
-e regularization parameter λ was determined by
10-fold cross-validation, and linear kernel SVM was
adopted for classification as in [13].

Table 2 lists the classification accuracies of CSP + LDA,
CSP+ LDA, CSP + LR, FBCSP, SFBCSP, and our method on
BCI competition III dataset IVa. From this table, we can
observe that our method achieves the same results or

performs better than all competitors for subjects aa, al, and
av and gives the highest average accuracy of 90%.

For the public BCI competition III dataset IVa, to more
reliably evaluate the classification performance of our
method, we further implemented 10-fold cross-validation to
compute the average classification accuracy and also com-
pared it with CSP, FBCSP, and SFBCSP.-e settings of these
three competing methods remained unchanged; however for
CSP only SVM was adopted since it gave the best results in
Table 2. We also adjusted our CNN model; the changes are
mainly in three aspects: (1) 6 bandpass filters having
bandwidth of 6Hz in the range of 4 to 40Hz with no overlap
were used; thus the size of the input matrix was 49 × 6, where
49 was the number of electrodes and 6 was the number of
frequency subbands. (2) Two more fully connected layers
were added, and the activation functions were changed. (3)
-e optimizer was changed to Adadelta. Table 3 summaries
the CNNmodel architecture for 10-fold cross-validation; the
adjusted CNNmodel contains 2 convolution layers, a flatten
layer, 3 fully connected layers, and an output layer. Elu and
Relu are chosen as activation function for convolution layers
and fully connected layers, respectively. Figure 6 presents
classification accuracies derived by CSP, FBCSP, SFBCSP,
and our method. -e two modified CSP algorithms and our
method outperformed the baseline CSP algorithm. Our
proposed CNN model further yielded higher average clas-
sification accuracy than those of the FBCSP and SFBCSP
methods. -e average classification accuracy improvements
achieved by our method were 3.66%, 1.44%, and 1.59% in
comparison with CSP, FBCSP, and SFBCSP methods,
respectively.

For the Finger Dataset, CSP and FBCSP were adopted for
performance comparison. Sparse learning methods usually
need more training samples to ensure the performance; thus,
we did not use SFBCSP method for this small dataset. Note
that, for this dataset, LDA classification algorithm was
adopted since it gave superior performance compared to LR
and SVM. Figure 7 presents classification accuracies derived
by CSP, FBCSP, and our method for this dataset. Our
method yielded higher classification accuracies for most
subjects than those of the other two competing methods.-e
average classification accuracy improvements achieved by
our method were 4.84% and 10.63% in comparison with CSP
and FBCSP methods, respectively.

To further understand the computational cost of the
proposed CNN model, for BCI competition III dataset IVa
with fixed sample set segmentation, we recorded the training
time of each subject (1600 iterations), and Figure 8 sum-
maries the time durations of CNN training for all subjects in
this dataset. From this figure we observe that all CNN
models can be trained within about 5 seconds, which is an
acceptable time cost for real application.

4. Discussion

As we can see from Table 2, Figure 6, and Figure 7, overall
our algorithm yielded superior classification perfor-
mance than other competing algorithms. However, we
notice that for some subjects, especially the subjects aw

Table 1: Model hyperparameter.

Parameter Value
Padding Valid
Optimizer Adam
Activation function Relu
Regularization Dropout
Cost function Cross_entropy
Batch size Size of training set
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and ay in Table 2, the performance of our proposed CNN
model is even worse than that of the baseline CSP
method. -e reasons can be mainly concluded as follows.
(1) For all the subjects in a certain dataset, the structures
and hyperparameters of the CNN models are the same.
However, different users have different characteristics.
-erefore, for some subjects the uniform parameter

setting may lead to suboptimal solution. (2) -e per-
formance of deep learning models highly depends on the
size of training data [21]. However, in BCI competition
III dataset IVa with fixed sample set segmentation, 260
samples were used for CNN model training; the size of
the training set was relatively small, which may affect the
stability of the model to some extent. -is can be further
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Figure 4: Spatial filter brain pattern distribution (Finger Dataset).
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verified by the results in Figure 6; the classification
performances of our method steadily surpass CSP al-
gorithm for subjects aw and ay when 10-fold cross-
validations were adopted.

To address the aforementioned limitations and further
improve the classification performance of our proposed
CNN method, the following three aspects are worthy of
our future investigations. (1) Instead of using uniform
CNN model parameter setting, we plan to study the
characteristics of different subjects and apply user specific
CNN structure and parameters for MI EEG pattern rec-
ognition. (2) To cope with the problem of small training
set and improve the stability of deep CNN model, the

combination of deep learning and subject to subject
transfer learning is an important research direction in our
plan. (3) In this study, the spatial-frequency features of MI
EEG were automatically learned by the proposed deep
CNN model; however 0.5 seconds to 2.5 seconds after the
appearance of visual cue were manually selected. In an-
other word, the features on temporal domain have not
been fully studied. As pointed out in [36], the use of a fixed
time window could hardly capture discriminative features
for all subjects. Based on this, we consider further
extending the proposed deep CNN model for MI EEG
feature learning on the entire spatial-temporal-frequency
domains.
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Figure 5: Classification accuracy of validation set and training set during CNN training (subject S1 of Finger Dataset).

Table 2: Comparison of classification accuracy for our method and 5 other competing methods; the highest accuracy is marked in boldface
(BCI competition III dataset IVa).

Subject aa (%) al (%) av (%) aw (%) ay (%) Mean (%)
CSP [9] + LR 60 90 50 100 100 80
CSP [9] + SVM 60 90 60 100 100 82
CSP [9] + LDA 60 90 50 100 100 80
FBCSP [12] 60 90 60 90 100 80
SFBCSP [13] 60 90 70 90 100 82
Our method 100 90 90 90 80 90

Table 3: CNN model architecture for 10-fold cross-validation (BCI competition III dataset IVa). Conv refers to convolution layer, Flatten
refers to flatten layer, and FC refers to fully connected layer.

Kernel size Kernel number Padding Activation Output shape
Conv_1 49×1 6 Valid Elu 1× 6× 6
Conv_2 1× 3 12 Valid Elu 1× 2×12
Flatten — — — — 24
FC_1 — — — Relu 50
FC_2 — — — Relu 100
FC_3 — — — Relu 200
Softmax — — — — 2
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5. Conclusion

In this paper, a deep learning algorithm for limb motor
imagery EEG pattern classification is proposed. A multilayer
CNN model is designed for motor imagery EEG classifi-
cation, and the spatial-frequency characteristics of motor
imagery EEG signals are analyzed according to the obtained
parameters of convolution layers in the neural network.

Finally, the proposed CNN model is compared with several
state-of-the-art machine learning algorithms. In the ex-
periment, the public BCI competition III dataset IVa and a
self-collected right index finger movement imagination EEG
dataset are used to verify the proposed algorithm. -e ex-
perimental results demonstrate that the proposed CNN
method outperforms all competitors in terms of the mean
classification precision for both datasets. In addition, the
training time of the proposed model is relatively short.
-erefore, we would like to note that the proposed classi-
fication method is of great interest for real-life BCI systems.

Data Availability

In this study, we used two different datasets for analysis. -e
first dataset is public BCI competition III dataset IVa and the
second dataset is right index finger motion imagination
dataset (denoted by Finger Dataset) which was collected by
us. For BCI competition III dataset IVa: the BCI competition
III dataset IVa used to support the findings of this study has
been deposited in the website http://www.bbci.de/
competition/iii/. For Finger Dataset: the Finger Dataset
used to support the findings of this study is available from
the corresponding author upon request.
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