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Bonemarrow stem cells (BMSCs) have the capacity to differentiate intomature cell types ofmultiple tissues.us, they represent an
alternative source for organ-speci�c cell replacement therapy in degenerative diseases. In this study, we demonstrated that female rat
BMSCs could differentiate into steroidogenic cells with the capacity for de novo synthesis of Estradiol-17𝛽𝛽 (E2) under high glucose
culture conditions with or without retinoic acid (RA).e cultured BMSCs could express themRNA and protein for P450arom, the
enzyme responsible for estrogen biosynthesis. Moreover, radioimmunoassay revealed that BMSCs cultured in the present culture
systemproduced and secreted signi�cant amounts of testosterone, androstenedione, and E2. In addition, RA promoted E2 secretion
but did not affect the levels of androgen. ese results indicate that BMSCs can synthesize and release E2 and may contribute to
autologous transplantation therapy for estrogen de�ciency.

1. Introduction

Steroid hormones play important regulatory roles in female
reproduction, in which estrogen is essential for folliculo-
genesis beyond the antral stage and is necessary to main-
tain the female phenotype of ovarian somatic cells [1–4].
Estradiol-17𝛽𝛽 (E2), a product of androgen aromatization, is
the principal estrogen and is secreted in large amounts by
the large preovulatory follicles in the ovary [5]. Although
the ovaries are the principal source of systemic oestrogen
in the premenopausal nonpregnant woman, a number of
extragonadal sites of oestrogen biosynthesis, including mes-
enchymal cells of the adipose tissue and skin, osteoblasts,
vascular endothelial, aortic smooth-muscle cells, and brain,
become the major sources of oestrogen beyond menopause.
However, the total amount of oestrogen synthesized by these
extragonadal sites may be small. Within these sites, E2 is
probably biologically active only at local tissue level in a

paracrine or intracrine fashion without signi�cantly affecting
circulating levels [6–8].

e reduction of estrogen production in the ovary may
cause menopausal symptoms. In addition, premature ovarian
failure may be caused by any process which reduces the
number of oocytes within the ovary [9]. For example,
chemotherapy can reduce ovarian reserve and affect ovarian
stromal function to produce less estrogen [10]. Although
estrogen replacement therapy has been established and is
recommended for postmenopausal women or patients with
hypogonadism, due to its bene�cial effects, follicular estrogen
production is regulated by a complex set of signals that
synergize to produce optimal steroidogenesis [11]. Still, it is
difficult to provide an optimal therapeutic dose for long-term
estrogen replacement therapy. Furthermore, it is associated
with a substantial risk for cardiovascular disease and breast
cancer [12]. For this reason, alternative therapies such as
steroidogenic cell transplantation may have advantages over
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HRT for hypogonadism. It should allow control of hormone
levels in nature by hypothalamus-anterior pituitary axis.

Several earlier studies have suggested that stem cells can
serve as an alternative source for various steroid hormones
[13–17]. Bone marrow stem cells (BMSCs) are thought to be
multipotent cells, which can replicate as undifferentiated cells
and have the potential to differentiate intomature cell types of
multiple tissues [18, 19]. In the present study, we investigated
whether female rat BMSCs could produce steroidogenic cells
with the capacity for the synthesis of E2.

2. Materials andMethods

2.1. Isolation and Culture of BMSCs. Female SD rats, weigh-
ing 80 to 100 g, were obtained from Center of Laboratory
Animals of Nanchang University and used in accordance
with a protocol approved by theNanchangUniversity Animal
Care and Use Committee. e bone marrow cells were
isolated from femurs and tibias of female rats by �ushing
the sha with phosphate-buffered saline (PBS) using needles,
and the cells were further dispersed several times by gentle,
repeated pipetting with a sterile pipet. e dissociated cells
were seeded in 75 cm2 culture �asks for the primary culture
in the high glucose (4.5 g/L) Dulbecco’s modi�ed Eagle’s
medium (DMEM, Hyclone, Utah) supplemented with 10%
fetal bovine serum (FBS, Stem Cell Tech Inc., Canada) and
incubated at 37∘C in a water-saturated atmosphere of 95%
air and 5% CO2. e nonadherent cells were removed by
washing with PBS and replacing the fresh complete medium
every 3 or 4 days. e adherent cells were passaged every 7
days by harvesting the cells with 0.25% trypsin/0.02% EDTA,
and replating at a 1 : 4 dilution.

2.2. Induction of BMSC Differentiation In Vitro. Cultured
cells at passage 3 were recovered and used in these exper-
iments. BMSCs were reincubated in 12-well culture plates
(Nunc, Denmark) at a density of 2 × 105/well in the high
glucose (4.5 g/L) DMEM containing 10% FBS supplemented
with or without 10−5mol/L all-trans retinoic acid (RA,
Sigma) for 4 days. Differentiated cells from the BMSCs
were analyzed by immunocytochemical staining or RT-
PCR analysis for expression of aromatase cytochrome P450
(P450arom). e levels of testosterone (T), androstenedione
(ASD), and E2 in culture media were measured by radioim-
munoassay (RIA).

2.3. Immunocytochemistry of P450arom. BMSCs were �xed
in 4% acetone at 4∘C for 15 minutes and washed 3 times with
PBS. Endogenous peroxidase was quenched by incubating
the �xed cells with 3% H2O2 in methanol for 20 minutes.
Aer being washed with PBS for 15min (5 min ×3 times),
cells were incubated for 20 minutes with 10% normal goat
serum; then with a rabbit polyclonal antibody to aromatase
(Boster Co., Wuhan, China), they were diluted 1 : 100 in
PBS overnight at 4∘C. e negative control was prepared
in an identical manner except that the primary antibody
was replaced with normal serum. Aer washing with PBS,
cells were incubated with horseradish peroxidase-conjugated

goat anti-rabbit IgG for 1 hour at room temperature. Aer
washing, the immunoreaction was detected by using DAB
system.

2.4. Real-Time PCR Analysis. Total RNA was extracted from
cultured BMSCs using Trizol reagent (Sigma, St. Louis, MO)
andwas reverse transcribed into cDNAusing the First-Strand
cDNA synthesis kit. Real-time PCR was performed to quan-
tify the samples’ cDNA copies using SYBR premix ExTaqTM
�uorescent quantitation PCRkit (TaKaRa, �apan).eCYP19
primers forward: 5′-GCTTCTCATCGCAGSGTAT-3′,
reverse: 5′-CAAGGGTAAATTCATTGGG-3′. e 𝛽𝛽-actin
primers forward: 5′-GGAAATCGTGCGTGACATTAAA-
3′, reverse: 5′-TGCGGCAGTGGCCATC-3′. Conditions
for PCR were 40 cycles of 95∘C for 5 seconds and 60∘C for
34 seconds. e cycle threshold (Ct) was set up at the level
that re�ected the best kinetic PCR parameters, and melting
curves were acquired and analyzed. e 2−ΔΔCt method
of relative quanti�cation was used to estimate the copy
numbers in CYP19 gene.

2.5. T, ASD and E2 Measurement. Before culture (de�ned as
time 0) and 1, 2, 3, or 4 days aer culture, cell culturemedium
was centrifuged and collected, and the levels of T, ASD and
E2 were measured by Beijing Sino-UK Institute of Biological
Technology.

2.6. Statistical Analysis. e experiment was repeated a min-
imum of three times. All data were expressed as the mean ±
SD and analyzed by ANOVA and Ducan’s multiple range
test using the SAS 8.0 soware. 𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 was considered
signi�cantly different.

3. Results

3.1. RT-PCR Analysis for CYP19 mRNA Expression. RT-PCR
analysis showed that there was expression of aromatase gene
CYP19 in BMSCs cultured for 4 days in a high glucose
DMEM, and the expression was signi�cantly higher than that
in 0 day cells. Furthermore, we investigated the effects of RA
on BMSC differentiation in vitro. e result showed that the
expression of CYP19 mRNA was not further elevated by RA
treatment at a concentration of 10−5mol/L (Figure 1).

3.2. Immunocytochemical Analysis of P450arom. To elucidate
the capacity of BMSCs to generate E2, we examined the
expression of P450arom protein, the enzyme responsible
for estrogen biosynthesis, by immunocytochemical staining.
e results showed that P450arom was expressed in BMSCs
cultured in a high glucose culture condition alone or in
combination with RA treatment, with a positive labeling in
part of the cells, and it was primarily immunolocalized in the
cytoplasm (Figure 2).

3.3. RIA for E2. To evaluate E2 biosynthesis and release in
cultured BMSCs, the levels of E2 in culture medium were
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F 1: Real-time PCR analysis of CYP19 expression in rat
BMSCs. e expression of CYP19 was determined relative to the
𝛽𝛽-actin expression. Expression data (𝑛𝑛 𝑛 𝑛) were reported as fold
change (2−ΔΔCt). BMSCs cultured in high glucose DMEM alone
(control) or in combination with RA treatment (10−5mol/L) for 4
days as compared with 0 day cells. e experiment was repeated
three times. Statistical signi�cance was determined by a 𝑡𝑡-test. ∗𝑃𝑃 𝑃
0.05, versus 0 day.

measured by RIA. Before incubation, the culture medium of
BMSCs at passage 3 contained a low concentration of E2.
Aer exposure to a high glucose condition for 1 day, E2 levels
were increased signi�cantly. �owever, E2 content was not
obviously altered aer prolonged culture time (2–4 days).
Similar results were observed in cultured BMSCs that were
given a combined treatment with high glucose and RA. e
maximal effect of RA was observed in BMSCs cultured for 48
hours, and the release of E2 signi�cantly increased compared
with the high glucose medium alone (Figure 3).

3.4. RIA for T and ASD. To investigate de novo synthesis of
E2, we measured the levels of T and ASD in medium by RIA.
Aer BMSC culture for 4 days and 1 day in high glucose
medium alone or together with RA, the release of T and ASD
signi�cantly increased, respectively. �owever, there were no
obvious differences in the levels of T and ASD between the
high glucose group and combination group (Figures 4 and
5). In addition, prolonged culture time (2–4 d) had no effect
on the release of ASD (Figure 5).

4. Discussion

e high degree of stem cell plasticity provides a promising
strategy for cell replacement therapy. During the past several
years, a great deal of attention has been focused on the plastic-
ity of BMSCs. Since BMSCs have tremendous differentiative
potential, they can differentiate in vitro and in vivo into
mature cells of the heart, liver, kidney, lungs, GI tract, skin,
bone, muscle, cartilage, fat, endothelium, and brain. ese
BMSC-derived cells have been shown to contribute to clinical
treatment of genetic disease or tissue repair [20–29]. In the

present study, we investigated the ability of the BMSCs to
generate steroidogenic cells and release E2 in vitro. Our study
revealed that BMSCs cultured in high glucose DMEM with
or without RA were capable of differentiating into cells that
produced and secreted signi�cant amounts of E2.

Under physiological conditions, E2 is produced de novo
from cholesterol and synthesized by the ovary in a sequential
manner. Steroidogenic granulosa and theca cells cooperate
under gonadotropin control to produce estrogens by stim-
ulating synthesis of steroidogenic enzyme messenger RNAs
[11]. In the theca, under the in�uence of L�, cholesterol
is converted to pregnenolone and metabolized through a
series of substrates ending in androgen production. eca
cell-derived androgens transported to the granulosa cells of
developing follicles, where they are aromatized to oestrogens
by P450arom, the product of the CYP19 gene, which is
responsible for conversion of C19 steroids to estrogen [2, 6,
30]. In our culture systems, P450arom mRNA and protein
were expressed in BMSCs, which also produced and released
T and ASD. ese results suggested that BMSCs could
produce steroidogenic cells with the capacity for the synthesis
of E2.

In recent years, some studies found that transfection of
BMSCs from human and murine with steroidogenic factor 1
(SF-1, an essential factor for differentiation of the pituitary-
gonadal axis) can transform BMSCs into steroidogenic cells,
which produce various steroid hormones, including E2, and
expressed mRNA for P450arom [16, 17]. When transplanted
into immature rat testes, adherent marrow-derived cells were
found to be engraed and differentiated into steroidogenic
cells that were indistinguishable from Leydig cells [17].ese
results provided evidence that BMSCs were capable of dif-
ferentiating into steroidogenic cells and represented a useful
source of stem cells for cell transplantation therapy. In this
study, without forced expression of SF-1, we demonstrated
the ability of the BMSCs to spontaneously form steroidogenic
cells and secrete E2 under a high glucose condition.

RA is well known as the biologically active form of
vitamin A and has been shown to play an important role
in normal embryonic development and maintenance of
differentiation in the adult organism [31]. Previous studies
showed that RA could induce BMSCs to differentiate into
male germ cells [32] and stimulate E2 and T synthesis in rat
hippocampal slice cultures [33]. erefore, we examined the
effects of RA on E2 and T biosynthesis in cultured female
rat BMSCs. In the present study, BMSCs were incubated in
the absence or presence of RA to investigate RA-induced
differentiation of BMSCs to steroidogenic cells in vitro.
Comparedwith high glucosemedium alone, E2 secretionwas
stimulated by RA treatment without any increase in the levels
of androgen, suggesting that RA, at least at a concentration
of 10−5mol/L, may promote the differentiation of BMSCs to
estrogen-producing cells.

A great deal of efforts had been directed at understanding
what role stem cellsmay play in the physiology and pathology
of the mammalian female gonads [34]. Over the past few
years, some studies found that bone marrow transplantation
(BMT) generated immature oocytes and rescued long-term
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F 2: Immunocytochemical staining of P450arom in rat BMSCs cultured for 4 days. (a), negative staining; (b), control group; (c), RA
treatment group. P450arom was expressed in BMSCs cultured in a high glucose culture condition alone (control group) or in combination
with RA treatment. Scale bar: 20 𝜇𝜇m.

F 3: Measurement of E2 concentrations in culture media by
RIA. Compared with 0 day cells, the release of E2 signi�cantly
increased in rat BMSCs cultured in a high glucose DMEM or in
combination with RA for 1–4 days. e experiment was repeated
three times. Values represent means±SD (𝑛𝑛 𝑛 𝑛). ∗∗𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃, versus
0 day; △𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃, versus high glucose DMEM.

fertility in a preclinical mouse model of chemotherapy-
induced premature ovarian failure. Although all offspring
were derived from the recipient germline, donor-derived
oocytes were generated in ovaries of recipients aer BMT
[35]. Furthermore,MSC transplantation can improve ovarian
function and structure damaged by chemotherapy, and the
paracrine mediators secreted by MSC might be involved in
the repair of damaged ovaries [36]. ese results suggested
that the potential of BMSCs for ameliorating female repro-
ductive function was involved in reversal of both ovarian
germline and somatic cell insufficiency.

In a previous report, mouse embryonic stem cells in cul-
ture developed into oogonia that could enter meiosis, recruit
adjacent cells to form follicle-like structures, which expressed
aromatase and secreted E2 [15]. In addition, mouse-induced
pluripotent stem cells cocultured with ovarian granulosa cells
in vitro could form granulosa cell-like cells and secret E2

F 4: Measurement of T concentrations in culture media by
RIA. Compared with 0 day cells, the release of T signi�cantly
increased in rat BMSCs cultured in a high glucose DMEM for 2–4
days. RA treatment did not obviously increase the levels of ASD.e
experiment was repeated three times. Values represent means ± SD
(𝑛𝑛 𝑛 𝑛). ∗𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃, versus 0 day; ∗∗𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃, versus 0 day.

[37]. BMSCs in our culture systems did not form follicle-
like structures, nor did exhibit the morphology of mature
ovarian cells. However, they expressed P450arom, suggesting
that BMSCs have the ability to synthesize and to release E2,
which may contribute to autologous transplantation therapy
of BMSCs for hypogonadism.

5. Conclusion

In this study, we showed that female rat BMSCs cultured
in high glucose DMEM with or without RA could express
CYP19 and P450arom, and excrete T, ASD, and E2. ese
results indicated that the cultured BMSCs could produce
steroidogenic cells with the capacity for E2 synthesis. is
study would help to provide basis for clinical application of
BMSCs in autologous cell transplantation therapy for patients
with estrogen de�ciency.
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F 5: Measurement of ASD concentrations in culture media by
RIA. Compared with 0 day cells, the release of ASD signi�cantly
increased in rat BMSCs cultured in a high glucose DMEM for 1–4
days. RA treatment did not obviously increase the levels of ASD.e
experiment was repeated three times. Values represent means ± SD
(𝑛𝑛 𝑛 𝑛). ∗𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃, versus 0 day; ∗∗𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃, versus 0 day.
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