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Abstract Arctic sea ice drift forecasts of 6 h–9 days for the summer of 2014 are generated using the Mar-
ginal Ice Zone Modeling and Assimilation System (MIZMAS); the model is driven by 6 h atmospheric fore-
casts from the Climate Forecast System (CFSv2). Forecast ice drift speed is compared to drifting buoys and
other observational platforms. Forecast positions are compared with actual positions 24 h–8 days since fore-
cast. Forecast results are further compared to those from the forecasts generated using an ice velocity cli-
matology driven by multiyear integrations of the same model. The results are presented in the context of
scheduling the acquisition of high-resolution images that need to follow buoys or scientific research plat-
forms. RMS errors for ice speed are on the order of 5 km/d for 24–48 h since forecast using the sea ice
model compared with 9 km/d using climatology. Predicted buoy position RMS errors are 6.3 km for 24 h
and 14 km for 72 h since forecast. Model biases in ice speed and direction can be reduced by adjusting the
air drag coefficient and water turning angle, but the adjustments do not affect verification statistics. This
suggests that improved atmospheric forecast forcing may further reduce the forecast errors. The model
remains skillful for 8 days. Using the forecast model increases the probability of tracking a target drifting in
sea ice with a 10 km 3 10 km image from 60 to 95% for a 24 h forecast and from 27 to 73% for a 48 h
forecast.

1. Introduction

Economic pressures and decreases in Arctic sea ice over the last 35 years have increased human activity in
the Arctic. Tourism, shipping, and exploration for natural resources are on the rise. In addition, many scien-
tific research experiments to advance our understanding of the causes and consequences of sea ice
changes are launched every year. These activities often involve operations within or near the sea ice pack
making the ability to forecast its evolution over time extremely important. Recent sea ice prediction
research has focused largely on seasonal to decadal scales [e.g., Zhang et al., 2008a; Blanchard-Wrigglesworth
et al., 2011; Stroeve et al., 2014a] with relatively few studies addressing forecasts on daily and weekly time
scales. Surprisingly, short-term sea ice forecasts have received little attention and the literature refers to sys-
tems designed several decades ago [Grumbine, 1998; Preller and Posey, 1989] or those based on forecasts
that do not involve a dynamic sea ice ocean model [Grumbine, 2013]. Short-term sea ice forecasts have a
wide range of applications—from navigation in Arctic waters over marine mammal research to risk assess-
ment for oil extraction platforms.

The motivation for this study is to improve sea ice forecasts to plan and support research experiments. The
Marginal Ice Zone (MIZ) Program, funded by the Office of Naval Research, conducted a field experiment in
2014 designed to increase our understanding of processes in the marginal ice zone. As part of this experi-
ment, a campaign was designed to collect a variety of remote sensing data, including high-resolution syn-
thetic aperture radar (SAR) and optical images by classified intelligence satellites (National Technical Means)
that provide unclassified Literal Image Derived Products (LDIP) at 1 m resolution [Kwok and Untersteiner, 2011].
Researchers use these images to monitor the evolution of the ice pack over the course of the season—docu-
menting, for example, the change in the size distribution of sea ice floes and the coverage of melt ponds on
sea ice. Images were required to follow an array of measurement assets deployed by researchers including
wave buoys, ice tethered profilers, mass balance buoys, and Seagliders. One problem encountered in the MIZ
image acquisition strategy was that image scheduling for both commercial and governmental satellites
needed to be done days in advance of the acquisition time. With the relatively small area of coverage offered
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by high-resolution sensors (LDIP as small as 10 km 3 10 km) and mean daily ice motion of similar magnitude,
accurate predictions of ice motion became essential for scheduling image acquisitions. In addition, planning
and executing field logistics such as locating ice camps or retrieving equipment would benefit from improved
short-term forecasts of sea ice drift. To aid these efforts, we designed a forecast experiment using the Marginal
Ice Zone Modeling and Assimilation System (MIZMAS), a coupled ice-ocean model that is derived from the
Pan Arctic Ice Ocean Modeling system (PIOMAS). PIOMAS [Zhang and Rothrock, 2003] has been used widely
for sea ice hindcasts and has been validated extensively [e.g., Schweiger et al., 2011]. MIZMAS is a derivative of
PIOMAS but features higher spatial resolution for the Chukchi, Beaufort, and Bering seas and is currently
undergoing modifications to include prognostic representation of floe size distribution [Zhang et al., 2015a].
The results are meant to provide guidance for similar sea ice drift prediction applications and to motivate
research into future improvements of short-term sea ice drift forecasts.

2. Methods

2.1. MIZMAS
Our forecast experiment utilizes the current evolving version of MIZMAS (version 1.0), which is being devel-
oped to better represent processes in the marginal sea ice zone. MIZMAS is a variant of PIOMAS [Zhang and
Rothrock, 2003; Schweiger et al., 2011] that has a sea ice model coupled to an ocean circulation model. The
ocean circulation model is based on the Parallel Ocean Program (POP) developed at Los Alamos National
Laboratory [Smith et al., 1992]. The POP ocean model was modified by Zhang and Steele [2007] so that open
boundary conditions can be specified. The POP ocean model was further modified by Zhang et al. [2010] to
incorporate tidal forcing arising from the eight primary constituents (M2, S2, N2, K2, K1, O1, P1, and Q1) [Gill,
1982]. The tidal forcing consists of a tide generating potential with corrections due to both the earth tide
and self-attraction and loading following Marchuk and Kagan [1989].

The sea ice model is a thickness and enthalpy distribution (TED) sea ice model [Zhang and Rothrock, 2001;
Hibler, 1980]. The TED sea ice model has eight categories each for ice thickness, ice enthalpy, and snow
depth. The centers of the eight ice thickness categories are 0, 0.38, 1.30, 3.07, 5.97, 10.24, 16.02, and
23.41 m [see Zhang et al., 2010, 2015b]. Thus the first category is actually the open water category, while
the other seven categories represent ice of various thicknesses. The ice concentration for the grid cell is sim-
ply the sum of the area fraction of all categories excluding the open water category. Similar to PIOMAS, it is
able to assimilate satellite observations of sea ice concentration following Lindsay and Zhang [2006] and sea
surface temperature (SST) following Manda et al. [2005] and Schweiger et al. [2011].

The MIZMAS model domain covers the Northern Hemisphere north of 398N (Figure 1a). The MIZMAS finite
difference grid is based on a generalized orthogonal curvilinear coordinate system with a horizontal dimen-
sion of 600 3 300 grid points. The ‘‘north pole’’ of the model grid is placed in Alaska to avoid the singularity
at the pole. Thus, MIZMAS has its highest horizontal resolution along the Alaska coast and in the Chukchi,
Beaufort, and Bering seas. The model resolution ranges from an average of 4 km along the Alaska coast to
an average of �10 km for the entire Chukchi and Beaufort seas (Figure 1b). There are 26 ocean grid cells
across Bering Strait for a good connection between the Pacific and Arctic oceans. To better resolve the
mixed layer and the pycnocline, the ocean’s vertical dimension has 40 levels of different thicknesses, with
19 levels in the upper 100 m, the top 16 of which are 5 m thick. The model bathymetry (Figure 1b) is
obtained by merging the IBCAO (International Bathymetric Chart of the Arctic Ocean) data set and the
ETOPO5 (Earth Topography Five Minute Gridded Elevation Data Set) data set [see Holland, 2000].

The modification of the POP ocean model to allow open boundary conditions enables MIZMAS, a regional
model, to be one-way nested to a global coupled sea ice-ocean model [Zhang, 2005]. The global model’s
outputs of ocean velocity, temperature, salinity, and sea surface height are used as open boundary condi-
tions for the southern boundaries of the MIZMAS domain along 398N. Initial conditions for the MIZMAS inte-
gration consist of 1 January 1972 fields of sea ice and ocean state variables obtained from a PIOMAS
integration that starts from 1948 [Zhang et al., 2008b].

2.2. Forcing Data
MIZMAS is routinely driven by daily NCEP/NCAR reanalysis surface atmospheric forcing [Kalnay et al., 1996]
extracted from NOAA Physical Sciences Division archives. Winds (10 m), downwelling longwave radiation,
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surface radiation, and precipitation are extracted from NOAA and drawn on the MIZMAS curvilinear grid.
Downwelling shortwave radiation is calculated from NCEP/NCAR cloud fraction and specific humidity using
a parameterization from Parkinson and Washington [1979]. The model is integrated from 1 January 1971 up
to the day of the forecast. Forcing data for the forecast period are obtained from the NCEP Climate Forecast
System (CFSv2) [Saha et al., 2014], which provides an ensemble forecast at 6 h increments for up to 9
months. For the limited scope of this experiment, a single ensemble member (member 2) was arbitrarily
chosen to drive the ice forecast. Because our experiment includes a series of initialization times and evalua-
tions for many locations, essentially providing an ensemble of initializations, there is no need to run simula-
tions with multiple atmospheric realizations. Forcing variables, 10 m winds, downwelling shortwave and
longwave radiation, specific humidity, and surface temperature at 2 m were extracted at 6 h intervals. P-E
was calculated from precipitation rates and evaporation calculated from CFSv2 latent heat fluxes. All varia-
bles were regridded to the MIZMAS curvilinear grid.

The transition from NCEP/NCAR to CFSv2 forcing data was necessitated by the short development time;
retroactive integrations using the CFSv2 data would have caused substantial delays. In addition, MIZ-
MAS hindcasts using NCEP/NCAR forcing have been validated extensively against in situ and remote
sensing data including 2014 observations from IceBridge [Zhang et al., 2015b]; the initial model state is
robust. A comparison of NCEP/NCAR Reanalysis and CFS forecasts shows correlations of 0.93 at the ini-
tial time and virtually no bias in wind speed and direction, further justifying the transition from NCEP/
NCAR to CFS in this experiment. Due to the short forecast ranges under investigation, systematic differ-
ences in the surface energy balance variables for NCEP/NCAR and CFSv2 atmospheric forcing are not
expected.

2.3. Forecast Scheme
Forecasts are generally initialized daily from 17 July 2014 to 17 September 2014 with forecast increments of
6 h. The initial sea ice model forecast uses CFSv2 forecast fields valid for 6:00 UTC; the last forecast is run for
6:00 UTC, 9 days later. Over this period a total of 38, 9 day forecasts were initialized, with several daily fore-
casts missing when research staff were busy with other tasks. Though the initial purpose of the experiment
was to support image acquisition for a specific field experiment in the Beaufort Sea, to increase the number
of data points and statistical representativeness of the results we expanded the validation and include pan-
arctic sea ice drift measurements.

Figure 1. MIZMAS model grid configuration showing (a) the entire model domain consisting of the Arctic, North Pacific, and North Atlantic oceans and (b) the subdomain of the Chukchi,
Beaufort, and East Siberian seas. The model domain covers all ocean areas north of 398N. The colors in Figure 1a indicate the model’s varying horizontal resolution in km (see color key
at top of figure). In Figure 1b, the red, green, blue, and yellow lines represent isobaths of 100, 500, 2200, and 3600 m, respectively.
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2.4. Buoy Data for Drift Assessment
Buoy data were extracted from the archive of the International Arctic Buoy Program (IABP) between 17 July
and 25 September 2014. Data were only available without prior quality assurance so some preprocessing
was necessary. Raw satellite transmissions from buoys frequently have erroneous sections. For example, a
buoy may be turned on for transmission while still on a ship or aircraft or may be repositioned in the middle
of its trajectory. In addition, raw buoy trajectories may have displacement errors due to data transmission
errors. To deal with these issues, we applied a maximum speed filter of 100 km/d, applied a temporal
median filter on position, and inspected trajectories visually to identify buoys that may have become locked
in fast ice or beached. Buoy positions were then interpolated linearly in time to the 6 h intervals of the
model forecast. For the initial model time step, ice velocity components u,v from the model are interpolated
bi-linearly to the initial buoy position and the next model trajectory position is calculated. Subsequent
model-trajectory positions are then computed using the previous model-trajectory point as the initial posi-
tion. Because our investigation tracks targets that are located in ice-covered areas rather than buoys drifting
in open water, we eliminate part of any trajectory that was in open water based on the ice thickness data
generated by the model. After the filtering, 128 separate buoy tracks that could be used for validation of
our forecasts remained in our database (Figure 2).

2.5. Validation Methods
Our approach is to compare forecast buoy trajectories with observed trajectories and compute validation sta-
tistics that provide information on how well the forecasts capture the observed speed and position. It is useful
to consider forecast accuracy compared to a reference or an alternate way of making the forecasts. In weather
forecasting, persistence and climatology are often used as the reference to which forecasts are compared.
This provides information about the relative gain a particular forecast achieves over something that might be
simpler, cheaper, or more readily accessible and thus gives an indication of the relative benefit to cost.

Here we select as reference the mean ice motion fields generated by integrations of MIZMAS from 2003 to
2013 using forcing from the NCEP/NCAR reanalysis, which was also used to initialize the model. Daily ice
velocity fields are averaged from July through September yielding a mean daily ice velocity corresponding
to each day of our forecast experiment. We call this the ‘‘climatological ice motion’’ field although the period
is too short to be considered a ‘‘climatology.’’ Trajectories are computed for each of the buoys from the cli-
matological velocity field. A new trajectory is initialized for each of the forecast experiment days so that the
resulting ‘‘climatology’’ trajectories can be paired with ‘‘forecast’’ trajectories. Because forecast fields have a
6 h time resolution, while mean fields have a 24 h resolution, trajectories computed from these fields also
have 6 and 24 h time resolution for forecast and ‘‘climatology’’ trajectories, respectively.

Mean velocity fields, such as those generated by the IABP program [Rigor et al., 2000], could have been
used as reference instead of model generated climatological fields. Those buoy mean velocity fields, how-
ever, because they are based on optimally interpolated buoy motions, would have been smoothed spatially
and temporally; they would present little challenge for our forecast system. A more challenging reference
would have been to use sea ice drift forecasts produced operationally by NCEP [Grumbine, 1998], which are
based on an empirical relationship between sea ice drift and geostrophic winds. We will discuss our forecast
results relative to those published for the NCEP operational system [Grumbine, 1998, 2013]. Persistence was
not considered as a reference because, given the rotating climatological ice motion pattern in the Amer-
asian basin, a linear extrapolation of the initial motion would take the computed trajectory quickly away
from the climatological trajectory.

3. Results

3.1. Comparison of Speed Errors
We begin validation by comparing forecast model speeds to corresponding buoy speeds. Speeds are calcu-
lated from the daily 24 h displacements in forecast and observed buoy trajectories. To better highlight the
decay in forecast quality with forecast time, we examine daily ice speeds for forecast increments rather
than average speeds over the entire forecast interval. Validation statistics for different forecast validation
times ranging from 24 h since forecast, to 216 h (9 days) are given. Figure 3 shows root mean square (RMS)
speed errors for trajectories from forecast experiments and from trajectories calculated using the mean ice
motion field (climatology) over the period. Speed RMS errors for forecasts are on the order of 4.5–5 km/d
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for up to 72 h since forecast, then rise to 8 km/d at 9 days since forecast. This compares with RMS speed
errors for trajectories computed from climatological velocity fields that are on the order of 9 km/d and
expectedly independent of forecast time. The fact that RMS speed errors for the forecast trajectories remain
less than the errors for the climatology trajectories indicates that the forecasts are somewhat skillful with
respect to speed at times when we would expect the skill of the CFS forecast model to have decayed com-
pletely (9 days). A simple explanation for this may be that because of the initial skill of the forecast, the fore-
cast trajectory remains closer to the observed trajectory than the climatology trajectory, and is therefore
more likely subject to the same wind and ice conditions as the buoy. Therefore, forecast speeds at 9 days
remain better than climatology.

To assess the quality of the forecast relative to the reference system (climatological ice motion), we com-
pute a skill score (SS) that provides a measure of the reduced variance of the forecast relative to the refer-
ence system. The SS is defined as

SS 5 12
MSEforecast

MSEMean
; (1)

MSE 5

PN UPredicted2UBuoy
� �2

N
; (2)

with the mean squared errors (MSEforecast and MSEmean) computed from Upredicted, the predicted speeds using
trajectories from the forecast or climatology velocity fields, respectively. Ubuoy gives the observed speeds,

Figure 2. Map of buoy (blue) and model tracks used in the assessment of position and speed forecasts. Right side shows observed and modeled track for a single buoy pointed to by
the black arrow. The pink square marks the beginning of the buoy track, and pink triangle marks the end of the buoy track. White circles mark the initialization location and small down-
ward triangles mark the end of forecast (usually 9 days). Black plus symbols mark daily increments.
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and N the number of forecast and observation periods. The SS provides a measure of how much variance of
the error is reduced by the forecast relative to the climatology reference. A perfect forecast would have a
value of 1; a forecast that provides no benefit over the reference would have a skill score of 0. Skill scores
are only computed for 24 h forecast intervals because climatological trajectories are only available for 24 h
intervals. Figure 4 shows the forecast skill for drift speed relative to the drift speed predicted using mean
velocity fields. Forecast skill is high, above 70% of reduced variance, for 24–72 h since forecast with a small
increase from 24 to 48 h. Skill scores after 72 h decline gradually but remain at 20% after 9 days since
forecast.

3.2. Comparison of Position Errors
For our particular application, the scheduling and targeting of image acquisitions, the accuracy of forecast
position is the most relevant parameter. For high-resolution images that may only cover a 10 km 3 10 km
area, error in the forecast position may result in reduced overlap with the target or could result in missing
the target altogether. For images that have to be purchased this can be a costly error; it is also a lost oppor-
tunity to view important changes in the physics of the target area.

To characterize the position error of the forecast, we follow a similar strategy as for speed errors and com-
pare positions that are forecast using our forecast model, positions that are forecast using climatological ice
motion fields, and observed buoy positions. Figure 5 shows the RMS position errors calculated from the
geometric distance between forecast position and actual position predicted by the forecast model and by
using climatological velocity fields. Forecast model RMS errors increase rapidly to about 6 km after 24 h
since forecast. Position errors for predictions based on climatology are 12 km. The relative improvement in
RMS position error that is gained by using the forecast model over a forecast based on climatology is on
the order of 50% up to 96 h since forecast, decreasing to about 35% at 8 days. Figure 4 also shows the SS
for position of the forecast relative to climatology. Scores are above 70% of reduced error variance up to
120 h, remaining just below 60% at 8 days since forecast. This persistence in skill for position is due to the
initial skill of the forecast that is propagated, rather than the ability to forecast ice motion at 9 days in
advance. A buoy whose position was forecast well for a few days will be closer to its actual position after
9 days, even though the daily (wind) forecast itself has lost nearly all predictive power. This is a result with
practical application. Mean position errors at 24 h since forecast are 5 and 10 km, and 32 and 53 km after

Figure 3. RMS error of drift speed for forecast (red) and mean drift (blue). RMS error is given for different forecast validation times from
24 h since forecast up to 216 h from forecast.
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8 days for the model forecast and climatology, respectively. An inspection of the distribution of position
errors (Figure 6) provides a practical perspective on the relative improvement achieved by the forecast
model over a prediction using climatology. Using the 10 km target size (e.g., the scene size of an LDIP
image) as a criterion, there is a 60% probability (intersection of cumulative curve with 10 km position error)

Figure 5. RMS position errors at different forecast times for positions predicted by the model forecast (red) and positions predicted by
using mean daily velocity fields (climatology) in blue.

Figure 4. Forecast skill scores for buoy drift speed (red) and position (blue) relative to drifts predicted using mean ice velocity fields.
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of forecasts made using the climatology velocity field that would have been within 10 km of the actual posi-
tion after 24 h. This value rises to 95% using the model forecast. After 48 h the probability of imaging a tar-
get when using the forecast model is still 75% compared with only 27% using climatology. Even after 5
days, a 30% chance of hitting a target remains using the forecast while it is close to zero using climatology.

Figure 6. Histogram of position errors for the forecast model (red) and for positions (blue) predicted using climatology for (a) 24 h after
forecast and (b) 48 h after forecast. Solid curves indicate cumulative probabilities. Vertical lines show median errors for forecast and clima-
tology, respectively.
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3.3. Tuning
Although the above results are encouraging and clearly demonstrate the value of the model-based forecast
over predicting speed or position from climatology, we ask the question about how to best improve the
forecast. To do this we examine the errors in drift for any systematic errors that may provide clues. Follow-
ing Thomas [1999] we fit a simple model to observed and modeled velocities:

UObserved5AUmodel1D1E; (3)

where Uobserved and Umodel are the observed and modeled vector velocities and A and D are complex coeffi-
cients calculated by minimizing the error E. The method, implemented as a complex linear fit, also provides
a scalar regression coefficient r. This method is a convenient way to examine vector relationships and the
computed coefficients are a measure of whether linear adjustments in magnitude and direction of the vec-
tors are likely to remove biases. Figure 7 shows the correlation coefficient r resulting from the regression of
Uobserved and Umodeled. As expected from prior comparisons of buoy and model speeds, the correlation is
very high with values of 0.85 at 72 h since forecast, indicating 70% of the variance in observed buoy veloc-
ities is captured by this linear model.

The estimated coefficients A and D are used to evaluate this model at mean velocities and to estimate
speed and turning angle biases between observed and modeled trajectories. Buoy mean speed at 10 km/d
is about 10% faster than the corresponding model drift and the model drifts tend to be about 58 to the left
of the observed drift (Figure 8). The distribution of drift angles computed as the vector difference between
model and observed ice at 24 h since forecast has a mean of 23.58 and a median of 23.38 with increasing
scatter and longer lags (Figure 9). The increasing interquartile range after 96 h since forecast is another indi-
cation of the decay of the forecast skill.

Ice motion is determined by the following momentum balance [Hibler, 1979]:

m @u=@t52m�f k3u1sa1sw2mgrHpð0Þ1r � r; (4)

where m is ice mass per unit area, u is ice velocity, �f is the Coriolis parameter, k is the unit vector in the z
direction, sa is air drag, sw is water drag, g is the acceleration due to gravity, p(0) is sea surface dynamic
height, and r is ice internal stress tensor (rij). The air and water drag are

Figure 7. Correlation coefficient r resulting from fitting observed and modeled velocities using the linear model.
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sa5 qaCajUaj Ua cos /1k 3 Ua sin /ð Þ; (5)

sw5qw Cw j Uw2uð Þj Uw2 uð Þcos h1k 3 Uw2uð Þsin h�;½ (6)

where Ua is surface (10 m) wind, Uw the geostrophic ocean current, qa and qw air and water densities, Ca and
Cw air and water drag coefficients, and / and h air and water turning angles. Here the geostrophic ocean cur-
rent (under the ocean mixed layer) is taken to be at the seventh level of the ocean model at a depth of 30–
35 m. The geostrophic current taken at this depth is appropriate given that the Arctic Ocean mixed layer is
often within the depths 5–30 m in summer and has been shoaling in recent years [Peralta-Ferriz and

Figure 8. (a) Mean ice speed for model, original and tuned forecast (red) and buoy observations (blue). (b) Turning angle at mean speed
for original and tuned forecast after adjusting water stress turning angle and air drag coefficient. Negative turning angles indicate that the
model drift is to the left of the observed drift.
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Woodgate, 2015]. Following Hibler [1979] ice velocity u is neglected in (5) because it is an order of magnitude
smaller than Ua. The air turning angle h is set to zero because of 10 m winds, which are assumed to have the
same direction as the surface wind. The water drag coefficient is set to 0.0055 [Hibler, 1979]. Initial values are
used for Ca (0.0033) and h (258), which are modified in the tuning process to reduce model misfit (see below).

Uncertainties in any of the terms in the momentum balance can lead to biases in the resulting ice velocities.
A detailed analysis of the causes is beyond the scope of this paper. An improvement can be achieved rela-
tively simply by applying a scaling and rotation to either the surface wind stress or the ocean stress. This

Figure 9. Boxplot showing distribution of angle differences between (a) original and (b) tuned model experiments. Box shows 25 and 75%
quartile range. Whiskers provide 1.5 times the 25 and 75% range and values beyond are shown in gray.
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type of adjustment is made routinely in sea ice model applications and is part of a normal tuning process
[Kreyscher et al., 2000; Zhang et al., 2012], reflecting uncertainties in these parameters. For example, IABP
buoy drifts have been used to adjust ice speed (though not angles) to tune PIOMAS to run with atmos-
pheric forcing fields from different reanalyses [Lindsay et al., 2014].

To remove these biases, we interactively apply different rotations h to the ocean stress and increase the air
drag coefficient (Ca) to increase model velocities and compare the resulting model biases in speed and angle
relative to the observations. Using this optimization we arrive at an air drag coefficient of 0.0036 (increased
from a default 0.0033) and a turning angle applied to the water stress of 308. This turning angle value repre-
sents a 58 increase relative to the 258 rotation suggested by Hibler [1979]. Using these values reduces the
angular and speed biases to near 0, eliminating nearly all systematic biases for this data set (Figures 8 and 9).
Despite the removal of these biases, verification statistics for position prediction are changed insignificantly
with no discernable improvement in any of the forecast verification statistics. This suggests that overall fore-
cast errors are dominated by other factors and that the small biases in speed and direction do not affect fore-
cast quality. However, larger errors in the rotation of water and wind stress can be important. In an earlier
experiment in which the water turning angle (h) was set to 0 we noticed a substantial (20%) increase in the
24 h forecast position errors. This highlights the sensitivity of ice motion to the water turning angle.

Although the tuning of water stress and wind stress changes forecast verification statistics little, the question
remains why a systematic rotation is necessary and whether a change in wind and water stress is better sup-
ported by evidence. To find a source of the angular bias between modeled and observed trajectories, we
compare observed 10 m winds from the Surface Heat and Energy Budget Experiment (SHEBA) [Persson et al.,
2002] and those from the NOAA Climate Forecast and ReForecast system (CFSR) [Saha et al., 2010], which is
an atmospheric reanalysis using the same model as the CFSv2. Data are compared for the SHEBA drift from
November 1997 through October of 1998 [Persson et al., 2002]. Wind direction data are fairly noisy and are
subject to measurement errors and atmospheric modeling errors. To focus on the angular bias, we remove
cases with large wind speed differences (>2 standard deviations) and angle differences of greater than 508

and consider those clear forecast and reanalysis failures or measurement errors. Wind speed errors, after filter-
ing, are small, with median observed speeds 0.25 m/s greater than CFSR wind speeds, providing justification
for an increase in the surface air drag. Mean differences in wind direction between observed and CFSR 10 m
winds, however, show CSFR rotated clockwise by 38 6 18 from the observed wind. This is the opposite direc-
tion from that needed to explain the model bias in ice motion relative to observations. This suggests that the
source of the ice motion direction bias does not originate in the surface winds but is likely related to other
components of the force balance such as the water stress or the ice interaction force. Because wind direction
errors are affected both by errors in the reanalysis (a slight shift in the pressure centers can lead to substantial
differences in wind direction) and measurement errors, they tend to be noisy. Although a standard error of
61 suggests that the estimate is robust, this error estimate is sensitive to the elimination of the extreme out-
liers described above. Persson [2011], using the same wind speed data but comparing them to ERA-40 reanaly-
sis data, also reports a bias in reanalysis wind direction clockwise to the right of observed winds. Eliminating
the wind stress as the likely source of the drift bias, we therefore use the water stress tuning approach for
future forecasts. Water turning angles measured at ice tethered buoys [Cole et al., 2014] suggest a 308 turning
angle between the surface and 35 m within the range of possibilities. A more detailed investigation constrain-
ing both water and wind stress angles through measurements in multiple locations reflecting different sea ice
conditions should be done in the future. Improved representations of ocean and atmospheric boundary layers
below and above the ice may further reduce the need for tuning.

4. Discussion and Conclusions

The primary goal of this experiment is to assess the role short-term sea ice forecasts have in planning and exe-
cuting research projects and to motivate the question of how short-term forecasts might be improved through
advances in the sea ice model, the atmospheric model, or the coupling. Our results show that RMS errors for
forecast drift speeds rise from less than 4.5 km/d at 24 h since forecast to 8 km/d at 9 days. Velocity vector corre-
lation coefficients are high with values above 0.82 for the first 72 h since forecast. Forecast skill scores for speed
are in the range of 70% relative to predictions based on climatology out to 72 h since forecast with model fore-
casts remaining skillful at the 20% level as late as 9 days since forecast. The ability of the forecast to predict the
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future position of a point target is measured by comparing distances between predicted position and observed
position for buoys drifting in Arctic sea ice. RMS errors for positions are on the order of 6.0 km at 24 h since fore-
cast rising to 38 km after 8 days. An analysis of systematic errors between observed and forecast trajectories
indicates that the model is biased slow by about 10% and displays a 58 drift bias to the left of observed buoy
trajectories. After adjusting the air drag coefficient and applying rotations to the water stress on ice, these biases
can be reduced to near 0. These adjustments have no effect on forecast verification statistics suggesting that
forecast errors are dominated by other sources such as the atmospheric forecasts. Although these errors are not
small relative to average daily displacements, which have a mean value of 10 km, using the model-based fore-
cast instead of one using mean sea ice velocities increases the probability of finding a target, such as a field
camp, in a high-resolution satellite image sized 10 km 3 10 km, from 60 to 95% at 24 h since forecast and from
27 to 75% after 48 h. Even after 5 days when atmospheric forecast skill has decayed, the chance of finding the
target is still 30% using the forecast model compared with nearly zero for using climatology. Using a forecast
system such as the one examined here is well indicated in target acquisition applications.

Forecasts errors established in these limited experiments can be compared to other sea ice forecast experiments.
Grumbine [1998, 2013] compares ice drift forecasts generated from wind forecasts and an empirical free drift sea
ice model [Thorndike and Colony, 1982]. Grumbine [1998, 2013] reports correlations and RMS errors for distance
(equivalent to speed in km/d) for different forecast times. Results show a scalar correlation coefficient for distance
of less than 0.47 for 24 h forecasts over the period 1993–1995 [Grumbine, 1998]. Recently, Grumbine [2013] used
an updated forecast model and a larger validation data set spanning 1998–2007 and reports scalar speed correla-
tions less than 0.4. Scalar speed correlations reported here are much higher, with 24–48 h correlations on the
order of 0.7. Position errors (RMS error radius) reported by Grumbine [2013] are smaller, 5 km at 24 h since forecast
compared with 6 km reported here, and about the same (40 and 38 km, respectively) at 9 days since forecast.

This raises the question whether a coupled ice-ocean model will yield improved forecasts over an empirical
free drift model. Using a simple linear free drift model with coefficients fit to the data set of observed motion
and the CFS winds used in this forecast experiment yields an RMS speed error of 5 km/d at 24 h since forecast.
This compares with the 24 h RMS speed error of 4.5 km/d from MIZMAS, a slight improvement. A prior study
compared a free drift model with an earlier version of the ice-ocean model that evolved into MIZMAS [Thomas,
1999] and reports RMS velocity errors for daily hindcasts to be less (6.3 km/d) than those using a coupled sea
ice model (7.7 km/d), suggesting that an empirical free drift model performs better. The results presented here,
though limited in scope, suggest that improvements in the sea ice model now yield similar or better results
than the linear drift model. This result must be understood in the context of sea ice that has sped up in recent
years [Rampal et al., 2009] due to changes in ice thickness and strength [Zhang et al., 2012; Olason and Notz,
2014]; mean ice speeds are now nearly twice as high as only two decades ago. Thus, the relative errors in ice
drift speed have decreased even more. A more comprehensive comparison of the approaches including differ-
ent ice and atmospheric models would have to answer the question whether a free drift forecast can still out-
perform a dynamic sea ice model. The benefits of a dynamic model over a simple free drift model may be
limited to specific situations. For example, strong ice motion and deformation during the passage of storms or
increases in ice velocities due to rapid thinning and associated reductions in ice strength might be better cap-
tured by a model that explicitly simulates such effects. In addition, we expect a coupled system that can
account for the physical variations in the coupling between atmosphere, ice, and ocean such as the variations
in ice thickness, surface roughness, and ice and ocean drag, to ultimately provide superior solutions.

RMS position errors must also be understood in the context of model resolution; here, 24 h errors are about
half the average model resolution. Because the MIZMAS curvelinear grid has varying grid cell sizes, it is pos-
sible to investigate the role of model resolution on results. An examination of errors just for the Beaufort
and Chukchi seas, where the model grid has a typical size of 4 km, shows that errors for speed and positions
are nearly identical to those for the entire basin. This suggests that sampling errors due to the finite resolu-
tion of the model are not the primary source of forecast errors and that increases in model resolution may
not necessarily yield improved results. But the role of model resolution is more complicated and an increase
in ice model resolution without an increase in resolution of the atmospheric forcing is not likely to yield
improved results. Grumbine [2013], in examining the sensitivity of sea ice drift forecasts using surface winds
from the Global Forecast System (GFS), reports that reductions in velocity errors due to resolution follow a
step function. Therefore, a more detailed analysis across a range of resolutions in both atmospheric forecast
models and the sea ice model would have to examine the effects of resolution. A direct analysis that uses
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the same validation and forcing data and separates the effects of forcing data and the sea ice model would
have to answer the question whether a coupled dynamic ice-ocean model offers any substantial benefits
over those generated by a free drift model. An intercomparison with other sea ice forecast systems such as
the US-Navy Arctic Now and Forecast System (ACNFS) [Posey et al., 2015] would also be useful.

The relatively large magnitude of velocity errors relative to mean velocity (60%) even at short forecast times
(24 h) raises the question of the path forward for improvements in short-term sea ice forecasts. Figure 10
shows the decay in correlation between CFS forecast and NCEP reanalysis over the forecast period (across
entire grid). As expected, correlations are nearly perfect at 0 lag but decrease quickly to only 0.65 at 24 h since
forecast. In our forecast experiment 10 m winds explain over 90% of the modeled sea ice motion at 24 h,
which suggests that improvements in wind forecasts are likely the most important route for drift forecast
improvement. A recent study of vertical wind profiles from dropsondes deployed over sea ice in the Beaufort
Sea during summer 2014 [Liu et al., 2014] suggests that improvement in vertical mixing schemes are also indi-
cated. A denser network of upper air stations near the Arctic Ocean may also have a role in improving wind
forecasts.
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