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Abstract
Purpose of Review The purpose of this study is to summarize
recent advances in the use of broadly neutralizing antibodies
(bNAbs) as therapeutics in human clinical trials and in non-
human primate (NHP) models. We seek to highlight lessons
from these studies with an emphasis on consequences to the
virus and immune system.
Recent Findings In the past 10 years, advances in HIV-1 tri-
mer structure and B cell isolation methods have precipitated
the identification of “new-generation” anti-HIV antibodies
with broad and potent neutralization. In the past 2 years, the
concept of using these bNAbs as therapeutic tools has moved
from NHP models into human clinical trials. These trials have
investigated the effects of bNAb infusions into patients chron-
ically infected with HIV-1, while the NHP model has investi-
gated treatment during acute infection.
Summary Through this work, the relationship between
in vitro breadth and potency and in vivo clinical effect,

although unresolved, is gradually being elucidated. These re-
sults emphasize the need for combination antibody therapy.
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Introduction

Antibodies have been used as passive therapy for infectious
diseases since the treatment of diphtheria with serum in the
late 1800s [1]. Currently, two monoclonal antibodies (mAbs)
are licensed for use against anthrax toxin and respiratory syn-
cytial virus (RSV) F protein [1], and many other antibodies,
including those against HIV-1, are currently in development
as therapeutics. Of particular interest to the HIV-1 field, infu-
sion of non-human primates (NHPs) with an α4β7 integrin
targeting mAb was recently shown to be efficacious in sup-
pressing simian-immunodeficiency virus (SIV) [2]. As for
virus-specific antibodies, neutralization targets on the trimeric
HIV-1 envelope (Env) are shielded from the immune response
through extensive glycosylation and large variable loops
found on these proteins [3]; therefore, a major goal of the
HIV-1 vaccine field has been to identify areas of vulnerability
on the trimer [4]. The isolation and characterization of broadly
neutralizing antibodies (bNAbs) from HIV-infected individ-
uals has highlighted a continuum of exposed sites on the tri-
mer that will be useful for rational vaccine design [5] and has
also garnered a variety of antibodies that could be valuable
tools for HIV prevention and treatment [6, 7].

The feasibility of antibodies for treatment of HIV-1 de-
pends on many factors including manufacturability, cost, and
delivery, with current research investigating antibody devel-
opment and optimization to exploit the full range of antibody-
associated antiviral effects. Notably, all antibody functions
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(neutralizing and non-neutralizing) could likely contribute to
adjunctive therapy with current anti-retroviral treatment
(ART) regimens [4, 8]. Virus neutralization, however, is likely
the most well-characterized antibody function during HIV-1
infection; therefore, neutralizing antibodies as treatment have
thus far been most extensively tested. Previous clinical trials,
which passively infused neutralizing mAbs into HIV-1-
infected patients on or off ART, were conducted with antibod-
ies 2G12, 2F5, 4E10, or KD-247, which are less broad and
potent than “new-generation” mAbs. These antibodies were
found to either decrease virus load (VL) or delay virus re-
bound only in a minority of subjects, and virus escape muta-
tions were often detected [9–14]. Interestingly, in an analytic
treatment interruption (ATI) study, it was found that antibody
treatment during acute as opposed to chronic infection as well
as sensitivity of virus to in vitro neutralization by mAbs ap-
peared to delay virus rebound duringATI (i.e., increased effect
of antibody) [13, 15].

To date, the correlation between in vitro neutralization and
in vivo clinical effect is not fully defined, and the effect of anti-
body treatment on the balance between the virus and immune
system, with particular reference to viral escape and the effect on
viral set point, remains unknown (Fig. 1). Viral escape from
antibodies, which has been well documented during natural in-
fection [4, 16, 17] even in individuals who develop bNAbs,
occurs rapidly and via multiple routes [18–20]. In the context
of bNAbs as therapy, the ease of viral escape as well as the
number of bNAbs or bNAb specificities required to contain virus
replication by limiting viral escape or reducing viral fitness, re-
mains to be determined. These questions will be informed
through ongoing clinical trials using new generation bNAbs
and recently published work describing the infusion of bNAbs
into chronically HIV-1-infected individuals both on and off ART
as well as in the context of ATI. Meanwhile, the effects of bNAb

infusion during early infection are being explored in NHP
models. In this review, we will focus on the relationship between
in vitro potency and in vivo effect, virus escape from bNAb
pressure and effects on both viral load and the immune system
in recent human clinical trials and lessons from the NHPmodels.

Passive Infusion of bNAbs During Chronic SHIV
Infection

Two studies demonstrated the feasibility of passive immuni-
zation with bNAbs during chronic infection with simian-
human immunodeficiency viruses (SHIVs) in rhesus ma-
caques (RMs). Both tested bNAbs, singly and in combination,
that targeted the HIV-1 envelope receptor CD4 binding site
(CD4bs) (3BNC117 and b12) or the V3-glycan supersite (10-
1074 and PGT121). Because 3BNC117, 10-1074, and
PGT121 either have or will be used in human clinical trials,
a comparison between human and NHP data will be possible.

The first study by Shingai et al. infected RMs with
SHIVAD8 and after 12 weeks of infection, during virus
set-point, they infused four RMs with 10 mg/kg intrave-
nously of either 3BNC117 or 10-1074 [21]. These anti-
bodies exhibited potent neutralization of the infecting
SHIVAD8 virus, with IC50 values ≤0.2 μg/ml. Infused
RMs suppressed virus within 4–14 days and maintained
suppression for 2–10 days. Single-genome amplification
(SGA) of rebound virus on days 23 and 28 post-infusion
revealed resistance mutations to 10-1074 (loss of N332
glycan), but no obvious changes within the 3BNC117
epitope. Antibodies were next co-administered to five
RMs infected for at least 3 years. In the three RMs whose
baseline VL was 1 × 104 copies/ml or lower, virus was
suppressed by day 6 or 7 and remained undetectable until

• Replication 
capacity

• Virus 
diversity

• Set-point 
virus load

• Antibody 
potency

• Sera 
concentration

• Binding to 
infected cells

• Binding to FcR
on immune 
effector cells

Fig. 1 Potential effects on virus
load after infusion with a
monoclonal antibody. On the
right are antibody-specific factors
that can affect virus load while on
the left are virus-specific factors

Curr HIV/AIDS Rep (2017) 14:54–62 55



rebound between days 17 and 42. In the two RMs with
virus >1 × 105 copies/ml, VL decreased until day 6 or 20
and then began to increase. SGA on rebound viruses on
days 28, 49, or 57 revealed no obvious resistance muta-
tions within antibody epitopes.

Barouch et al. reported similar results in SHIVSF162P3-in-
fected RMs [22]. RMs were infected for 9 months before a
single infusion dose of 10 mg/kg either of PGT121 (a clonal
relative of 10-1074) or 3BNC117. Interestingly, although
PGT121 potently neutralized the infecting strain
SHIVSF162P3 in vitro, this virus was more resistant to
3BNC117. This observation correlated with viral suppression
within 7 days and maintenance of suppression for 42–56 days
in the four macaques infused with PGT121. Remarkably, in
one of these PGT121-infused animals, viral control was ob-
served for more than 200 days in the absence of antibody. The
four macaques infused with 3BNC117, however, experienced
a smaller decline in VL, without full suppression, and returned
to set-point by day 20 post-infusion, reflecting the insensitiv-
ity of the virus to this bNAb. Combination therapy worked
well, as demonstrated by the infusion of 10 RMs with a cock-
tail of anti-HIV bNAbs (five with PGT121, 3BNC117, and
b12 and five with PGT121 and 3BNC117) and >2 log de-
crease in VL. The two RMs with the highest baseline VL
(around 5 × 105 copies/ml) did not fully suppress virus repli-
cation and VL began to increase around day 15. The other
eight RMs remained suppressed for multiple days and began
to rebound between days 20 and 84 post-infusion. Together, in
all RMs infused with PGT121, the time to virus rebound was
correlated with baseline VL. Despite these differences in virus
rebound SGA of virus from seven RMs at week 8 post-
infusion revealed no obvious resistance mutations, although
changes in and around the epitopes of these antibodies could
be detected. In addition, the effect of the 3BNC117 in these
cocktail antibody infusions was debated due to its reduced
capacity to neutralize the circulating virus.

This study highlighted hints of indirect effects of anti-
body treatment on the immune system and the virus. A
trend of increased neutralization potency by autologous
antibodies against SHIVSF162P3 after infused mAb was
cleared, as well as reduced activation of virus-specific T
cell responses and a slightly lower median set-point VL
(0.61 log lower) was observed in antibody-treated RMs.

Together, these NHP studies demonstrate that viral escape
from infused antibody can occur, but also that it is possible for
a single bNAb to suppress virus replication. In this case, virus
rebounds to set-point as antibody levels wane, with little evi-
dence of virus escape. Furthermore, low baseline VL, high
viral neutralization sensitivity, and bNAb combination therapy
were associated with longer suppression of virus replication.
However, within this NHP model, the development of anti-
drug responses led to faster clearance of human antibody con-
centrations in the RM serum. In addition, the chronic SHIV

quasi-species in the NHPmodel may be less diverse than HIV-
1 in humans; therefore, neutralization sensitivity of the circu-
lating virus may be easier to define in RMs leading to a clearer
relationship between in vitro and in vivo potency.

Passive Infusion of bNAbs During Chronic HIV-1
Infection

The first passive immunization clinical trial using new-
generation bNAbs in humans intravenously infused CD4bs an-
tibody 3BNC117 into 17 viremic subjects (presumably subtype
B infected) with a dose escalation between 1 and 30 mg/kg
[23]. Overall, the level of VL decline post-infusion correlated
with antibody dose.Within the highest dose group of 30mg/kg,
five of the eight participants were pre-screened before infusion
to ensure their virus was sensitive to 3BNC117, but all eight
participants had decrease in VL between 0.8 and 2.5 log10.
MeanVL decreasewas 1.48 log10 andmedian nadir was 7 days.
The magnitude of the decline was found to be related to the
baseline VL and pre-existing sensitivity of the virus to the an-
tibody. Sensitivity was tested by bulk PHA stimulation of au-
tologous PBMC, and resulting virus outgrowth in the superna-
tant was used in the TZM-bl assay. No participant maintained
full suppression even in the high antibody dose group; however,
by 56 days, three of the eight had not yet fully returned to
baseline VL (within 0.5 log10). These observations might sug-
gest that virus escape from 3BNC117 occurred but that the
virus may not replicate as well.

To test for virus escape, autologous virus sensitivity to
3BNC117 was tested from pre- and post-infusion time points.
Increased resistance to 3BNC117 was detected even in the
low-dose group, although the degree to which the virus be-
camemore resistant was variable. SGAwas performed on pre-
and post-infusion plasma virus env genes for a subset of indi-
viduals and Envs were cloned to test for antibody resistance.
Overall, cloned Envs from plasma virus became more resis-
tant to 3BNC117 post-infusion, but the number of cloned
Envs (three per time point) was low for comparison.
Unsurprisingly, the neutralization data from cloned Envs did
not exactly match the virus outgrowth neutralization data,
highlighting the differences between these two methodolo-
gies. When sequences of plasma envs were compared, chang-
es could be detected in some subjects around the 3BNC117
epitope, especially in loop D and loop V5, but there were no
consistent resistance mutations detected.

A second phase 1 clinical trial tested infusion of CD4bs bNAb
VRC01 into chronically HIV-1-infected individuals and many of
the findings were similar to the Caskey study [24]. Importantly,
3BNC117 and VRC01 target an overlapping epitope on the re-
ceptor binding site of the gp120 virus protein and are highly
genetically and structurally similar despite being isolated from
different donors [25–27]. Even so, slight differences between
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these antibodies lead to potency differences for subtype B viruses
(Table 1). In this study, eight subtype B-infected participants with
detectable viremia were intravenously infused with 40 mg/kg of
VRC01. This infusion reduced VL decline between 1.1 and 1.8
log10 in six of the eight participants, and mean nadir for all eight
was 9 days. Plasma Envs, cloned from before and after infusion,
revealed that the disparate effects on VL decline were related to
pre-existing virus resistance to VRC01. The two participants
with little to no decline in VL had relatively high autologous
Env IC80values (geometric mean IC80 of 10 cloned Envs were
30 and 17 μg/ml), and the level of infused antibody was calcu-
lated to be less than 100-fold above the mean IC80. Additionally,
level of virus suppression appeared to be related to baseline VL
because the two participants with the lowest baseline VLs
(<1000 copies/ml) maintained virus suppression until very low
to undetectable antibody levels were reached. Sequencing and
cloning rebound virus from these 2 participants revealed no ev-
idence for increased resistance to or escape from VRC01 sug-
gesting rebound occurred due to low antibody levels [29]. The
other four participants, whose VL decreased until day 9, experi-
enced virus rebound in the presence of detectable VRC01 con-
centrations, and by day 56, the VL of all eight had returned to
baseline levels. SGA of plasma envs revealed changes in the
virus quasi-species between pre- and post-infusion. Many of
these sequence differences were detected within the VRC01

epitope, especially changes in loop V5 length; however, no con-
sistent resistancemutations were found. Cloned Envswere tested
for increased resistance to other bNAbs that may be used in
future clinical trials and no difference was detected, apart from
slight increase in resistance to the CD4bs antibody 3BNC117.

Together, these two clinical trials indicate that, similar to the
NHP model, baseline VL and sensitivity to antibody can affect
the degree to which an infused antibody suppresses virus (i.e.,
VL decline and time to return to baseline). A more complicated
picture was formed in the human trials, where selection pressure
against the most sensitive virus species may have been sufficient
to allowVL increase in the presence of the antibody.While these
reports examined bNAb effects on the virus quasi-species, anti-
body infusion may have affected the immune response as well.

Effects of Passive Infusion on Immune Responses

One reason for use of antibodies as treatment is their potential to
exert multiple anti-viral effects. Theoretically, infusion with
bNAbs could not only neutralize circulating plasma virions but
also bind infected cells for Fc-mediated clearance as well as form
immune complexes that could enhance antigen presentation. A
follow-up study of the 3BNC117 clinical trial examined the
possibility of enhanced immune function following bNAb

Table 1 Breadth and potency of antibodies that may be used in clinical trials on an 80 virus panel organized by subtype as generated by CATNAP
http://hiv.lanl.gov/catnap [28]

10-1074 10E8 3BNC117 PGDM 1400 PGT121 VRC01 VRC07-523-LS VRC 26.25

Subtype AE
(n = 9)

% Virus Neutralized
(IC80 < 10 μg/ml)

0 100 89 89 0 89 89 67

Geometric Mean
(IC80 < 10 μg/ml)

n/a 1.75 0.326 0.021 n/a 1.09 0.269 0.055

Subtype AG
(n = 6)

% Virus Neutralized
(IC80 < 10 μg/ml)

83 100 83 67 50 67 83 67

Geometric Mean
(IC80 < 10 μg/ml)

0.536 1.37 0.251 0.035 0.511 0.677 0.169 0.087

Subtype A1
(n = 13)

% Virus Neutralized
(IC80 < 10 μg/ml)

38 77 85 85 46 85 85 62

Geometric Mean
(IC80 < 10 μg/ml)

0.143 4.60 0.085 0.034 0.140 0.266 0.073 0.091

Subtype B
(n = 15)

%Virus Neutralized
(IC80 < 10 μg/ml)

87 100 87 67 80 93 100 13

Geometric Mean
(IC80 < 10 μg/ml)

0.154 2.22 0.260 0.449 0.236 0.941 0.234 0.538

Subtype C
(n = 37)

% Virus Neutralized
(IC80 < 10 μg/ml)

62 89 70 70 59 86 95 65

Geometric Mean
(IC80 < 10 μg/ml)

0.226 1.65 0.402 0.030 0.163 1.00 0.184 0.010

n/a not applicable
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infusion by analyzing sera and virus 6-month post-infusion, once
3BNC117 was no longer detectable in serum [30]. IgG was
purified from sera pre- and 6-month post-3BNC117 infusion,
and consistent with antibody evolution during natural infection
[31–37], 6-month IgG could neutralize these pre- and 1-month
post-infusion viruses better than pre-infusion IgG. These data
confirm that the autologous B cell response remains evolving
against infecting virus even in the presence of infused antibody,
which may be attributed to extended presence of virus in the
germinal centers despite VL decrease. Next, 6-month IgG was
tested against a heterologous panel of globally circulating strains
[38] and slightly increased neutralization was found compared to
pre-infusion IgG. To note, these data were measured as area
under the curve (AUC) instead of inhibitory concentration
(IC50 or IC80) as is the standard in the field for reporting neutral-
ization data. The use of AUC to quantify neutralization incorpo-
rates viruses that are not neutralized up to 50% into the dataset,
thereby allowing measurement of subtle shifts in neutralization;
however, it also allows measurement of noise within the neutral-
ization assay. Examination of the reported IC50 values with a
more stringent cutoff reveals significant differences (above the
three-fold error of the neutralization assay in more than one
virus) in one of 15 infused viremic individuals, none of the
infused individuals on ART, and one of the 18 control sera
(chronically infected individuals who were not infused with the
bNAb). Within the control individuals, 13 possessed bNAb ac-
tivity in the pre- and post-infusion samples, which may have
confounded this observation. This finding of neutralization im-
provement in infused participants did not correlate with CD4
level, VL, or pre-infusion neutralization capacity. Longitudinal
SGAof the virus quasi-species in a subset of individuals detected
inconsistent changes in diversity post-infusion, and confirmed
that, similar to previous findings [39–41], the level of pre-
infusion virus diversity correlated with pre-infusion IgG neutral-
ization capability. Because the measurement of virus diversity
may not capture minor changes within the quasi-species, the
3BNC117 epitope was specifically observed longitudinally and
again, changes in all subjects were detectable but none were
uniform between subjects. Mapping to identify the targets of
these improved responses and diversity within those specific
epitopes may be more informative in future studies.

Themechanisms behind this phenomenon of augmented neu-
tralizationmay include increased virus diversification in the pres-
ence of heterologous antibody leading to new B cell stimulation
or the presence of increased immune complexes that serve as
immunogens expanding B cell responses. Interestingly, the virus
in subject 2C4was resistant to 3BNC117 andVL did not decline
in the presence of the antibody [23], but there was an augmen-
tation of IgG neutralization, suggesting that a robust number of
immune complexes are not necessary for this boost.
Additionally, the two participants (2C4 and 2A1) with the
greatest envelope diversity and breadth on the virus panel pre-
infusion were the two with the greatest change in IC50,

suggesting that breadth may have been naturally developing.
Altogether, observations of modest increases in breadth and po-
tency after infusion with a heterologous antibody, while intrigu-
ing, remain to be fully explored and confirmed.

Effect of Baseline Virus Load on Virus Suppression
During Passive Infusion

Recent studies of ATI allow assessment of the ability of antibod-
ies to suppress virus when baseline virus is undetectable (i.e.,
fully suppressed on ART). A paper published by Scheid et al.
describes the results of a phase IIa open label clinical trial where
13 participants, with VL <50 copies/ml for over 12months, were
infusedmultiple timeswith antibody 3BNC117 and discontinued
ART 2 days after the first infusion [42]. Before infusion, partic-
ipants were screened by virus outgrowth culture and TZM-bl
assay to measure pre-existing sensitivity to 3BNC117, and only
those whose outgrowth viruses had IC50 ≤2.0 μg/ml to
3BNC117 were enrolled. The average time to rebound was
8.4 weeks, and this result was significantly different from the
2.6 weeks in matched historical controls, from previous AIDS
Clinical Trials Group (ACTG) ATI studies. In this study, time to
rebound did not correlate with pre-ATI virus outgrowth sensitiv-
ity to 3BNC117, with cell-associated HIV-1 DNA, or with sera
concentrations of infused antibody. It is important to note that
because all participants were pre-screened for sensitivity to
3BNC117, correlation between pre-infusion sensitivity and time
to rebound may not be possible to measure in this analysis.
Rather, it is conceivable that once the virus has reached some
threshold of sensitivity, differences in time to rebound may be
difficult to detect. Interestingly, participant 711 had the shortest
time to rebound despite 3BNC117-sensitive virus as measured
by IC50 or IC80, but this pre-infusion virus was incompletely
neutralized (with a maximum percent inhibition of 95%) at the
highest concentration of antibody (50 μg/ml). This observation
highlights the importance of in vitro pre-infusion virus sensitivity
to clinical outcome during passive therapy, with particular em-
phasis on incomplete neutralization, a common trait among all
bNAb classes [43].

Four subjects, whose virus did not become more resistant to
3BNC117, rebounded in the presence of low antibody concen-
tration. The authors calculated that VL became detectable in
these individuals only when antibody concentrations waned to
less than 10-fold above the mean IC80 of the virus. This obser-
vation supports the notion that for certain individuals and perhaps
particular viral genetic determinants, monotherapy can suppress
virus replication if a certain level of antibody is maintained. SGA
and cloning of Envs from plasma during virus rebound in seven
participants confirmed that, for the majority of subjects, rebound
virus was more resistant to 3BNC117 compared to pre-infusion
virus outgrowth culture. It should be noted, however, that com-
parisons between pre- and post-infusion virus are difficult in low-
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plasma virus settings. The authors phylogenetically compared
the sequences of a few virus outgrowth cultures to rebound plas-
ma virus sequences, because pre-ART plasma samples were un-
available. Despite this limited sampling, it is clear that post-ATI
plasma rebound virus was overall monophyletic in the eight
participants analyzed. Again, analysis of rebound virus found
residue changes within the epitope of 3BNC117 in loop V5 or
loop D that could be associated with resistance; however, there
was no consistent pattern of change. Rebound viruseswere tested
for increased resistance to other antibodies that may be used in
clinical trials and generally no difference was found.

Two subsequent trials (NIH 15-I-0140 and ACTG A5340)
tested the ability of VRC01 infusion to delay virus rebound
during ATI; however, in these trials, which examined 10 and
13 participants respectively, pre-screening for VRC01-
sensitive virus was not performed [44]. The median time to
rebound in these studies was 4 weeks (A5340) and 5.6 weeks
(NIH). This delay was calculated to be significantly different
from historical ACTG controls at 4 weeks post-ATI but by
8 weeks, there was no difference. SGA-derived plasma virus
env genes from eight participants in the ACTG trial were
cloned from both before ART and after ATI time points.
Strikingly, in some participants, there was a clear monophy-
letic rebound virus suggesting genetic restriction in the pres-
ence of VRC01, and rebound virus was demonstrated to be
more resistant to the antibody in six of these individuals.
Interestingly, the two subjects with the longest time to rebound
in this study were the two with the most VRC01-sensitve virus
before ART, and inmost other subjects, pre-existing resistance
in virus populations could be detected. The NIH trial mea-
sured the neutralization sensitivity of replication-competent
viral isolates from autologous CD4 T cells before and after
VRC01 infusion, and indeed, this study found increased resis-
tance to VRC01 in six of seven subjects tested, which was
significantly different in four.

Together, these studies highlight the impact of pre-screening
virus for in vitro sensitivity as an indicator of greater in vivo
clinical effect and certainly suggest that for monotherapy with
antibodies, pre-screeningmay be of greater consequence than for
ARV drug resistance. Furthermore, there is evidence for genetic
restriction of rebound virus during ATI in the presence of anti-
body, which although not clinically relevant does indicate viral
selection pressure by the infused antibody. Finally, the lack of
resistance signatures discovered in these studies may reflect the
complex nature of the CD4bs epitope, which may be true for
CD4bs antibodies in general.

Optimization of Passive Infusion with bNAbs:
Timing, Delivery, and Product

The question of timing of antibody treatment is now being
investigated in the SHIV-NHP model where combination

antibody treatment during early infection (Fiebig I–II) was
demonstrated to decrease VL at the same pace as cART treat-
ment [45]. This study by Bolton et al. also hinted at increased
immune function in the presence of antibody-immune com-
plexes, an observation that has not yet been fully developed.
An exciting recent study by Hessell et al. demonstrated that
combination antibody treatment given to infant RMs 24 h
post-exposure could prevent systemic infection [46], the first
demonstration of virus clearance by bNAbs. These studies of
early bNAb treatment may be difficult to replicate in humans
but similar strategies are currently being tested in clinical trials
such as IMPAACT 2008 and RV398.

Optimizing methods of antibody delivery are currently be-
ing explored, including vectored antibody genes. Adeno-
associated virus (AAV) delivery of bNAbs as well as CD4
mimetics has demonstrated protection in animal models, but
may not be feasible as a therapeutic strategy in the context of
antiretrovirals [47, 48]. Increasing potency and breadth by
engineering bi-specific antibodies may be a successful strate-
gy to both improve function and manufacturability (one prod-
uct with a combination of antigen-binding domains). One
study that combined two different bNAb Fabs into a single
bi-specific antibody established that this single product reca-
pitulated breadth and potency of the two parental bNAbs com-
bined [49]. Further reports have demonstrated that strategies
to combine bNAb 10E8 with anti-CD4 mAb ibalizumab or to
combine multiple bNAb Fabs such as 3BNC117 and PGT135
in an IgG3 constant region construct can successfully increase
neutralization breadth and potency as a single mAb [50, 51].
Thus, many variations of bNAbs will be able to be tested for
therapeutic effects in the near future.

The Whole Antibody: Fc and Fab

While this review is focused on the neutralization breadth and
potency of bNAbs, which is mainly derived from their antigen-
binding variable region (Fv), the whole antibody, variable and
constant region (Fc) together, can exert anti-viral effects beyond
neutralization. Antibodies can tag virions or infected cells for
phagocytosis or killing, and these processes involve Fc binding
to Fc receptors (FcR) on phagocytic or effector cells. In a setting
of chronic HIV infection, passive infusion of bNAbsmay great-
ly facilitate these effector functions that an otherwise exhausted
and dysfunctional B cell response may not be capable of.
Passive mAb therapy provides an opportunity to engineer and
optimize half-life or polyfunctionality through Fc mutations,
glycosylation patterns, and the use of particular isotypes as
reviewed in [28, 52]. In particular, antibody-dependent cellular
cytotoxicity (ADCC) requires not only antibody Fc binding to
effector cells but also variable region binding to infected cells.
Importantly, however, epitope availability and conformation
may be very different on infected cells than on virions, and
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the ability of a bNAb to neutralize virus does not necessarily
confer the ability to recognize and bind infected cells for killing.
A recent study by Bruel et al. compared bNAbs expressing the
same Fc region for their ability to mediate ADCC of a cell line
infected in vitro with either of two lab-adapted strains of HIV-1
[53]. They reported that neutralization potency, binding to in-
fected cells, and stability of that binding all correlated with the
ability of the bNAb to mediate ADCC. Thus, future directions
for mAbs as therapeutics include optimizing all regions of the
antibodies for functions beyond neutralization.

A role for bNAbs has also been implicated in HIV-1
cure strategies, which have focused on methods to reverse
latent virus (“shock”) and to mobilize the anti-HIV-1 im-
mune response (“kill”). Taking antibody engineering one
step further, many groups have followed the path of can-
cer immunotherapy by designing two-armed molecules
that combine one HIV-recognizing arm with an arm that
can activate effector cells These molecules mainly utilize
two formats: bi-specific T cell engagers (BiTEs) and dual-
affinity re-targeting (DART) molecules. Both formats
have been tested using Fabs of bNAbs as the HIV-
specific arm; however, the measurement for these assays
is killing of infected cells, not neutralization. One study
by Pegu et al. constructed BiTEs using the Fab region of
bNAb VRC07-G54W linked to an anti-human CD3
single-chain variable fragment and found that the BiTE
could activate and lyse latently infected cell lines [54].
Another study constructed DARTs containing an anti-
human CD3 arm and an anti-HIV Fab, but tested Fabs
of four bNAbs and two non-NAbs for their ability to in-
duce CD8 killing of autologous in vitro-infected CD4 T
cells [55]. Interestingly, the authors found that VRC01
and 10E8 DARTs could not mediate very potent killing
whereas the DART containing the PGT121 Fab was very
effective. Furthermore, this DART, in combination with
PKC agonist indolactam, was shown to greatly reduce
the inducible reservoir in the cells of at least one of eight
cART-treated HIV-1-infected individuals tested. This
study highlights the fact that not all bNAbs are able to
effectively bind HIV-1-infected cells, but testing different
combinations of Fabs in different molecular formats will
surely be further examined.

Conclusions and Future Directions

Overall, data in human clinical trials support the observa-
tions from NHP models that infusion of heterologous
bNAbs during chronic infection can exert significant ef-
fects on the virus; however, factors such as potency of
neutralization and baseline VL affect the outcome. Pre-
screening participants for antibody sensitivity presumably
led to increased observed clinical effects (better VL

decline in viremic subjects and longer time to rebound
during ATI) [42]. While the increased efficacy of
3BNC117 as compared to VRC01 could be attributed to
potency or half-life, the reported half-lives of 3BNC117
and VRC01 are not very different [23, 24]. The role of
half-life in antibody efficacy may be tested in the future
through the addition of the half-life increasing “LS” mu-
tations in the antibody Fc region [56]. With respect to
potency, the relationship between clinical effect and pre-
existing virus sensitivity highlights the need to consider
effective antibody concentrations as relative (i.e., a certain
level above in vitro IC80) rather than absolute (need to be
>100 μg/ml), with particular importance on prevalent sub-
types in study populations. The clinical trials described
here were performed in North America with predominant-
ly subtype B-infected individuals. Data to address differ-
ences in subtype sensitivity may result from the current
HVTN Antibody Mediated Protection Trials, which will
infuse VRC01 into US and African populations which
will infuse VRC01 into HIV negative US and African
populations for prevention as opposed to HIV therapy.

The human trials described here have invaluably demon-
strated that virus selection occurs in the presence of heterolo-
gous antibody and emphasize the need for combination anti-
body therapy in the future. It will be important to address
optimizing bNAb combinations for geographic subtype [57]
and analyzing pre-existing resistance to all bNAbs included in
the cocktail. Continued investigation into the potential use of
antibodies, as immunotherapeutics with fewer adverse effects,
is warranted as antibodies offer alternate choices for the treat-
ment of HIV-1-infected children or individuals with severe
reactions to ART. NHP and human trials certainly highlight
the potential effectiveness of bNAbs as therapy for HIV-1
infection and further investigation into the caveats associated
with viral sensitivity and escape should be addressed in cur-
rent and future clinical trials.
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