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Abstract: Benign prostatic hyperplasia (BPH) is the main cause of lower urinary tract symptoms
(LUTS) in aging males. Transurethral resection of the prostate (TURP) surgery is performed by
a cystoscope passing through the urethra and scraping off the prostrate piece by piece through a
cutting loop. Although TURP is a minimally invasive procedure, bleeding is still the most common
complication. Therefore, the evaluation, monitoring, and prevention of interop bleeding during
TURP are very important issues. The main idea of this study is to rank bleeding levels during TURP
surgery from videos. Generally, to judge bleeding level by human eyes from surgery videos is a
difficult task, which requires sufficient experienced urologists. In this study, machine learning-based
ranking algorithms are proposed to efficiently evaluate the ranking of blood levels. Based on the
visual clarity of the surgical field, the four ranking of blood levels, including score 0: excellent; score
1: acceptable; score 2: slightly bad; and 3: bad, were identified by urologists who have sufficient
experience in TURP surgery. The results of extensive experiments show that the revised accuracy can
achieve 90, 89, 90, and 91%, respectively. Particularly, the results reveal that the proposed methods
were capable of classifying the ranking of bleeding level accurately and efficiently reducing the
burden of urologists.

Keywords: ranking of bleeding level classification; ResUnet model; transurethral resection of the
prostate (TURP)

1. Introduction

Benign prostatic hyperplasia (BPH), affecting approximately 210 million men in the
word, is the main cause of lower urinary tract symptoms (LUTS) in aging males [1]. Re-
duced urinary flow and the progression of voiding and storage symptoms are all symptoms
of untreated BPH, which can lead to acute or chronic urinary retention (UR) [2]. The se-
quelae of BPH include decreased urinary flow and progression of voiding and storage
symptoms, eventually resulting in acute or chronic urinary retention (UR). Although
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alpha-1 blockers are used for first-line treatment of BPH in men with LUTS, surgical in-
tervention is an appropriate treatment for patients with moderate-to-severe LUTSs and
for patients who have developed acute UR or other BPH-related complications, according
to the updated guidelines [3]. Meanwhile, TURP remains the most common and effective
treatment for patients who have had a poor response to medication [4]. TURP can also
prevent the need for indwelling or intermittent catheterization in the future [5,6]. Despite
the fact that TURP is a minimally invasive procedure, bleeding is still the most common
complication [7]. Transfusion rates after TURP have been reported as high as 2.9% in a
recent multi-institutional study [8]. Although mass bleeding during TURP is uncommon,
intraoperative bleeding can obscure surgical vision, resulting in prolonged operative time,
capsular perforation, fluid absorption, and the overuse of irrigation fluids, all of which
are risk factors for TURP syndrome and sepsis [9]. Therefore, the evaluation, monitoring,
and prevention of interop bleeding during TURP are very important issues. There are
currently some studies aimed at the evaluation of bleeding during TURP surgery [10], but
these methods have to be operated in the laboratory and cannot be monitored in time. We
have published a study on the use of artificial intelligence to evaluate bleeding during
TURP and proved it feasible and promising [11]. The purpose of this research is to do
further analysis on the basis of our research results. We handed the TURP surgical videos to
experienced urologists and artificial intelligence to evaluate the severity of interop bleeding
and compare the relevance of the scoring results between the two groups.

Recently, deep learning technology has progressed rapidly in the medical field, which
mainly focuses on the tasks of segmentation and classification to assist doctors in diagnos-
ing diseases more accurately and rapidly. The demand for the segmentation technique
plays an important role in the medical field. Segmenting the detailed features in the
complex background is the current requirement of analyzing the medical image. Several
researchers employed the semantic segmentation network to detect the complex features
of the lesion, tumors, skin lesion, etc. in the medical image. Xu et al. [12] proposed the
D-ResUNet network, which combines the structure of ResNet and U-Net to segment the
regions of colonoscopy lesions. The proposed network could improve the prediction of
the shape and edge contour of cell morphologic information. Peng et al. [13] proposed
an end-to-end cascaded deep ResUNet network to segment the liver lesion, which could
increase the prediction results of accuracy and sensitivity. Zhang et al. [14] employed
U-Net model to segment breast tumors in Dynamic Contrast-Enhanced MRI of 2D and 3D
images. Yang et al. [15] proposed a multi-task DCNN technique to segment and classify
skin lesions. Due to the high accuracy and efficiency of the segmentation method that this
study utilized, the ResUNet model by generating the segmentation masks to eliminate the
red light of the cutting loop.

Moreover, classification is also another important method in the application of medical
images. In recent years, deep learning techniques have brought a great breakthrough of
the classification topic in the medical image. It can be attributed to the characteristic of
automatically learning the features in the images. Although deep learning models have
the ability to recognize representative features from a large scale of datasets, the small
amount of datasets leading to poor recognition results of deep learning models poses a
challenge in the task of classification. Due to the small amount of data used in this study
for analysis, it is difficult to obtain higher accuracy of the deep learning models, which
makes them unsuited for medical application. Machine learning techniques have superior
recognition results to overcome the issues of a small number of datasets. Machine learning
techniques, such as Bayesian, SVM, KNN, Random forest, have been successful applied in
the studies of medical applications. Fisher et al. [16] used the Bayesian network to classify
the breast lesions into different pathological categories. Andrés et al. [17] determined
whether the patient had the disease of age-related macular degeneration or not by using
the method of SVM network and digital image processing. Ramteke et al. [18] adopted the
KNN classifier to classify the medical images into normal and abnormal categories, and
the proposed method could successfully test the real CT scan brain images. Ko et al. [19]
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integrated segmentation and random forest model to classify the cell of the nucleus and
cytoplasm into five categories. They also proved that the random forest network has
superior performance on small training datasets. According to the above studies, the high
performance using machine learning in medical images was shown, so this study adopted
the machine learning approaches to solve the problem of classifying the level of blood
loss. By using a step of segmentation technique in contouring the mask on the cutting
loop, and integrating the machine learning approaches of classifying different level of
blood loss, which can meet the requirement of the doctors in diagnosing the quality during
the operation.

This study aims to assess the status of blood loss during TURP surgery. We proposed a
method to extract features of the blood loos from TURP videos by using image segmentation
technology. The proposed method consists of three steps: the first step is to remove the
area of cutting loop; the second step is to extract the area with red color; the final step is
to classify the level of blood loss. Due to the cutting loop producing a red light during
surgery, which is similar to the color of blood, the accuracy of the level of the blood loss
is decreased. To reduce this affect, the area of the cutting loop is removed from videos by
using a semantic segmentation model. The red color region is extracted by YCbCr color
space method. Finally, the machine learning technology is used to classify the level of the
blood loss. Experimental results show that the cutting loop can efficiently be removed.
The accuracy for classifying four ranking of blood levels can achieve 90, 89, 90, and 91%,
respectively. By using the proposed method, it can help urologists to analyze the level of
blood loss.

This paper is organized as follows: Section 2 introduces the methods for segmentation
model and four classification models. Section 3 contains the description of dataset and
detailed experimental results with a comparison of the four classical models discussion.
Section 4 concludes this article.

2. Materials and Methods

The aim of this study was to evaluate the ranking of bleeding levels for TURP surgery.
Thus, state-of-the-art classification models are involved. Continuous bladder irrigation
was used throughout the surgery to ensure a clear view of the surgical field. Packets of
2000 cc normal saline for irrigation were placed at a height of 100 cm above the patient
and the circulating nurses were responsible for ensuring a continuous flow during the
whole procedure to maintain the flushing rate at least 150 dpm (drops per min.). The TURP
surgery is performed by a cystoscope passing through the urethra and scraping off the
prostrate piece by piece through a cutting loop. Moreover, it is easily disturbed to judge
bleeding areas for experienced physicians because a cutting loop with red light yielding
from the surgical cutting loop often appears on the images. Whereas it is difficult to judge
the color space between the blood region and the cutting loop even when an automatic
computer-aided technique is utilized. It implies that cutting loop with red light elimination
is needed. To solve this problem, the segmentation model was used to eliminate the cutting
loop before the level of bleeding classification stage.

In this section, an overview of the procedures is described as follows. First, approxi-
mately 500 pcs surgery frames were collected from each video. Next step, the cutting loop
in the surgery frames was removed through the segmentation model. Furthermore, the
bleeding ratio and the total number of the bleeding regions, extracted through YCbCr color
space, would be estimated until whole the frames were completed for each surgery video.
Finally, the popular classification models, e.g., SVM, KNN, Random Forest, and Naive
Bayes, were used to infer the level of blood loss. The ground truths of four levels were
guided by sufficiently experienced urologists. Finally, the procedure was finished until all
TURP videos were completed. The pipeline proposed is shown in Figure 1.
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Figure 1. The illustration of the flowchart for ranking the bleeding loss level.

2.1. Using Segmentation Model to Eliminate the Cutting Loop

In this study, the architecture of ResUnet model is used to eliminate the pattern of the
cutting loop affecting the accuracy of the classification model. ResUnet model is modified
from U-Net model [20], thereby achieving higher performance than the U-Net model. The
ResUnet model exploits and integrates the U-Net structure and deep residual learning to
the end-to-end model. The structure of ResUNet model consists of three elements, which
are encoder, decoder, and bridge. In the encoder part, input images are used to compress
the compact representation. The decoder is used to decompress the representation to the
pixel-wise classification. The function of a bridge is served as the connection of integrating
the encoder and decoder. All of these three elements adopt the method of residual learning,
instead of pooling operation, making the complex deep network structure able to be trained
more easily. The structure of the ResUnet model is shown in Figure 2.

2.2. Machine Learning Classification Models Overview

In this section, given the total number of bleeding areas and bleeding ratio, what
was collected from the segmentation stage was used as the classification model input. To
assess the ranking of bleeding loss level, the ground truth of four grades, including score 0,
score1, score 2, and score 3, were manually label by sufficiently experienced urologists. The
popular classification models, e.g., SVM, KNN, Random Forest, and Naive Bayes, were
utilized. Specific illustrations are described as follows.

2.2.1. Random Forest

Random forest is one of the most used machine learning algorithms [21]. Random
forest can effectively process small amounts of data, so many researches use random forest
to deal with classification problems. The random forest algorithm is the extension of the
decision tree, which establishes the forest in a random method. There is no correlation
between each decision tree, and these trees are used to vote to determine the prediction
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results. For the classification problem, each tree would provide its own classification choice
in the random forest algorithm. The overall output of the random forest is the result of the
most voted prediction.
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2.2.2. SVM

SVM is a popular supervised learning algorithm of the classifier [22]. Due to it having
greater generalization performance than SVM, it has drawn much attention for classification
applications. The main purpose of the SVM algorithm is to find the hyperplane that
maximizes the margins to separate the categories perfectly. Before finding the hyperplane,
the input data should be mapping from low-dimensional space to high-dimensional space.
To maximize the margin of the hyperplane, the optimal separation of the hyperplane is
shown as Equations (1) and (2).

min∅(w) =
1
2
‖w‖2 + C

[
N

∑
i=1

δi

]
(1)

g(x) = sgn

[
m

∑
i=1

α∗i yiK(xi·x) + b∗
]

(2)

where the pair of (w,b) is defined as the separating hyperplane. C is the regularization
parameter. δi is defined as the slack variable. For the nonlinear hyperplane, the decision
function is given as Equation (2). Where K kernel satisfies the Mercer condition. (xi,yi) are
the training samples. The support vector is defined as αi.
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2.2.3. K-Nearest Neighbor (KNN)

KNN is classic supervised learning of machine learning [23]. Because KNN model
does not have a training stage, it is also called the lazy learning algorithm and has been
widely applied in real applications. The core of the KNN algorithm is to calculate the
distance between the training dataset and the testing sample and choose the nearest
neighbors of the data points to discriminate the category of the target point. In this study,
Euclidean distance is used as the distance function, which is shown as Equation (3).

dist (A, B) =

√
∑m

i=1(xi − yi)
2

m
(3)

where A represented the features vectors of (x1, x2, . . . , xm), B represented the feature
vectors of (y1, y2, . . . , ym). m is the dimensionality of the feature space.

2.2.4. Naïve Bayes

The Naïve Bayes algorithm has been proven an effective method to deal with medical
diagnosis and text classification [24]. Naïve Bayes is a classification method based on
probability and statistics, which calculates the probability value from a given dataset. The
algorithm utilized the concept of Bayes with the condition of independence hypothesis,
which can solve the task of high-dimensional data.

3. Experiment and Results

In this section, the classification and segmentation of the deep learning models pro-
posed in this study are described and investigated in detail. These models were trained
in the Graphics Processing Unit (GPU) embedded with NVIDIA GeForce GTX 1080 Ti for
computational acceleration. The deep learning framework Keras was used together with
TensorFlow, a machine learning backend library.

3.1. Dataset Description

We randomly selected and edited 287 surgical video clips (by ADOBE PREMIERE
PRO CC 2019 v.13.1.5.47 WIN/MAC) from the complete recording videos of 50 different
TURP procedures. Each clip lasted 3 min. The surgical procedures were performed by a
single surgeon, using the Olympus SurgMasterUES-40 bipolar generator and the OES-Pro
bipolar resectoscope (Olympus Europe, Hamburg, Germany). The standard settings of
energy were 200 and 120 W for cutting and coagulation, respectively. The edited videos
were handed over to three urologists of Chang-Gung Memorial Hospital, Linko, Taiwan, to
evaluate the level of interop blood loss of each video clip. The evaluators all have sufficient
experience in TURP surgery, and experience in performing this procedure were 7 years,
9 years, and 15 years, respectively. The three evaluators independently scored each of the
287 surgical video clips based on the visual clarity of the surgical field (score 0: excellent;
score 1: acceptable; score 2: slightly bad; and 3: bad). If the scores given by the 3 evaluators
were exactly identical, the score obtained is the final score for this video clip. If two of the
evaluators gave the same score while the other gave differently, the score given by the two
evaluators was admitted. If the scores given by 3 evaluators were completely different, this
video clip was taken out for re-evaluation and scored again.

3.2. Evaluating for the Segmentation Model

In an attempt to reduce the effect of the cutting loop with red light, the process of
segmentation is a major task in this study. In the training stage, approximately 80 images
were selected as a training dataset for the segmentation model. To evaluate the performance
of the segmentation model, around 30 unseen images with a red light pattern, randomly
collecting from different videos, were taken as a testing dataset. There are a few testing
samples shown in Figure 4. Figure 4a,b present the input image for testing and the bleeding
areas were extracted through YCrCb color space. Figure 4c,d indicate the regions of
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the cutting loop were eliminated via segmentation model and the total numbers of the
bleeding area were revised. The result illustrates that the total number of the bleeding
area was significantly calibrated while cutting loop regions were eliminated, thereby the
correct ranking of bleeding level can be effectively classified properly. Apart from this, the
performance of the ResUnet model is assessed with the indicator of the intersection over
union (IoU) and Dice coefficient (DC). The indicator of IoU and DC are the standard indexes
to evaluate the performance of the segmentation model. Both of these two indicators were
compared with the correct answer of ground truth. The definition of IoU and DC is given
in Equations (4) and (5):

IoU =
Predict ∩ GT
Predict ∪ GT

(4)

DC = 2× |Predict ∩ GT|
|Predict|+ |GT| (5)

Both IoU and DC are used to measure the similarity between the predicted area and
the ground truth of the segmentation model results. The value of IoU is the ratio of the
intersection and the union for the predicted area and the ground truth. The range of the
IoU value is from 0 to 1. The value 0 represents no overlap and the value 1 indicates the
identicalness between the region of prediction area and ground truth. The Dice coefficient
is defined as two times the region of overlap divided by the sum of the predicted area and
the ground truth. The meaning of DC is the same as the IoU value, if the DC value is 1,
the output of segmentation achieves the best result. The results of IoU and Dice coefficient
for ResUnet model is given as Figure 3. The average IoU and Dice coefficient of ResUnet
model are 0.51 and 0.69, respectively. Furthermore, the prediction results of the ResUNet
model are shown in Figure 4, where ResUNet model could mark the region of red light
pattern efficiently. This study also compared the results of the bleeding area, which adopts
the ResUNet model to evaluate whether the red light pattern can be removed or not. This
is because the color of red light is similar to the bleeding that the red light can greatly affect
the level of distinguishing the bleeding area. According to Figure 4 of the bleeding area,
the bleeding area by using ResUNet model can reduce misjudgment so that the red light
disappeared in the bleeding area.
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3.3. Performance of the Classification Models

To evaluate the ranking of bleeding level, the four state-of-art machine learning classi-
fication models, e.g., SVM, KNN, Random Forest, and Naive Bayes, were implemented in
this study. Each ground truth of surgical video was manual label into four grades, including
score 0: excellent, score 1: acceptable, score 2: slightly bad, and 3: bad. In the training
stage, approximately 150 videos were selected as a training dataset for classification models.
Apart from this, 10% of the training dataset was divided into validation datasets and the
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other datasets were used for training dataset. Furthermore, around 137 surgical videos
were used to evaluate the performance of classification models in the testing stage.
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3.3.1. Scatter Plot of Classification Model Results

To grasp the prediction for each surgical video more clearly, the classification results
were visualized. To this end, a qualitative comparison of the four machine learning
models is given to visualize the prediction results of the classifier. More details of the
classifier results are provided in the following section. The scatter plot in the validation
stage and testing stage are shown in Tables 1 and 2. Given total numbers of blending
areas and bleeding ratio, collecting from the segmentation stage, were used as the input
of classification model. The bleeding ratio was taken along the y-axis, and the total
number of the bleeding regions was taken along the x-axis, where the unit represented the
normalization of percentages and pixels, respectively. Each circle pattern indicated the
difference of prostate surgical video. The four colors used to represent four types ranking
of blood levels, where yellow, green, blue, and purple illustrated score 0, score 1, score 2,
and score 3, respectively. The four different decision boundaries were generated through
the different classification models in the training stage. In the validation stage, around
11 videos were classified and placed in the corresponding decision location. Consequently,
the accuracy obtained was 0.55, 0.64, 0.73, and 0.64 via KNN, Naive Bayes, Random
Forest, and SVM, respectively. To analyze the classifier effect on the blood loss dataset,
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the confusion matrix is used to visualize the performance of an algorithm. The confusion
matrix is one of the most commonly utilized methods in the supervised classification task.
It provides more detailed analysis to understand the predictive ability of the classifiers
for each category. The confusion matrix not only can examine the errors being made by
the classifier, but also understand the types of errors of the classifier being discriminated.
In the confusion matrix, the meaning of each column represents the predicted categories,
and each row represents the actual categories. The results reveal that the Random Forest
classifier achieves the most outstanding predictive ability for each category. In addition,
many indicators also can be extended to understand the performance of the classifier in
different aspects through the confusion matrix.

For the prostate surgery prediction, the error would not significantly affect the result
for the urologists so that the slight error was allowable in this work. The prediction of
surgery video was acceptable if it would not be predicted as cross-level. The revised
confusion matrix is shown in Table 2. For example, the point, which was predicted as score
0 or score 2, can be allowed if it belongs to score 1. Thus, the accuracy can be revised as 90,
89, 90, and 91% respectively in a testing stage.

3.3.2. Quantitative Evaluating of Classification Model

To quantify the performance classification model, the popular used indicators are
accuracy, precision, and recall. The definition of accuracy, precision, and recall are shown
in Equations (6)–(8), where the accuracy means the ratio of correctly classified blood loss
among all predicted categories. The precision refers to the corrective proportion among the
total number of predicted blood loss images, and recall represents the incorrect proportion
of classified blood loss images in each category. In Equations (6)–(8), true positive (TP) is
the blood loss images correctly classified for the classifier; true negative (TN) is number
of the blood loss images not correctly classified for the classifier; false positive (FP) is the
number of non-correctly classified of the blood loss images to the correct images; false
negative (FN) is the number of non-correctly classified blood loss images to the non-correct
images. The comparison of the four machine learning classifiers considering before and
after the revised process is given in Table 3.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

3.4. Correlation Coefficient between Ground Truth and Predictions

To demonstrate the elimination of cutting loop is a major task for TURP, the compar-
ison of classification results between the cutting loop pattern reserving or not is shown
in Table 4. In contrast to other classification models, the performance of the Naïve Bayes
model is the most outstanding among all the models. Therefore, the Naive Bayes model is
selected as the classification model. Apart from this, the correlation coefficient is utilized to
evaluate the ranking of bleeding level relationship between ground truth and two system
predictions. The correlation coefficient is used to measure how strong a relationship is
between two variables. The correlation function is shown as Equation (9):

Correlation Coe f f icient =
∑n

i=1(xi − µx)
(
yi − µy

)√
∑n

i=1 (xi − µx)
2(yi − µy

)2
(9)

where µx and µy mean the average of the variable x and y, respectively. The variable,
including the level of bleeding classification using segmentation and non-segmentation
are estimated as the correlation coefficient among the ground-truth dataset. The formulas
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return a value between −1 and 1. A correlation coefficient of 1 indicates a strong positive
relationship. Otherwise, the correlation coefficient of zero means no relationship at all.
The comparison of the correlation coefficient with the segmentation model and without
segmentation model is shown in Table 4. The result shows that the system with the
eliminating cutting loop fits better with the ground truth. The segmentation model can
significantly optimize the ranking of bleeding level classification.

Table 1. Qualitative comparison of the four machine learning models for evaluating the levels of blood loss in the
validation stage.

Model Scatter Plot Confusion Matrix

KNN
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Table 2. Qualitative comparison of the four machine learning models for evaluating the levels of blood loss in the testing
stage.

Model Scatter Plot Confusion Matrix Revised Confusion Matrix
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Diagnostics 2021, 11, x  11 of 14 
 

 

KNN 

 

Naïve 
Bayes 

  

Random 
Forest 

   

SVM 

   

3.3.2. Quantitative Evaluating of Classification Model 
To quantify the performance classification model, the popular used indicators are 

accuracy, precision, and recall. The definition of accuracy, precision, and recall are 
shown in Equations (6)–(8), where the accuracy means the ratio of correctly classified 
blood loss among all predicted categories. The precision refers to the corrective propor-
tion among the total number of predicted blood loss images, and recall represents the 
incorrect proportion of classified blood loss images in each category. In Equations (6)–
(8), true positive (TP) is the blood loss images correctly classified for the classifier; true 
negative (TN) is number of the blood loss images not correctly classified for the classifi-
er; false positive (FP) is the number of non-correctly classified of the blood loss images to 

Diagnostics 2021, 11, x  11 of 14 
 

 

KNN 

 

Naïve 
Bayes 

  

Random 
Forest 

   

SVM 

   

3.3.2. Quantitative Evaluating of Classification Model 
To quantify the performance classification model, the popular used indicators are 

accuracy, precision, and recall. The definition of accuracy, precision, and recall are 
shown in Equations (6)–(8), where the accuracy means the ratio of correctly classified 
blood loss among all predicted categories. The precision refers to the corrective propor-
tion among the total number of predicted blood loss images, and recall represents the 
incorrect proportion of classified blood loss images in each category. In Equations (6)–
(8), true positive (TP) is the blood loss images correctly classified for the classifier; true 
negative (TN) is number of the blood loss images not correctly classified for the classifi-
er; false positive (FP) is the number of non-correctly classified of the blood loss images to 

Naïve
Bayes

Diagnostics 2021, 11, x  11 of 14 
 

 

KNN 

 

Naïve 
Bayes 

  

Random 
Forest 

   

SVM 

   

3.3.2. Quantitative Evaluating of Classification Model 
To quantify the performance classification model, the popular used indicators are 

accuracy, precision, and recall. The definition of accuracy, precision, and recall are 
shown in Equations (6)–(8), where the accuracy means the ratio of correctly classified 
blood loss among all predicted categories. The precision refers to the corrective propor-
tion among the total number of predicted blood loss images, and recall represents the 
incorrect proportion of classified blood loss images in each category. In Equations (6)–
(8), true positive (TP) is the blood loss images correctly classified for the classifier; true 
negative (TN) is number of the blood loss images not correctly classified for the classifi-
er; false positive (FP) is the number of non-correctly classified of the blood loss images to 

Diagnostics 2021, 11, x  11 of 14 
 

 

KNN 

 

Naïve 
Bayes 

  

Random 
Forest 

   

SVM 

   

3.3.2. Quantitative Evaluating of Classification Model 
To quantify the performance classification model, the popular used indicators are 

accuracy, precision, and recall. The definition of accuracy, precision, and recall are 
shown in Equations (6)–(8), where the accuracy means the ratio of correctly classified 
blood loss among all predicted categories. The precision refers to the corrective propor-
tion among the total number of predicted blood loss images, and recall represents the 
incorrect proportion of classified blood loss images in each category. In Equations (6)–
(8), true positive (TP) is the blood loss images correctly classified for the classifier; true 
negative (TN) is number of the blood loss images not correctly classified for the classifi-
er; false positive (FP) is the number of non-correctly classified of the blood loss images to 

Diagnostics 2021, 11, x  11 of 14 
 

 

KNN 

 

Naïve 
Bayes 

  

Random 
Forest 

   

SVM 

   

3.3.2. Quantitative Evaluating of Classification Model 
To quantify the performance classification model, the popular used indicators are 

accuracy, precision, and recall. The definition of accuracy, precision, and recall are 
shown in Equations (6)–(8), where the accuracy means the ratio of correctly classified 
blood loss among all predicted categories. The precision refers to the corrective propor-
tion among the total number of predicted blood loss images, and recall represents the 
incorrect proportion of classified blood loss images in each category. In Equations (6)–
(8), true positive (TP) is the blood loss images correctly classified for the classifier; true 
negative (TN) is number of the blood loss images not correctly classified for the classifi-
er; false positive (FP) is the number of non-correctly classified of the blood loss images to 

Random
Forest

Diagnostics 2021, 11, x  11 of 14 
 

 

KNN 

 

Naïve 
Bayes 

  

Random 
Forest 

   

SVM 

   

3.3.2. Quantitative Evaluating of Classification Model 
To quantify the performance classification model, the popular used indicators are 

accuracy, precision, and recall. The definition of accuracy, precision, and recall are 
shown in Equations (6)–(8), where the accuracy means the ratio of correctly classified 
blood loss among all predicted categories. The precision refers to the corrective propor-
tion among the total number of predicted blood loss images, and recall represents the 
incorrect proportion of classified blood loss images in each category. In Equations (6)–
(8), true positive (TP) is the blood loss images correctly classified for the classifier; true 
negative (TN) is number of the blood loss images not correctly classified for the classifi-
er; false positive (FP) is the number of non-correctly classified of the blood loss images to 

Diagnostics 2021, 11, x  11 of 14 
 

 

KNN 

 

Naïve 
Bayes 

  

Random 
Forest 

   

SVM 

   

3.3.2. Quantitative Evaluating of Classification Model 
To quantify the performance classification model, the popular used indicators are 

accuracy, precision, and recall. The definition of accuracy, precision, and recall are 
shown in Equations (6)–(8), where the accuracy means the ratio of correctly classified 
blood loss among all predicted categories. The precision refers to the corrective propor-
tion among the total number of predicted blood loss images, and recall represents the 
incorrect proportion of classified blood loss images in each category. In Equations (6)–
(8), true positive (TP) is the blood loss images correctly classified for the classifier; true 
negative (TN) is number of the blood loss images not correctly classified for the classifi-
er; false positive (FP) is the number of non-correctly classified of the blood loss images to 

Diagnostics 2021, 11, x  11 of 14 
 

 

KNN 

 

Naïve 
Bayes 

  

Random 
Forest 

   

SVM 

   

3.3.2. Quantitative Evaluating of Classification Model 
To quantify the performance classification model, the popular used indicators are 

accuracy, precision, and recall. The definition of accuracy, precision, and recall are 
shown in Equations (6)–(8), where the accuracy means the ratio of correctly classified 
blood loss among all predicted categories. The precision refers to the corrective propor-
tion among the total number of predicted blood loss images, and recall represents the 
incorrect proportion of classified blood loss images in each category. In Equations (6)–
(8), true positive (TP) is the blood loss images correctly classified for the classifier; true 
negative (TN) is number of the blood loss images not correctly classified for the classifi-
er; false positive (FP) is the number of non-correctly classified of the blood loss images to 

SVM

Diagnostics 2021, 11, x  11 of 14 
 

 

KNN 

 

Naïve 
Bayes 

  

Random 
Forest 

   

SVM 

   

3.3.2. Quantitative Evaluating of Classification Model 
To quantify the performance classification model, the popular used indicators are 

accuracy, precision, and recall. The definition of accuracy, precision, and recall are 
shown in Equations (6)–(8), where the accuracy means the ratio of correctly classified 
blood loss among all predicted categories. The precision refers to the corrective propor-
tion among the total number of predicted blood loss images, and recall represents the 
incorrect proportion of classified blood loss images in each category. In Equations (6)–
(8), true positive (TP) is the blood loss images correctly classified for the classifier; true 
negative (TN) is number of the blood loss images not correctly classified for the classifi-
er; false positive (FP) is the number of non-correctly classified of the blood loss images to 

Diagnostics 2021, 11, x  11 of 14 
 

 

KNN 

 

Naïve 
Bayes 

  

Random 
Forest 

   

SVM 

   

3.3.2. Quantitative Evaluating of Classification Model 
To quantify the performance classification model, the popular used indicators are 

accuracy, precision, and recall. The definition of accuracy, precision, and recall are 
shown in Equations (6)–(8), where the accuracy means the ratio of correctly classified 
blood loss among all predicted categories. The precision refers to the corrective propor-
tion among the total number of predicted blood loss images, and recall represents the 
incorrect proportion of classified blood loss images in each category. In Equations (6)–
(8), true positive (TP) is the blood loss images correctly classified for the classifier; true 
negative (TN) is number of the blood loss images not correctly classified for the classifi-
er; false positive (FP) is the number of non-correctly classified of the blood loss images to 

Diagnostics 2021, 11, x  11 of 14 
 

 

KNN 

 

Naïve 
Bayes 

  

Random 
Forest 

   

SVM 

   

3.3.2. Quantitative Evaluating of Classification Model 
To quantify the performance classification model, the popular used indicators are 

accuracy, precision, and recall. The definition of accuracy, precision, and recall are 
shown in Equations (6)–(8), where the accuracy means the ratio of correctly classified 
blood loss among all predicted categories. The precision refers to the corrective propor-
tion among the total number of predicted blood loss images, and recall represents the 
incorrect proportion of classified blood loss images in each category. In Equations (6)–
(8), true positive (TP) is the blood loss images correctly classified for the classifier; true 
negative (TN) is number of the blood loss images not correctly classified for the classifi-
er; false positive (FP) is the number of non-correctly classified of the blood loss images to 



Diagnostics 2021, 11, 1767 12 of 13

Table 3. The comparison of the four machine learning classifiers results between before and after
being revised.

Model
Before Being Revised Revised

Accuracy Precision Recall Accuracy Precision Recall

KNN 0.39 0.35 0.40 0.90 0.85 0.89
Naïve Bayes 0.51 0.48 0.53 0.89 0.85 0.90

Random Forest 0.47 0.50 0.47 0.90 0.86 0.92
SVM 0.47 0.46 0.48 0.91 0.87 0.91

Table 4. The comparison of the correlation coefficient with the segmentation model and without
segmentation model.

With Segmentation Model Without Segmentation Model

KNN 0.589 0.583
Naive Bayes 0.619 0.605

Random Forest 0.620 0.617
SVM 0.601 0.596

4. Conclusions

With the aim of assessing the ranking of bleeding level, the automated ranking of the
bleeding level classification system for TURP surgery is proposed in this work. To avoid
being disturbed by the red light easily, yielding from the surgical cutting loop during the
ranking of bleeding level classification, the ResUNet model was utilized to eliminate the
cutting loop. The experiment indicates the correlation value would be more fit the manual
label by sufficient experienced urologists, while the segmentation model was implemented.
Particularly, the four state-of-art classification models were utilized to assess the ranking
of bleeding level. Considering the slight error allowable from the urologists, the revised
accuracy of the four classification models can achieve 90, 89, 90, and 91%, respectively. More
generally, the result demonstrates that the proposed methods have the ability to classify
the ranking of bleeding level accurately and efficiently reduce the burden of urologists. We
believe that our research has considerable potential because this method can assist in the
performance assessment for surgical trainees of TURP. On the other hand, a surgical safety
monitoring system can also be developed in the future based on this method to warn the
surgeon when severe bleeding occurs during the operation to protect the safety of patients.

Author Contributions: J.-W.C. wrote the paper, implemented the algorithms, and performed the
experiments; W.-J.L. wrote the paper, implemented the algorithms, and performed the experiments;
C.-L.H. conceived, designed the algorithms and experiments, and revised the paper; C.-P.H. provided
resources, performed the experiments, and verified the videos of bleeding; C.-Y.T. revised the paper.
C.-Y.L. designed the algorithm and revised paper. Others verified the experimental results. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by the Ministry of Science and Technology under the grants
MOST 108-2221-E-010-013-MY3 and Veterans General Hospitals and University System of Taiwan
Joint Research Program (VGHUST110AC-D703).

Institutional Review Board Statement: This study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of Chang Gung Medical
Foundation (IRB No. 201801976B0; 2 January 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data are not publicly available.

Conflicts of Interest: The authors declare no conflict of interest.



Diagnostics 2021, 11, 1767 13 of 13

References
1. Verhamme, K.; Dieleman, J.; Bleumink, G.; Van der Lei, J.; Sturkenboom, M.; Panel, T.P.E.E. Incidence and prevalence of lower

urinary tract symptoms suggestive of benign prostatic hyperplasia in primary care—The Triumph project. Eur. Urol. 2002, 42,
323–328. [CrossRef]

2. Jacobsen, S.J.; Jacobson, D.J.; Girman, C.J.; Roberts, R.O.; Rhodes, T.; Guess, H.A.; Lieber, M.M. Natural history of prostatism:
Risk factors for acute urinary retention. J. Urol. 1997, 158, 481–487. [CrossRef]

3. Davidian, M.H. Guidelines for the treatment of benign prostatic hyperplasia. US Pharm. 2016, 41, 36–40.
4. Mayer, E.K.; Kroeze, S.G.; Chopra, S.; Bottle, A.; Patel, A. Examining the ‘gold standard’: A comparative critical analysis of

three consecutive decades of monopolar transurethral resection of the prostate (TURP) outcomes. BJU Int. 2012, 110, 1595–1601.
[CrossRef] [PubMed]

5. Ghalayini, I.F.; Al-Ghazo, M.A.; Pickard, R.S. A prospective randomized trial comparing transurethral prostatic resection and
clean intermittent self-catheterization in men with chronic urinary retention. BJU Int. 2005, 96, 93–97. [CrossRef] [PubMed]

6. Gujral, S.; Abrams, P.; Donovan, J.; Neal, D.; Brookes, S.; Chacko, K.; Wright, M.; Timoney, A.; Peters, T. A prospective randomized
trial comparing transurethral resection of the prostate and laser therapy in men with chronic urinary retention: The CLasP study.
J. Urol. 2000, 164, 59–64. [CrossRef]

7. Mebust, W.; Holtgrewe, H.; Cockett, A.; Peters, P.; Committee, W. Transurethral prostatectomy: Immediate and postoperative
complications. A cooperative study of 13 participating institutions evaluating 3885 patients. J. Urol. 2002, 167, 999–1003.
[CrossRef]

8. Reich, O.; Gratzke, C.; Bachmann, A.; Seitz, M.; Schlenker, B.; Hermanek, P.; Lack, N.; Stief, C.G.; Urology Section of the Bavarian
Working Group for Quality Assurance. Morbidity, mortality and early outcome of transurethral resection of the prostate: A
prospective multicenter evaluation of 10,654 patients. J. Urol. 2008, 180, 246–249. [CrossRef] [PubMed]

9. Kavanagh, L.E.; Jack, G.S.; Lawrentschuk, N. Prevention and management of TURP-related hemorrhage. Nat. Rev. Urol. 2011, 8,
504–514. [CrossRef] [PubMed]

10. Yuan, X.; Yu, W.; Wu, R.; Li, L.; He, F. A Prospective Comparison of Three Strategies for Evaluating Blood Loss in Transurethral
Resection of the Prostate. BioMed Res. Int. 2021, 2021, 8875380. [CrossRef] [PubMed]

11. Chen, J.-W.; Lin, W.-J.; Lin, C.-Y.; Hung, C.-L.; Hou, C.-P.; Cho, C.-C.; Young, H.-T.; Tang, C.-Y. Automated Classification of Blood
Loss from Transurethral Resection of the Prostate Surgery Videos Using Deep Learning Technique. Appl. Sci. 2020, 10, 4908.
[CrossRef]

12. Xu, W.; Liu, H.; Wang, X.; Ouyang, H.; Qian, Y. CoUNet: An End-to-End Colonoscopy Lesion Image Segmentation and
Classification Framework. In Proceedings of the 2020 The 4th International Conference on Video and Image Processing, Xi’an,
China, 25–27 December 2020; pp. 81–87.

13. Peng, K.; Fang, B.; Zhou, M. Cascaded Deeply Supervised Convolutional Networks for Liver Lesion Segmentation. Int. J. Pattern
Recognit. Artif. Intell. 2021, 35, 2152014. [CrossRef]

14. Zhang, L.; Luo, Z.; Chai, R.; Arefan, D.; Sumkin, J.; Wu, S. Deep-learning method for tumor segmentation in breast DCE-MRI. In
Proceedings of the Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications, San Diego, CA, USA,
17–18 February 2019; p. 109540F.

15. Yang, X.; Zeng, Z.; Yeo, S.Y.; Tan, C.; Tey, H.L.; Su, Y. A novel multi-task deep learning model for skin lesion segmentation and
classification. arXiv 2017, arXiv:1703.01025.

16. Fischer, E.; Lo, J.; Markey, M. Bayesian networks of BI-RADS/spl trade/descriptors for breast lesion classification. In Proceedings
of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA,
1–5 September 2004; pp. 3031–3034.

17. García-Floriano, A.; Ferreira-Santiago, Á.; Camacho-Nieto, O.; Yáñez-Márquez, C. A machine learning approach to medical image
classification: Detecting age-related macular degeneration in fundus images. Comput. Electr. Eng. 2019, 75, 218–229. [CrossRef]

18. Ramteke, R.; Monali, K.Y. Automatic medical image classification and abnormality detection using k-nearest neighbour. Int. J.
Adv. Comput. Res. 2012, 2, 190.

19. Ko, B.; Gim, J.; Nam, J. Cell image classification based on ensemble features and random forest. Electron. Lett. 2011, 47, 638–639.
[CrossRef]

20. Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Johansen, D.; De Lange, T.; Halvorsen, P.; Johansen, H.D. Resunet++: An advanced
architecture for medical image segmentation. In Proceedings of the 2019 IEEE International Symposium on Multimedia (ISM),
San Diego, CA, USA, 9–11 December 2019; pp. 2225–2255.

21. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [CrossRef]
22. Xue-Wu, Z.; Yan-Qiong, D.; Yan-Yun, L.; Ai-Ye, S.; Rui-Yu, L. A vision inspection system for the surface defects of strongly

reflected metal based on multi-class SVM. Expert Syst. Appl. 2011, 38, 5930–5939. [CrossRef]
23. Hu, L.-Y.; Huang, M.-W.; Ke, S.-W.; Tsai, C.-F. The distance function effect on k-nearest neighbor classification for medical datasets.

SpringerPlus 2016, 5, 1–9. [CrossRef] [PubMed]
24. Lazar, I.; Hajdu, A. Retinal microaneurysm detection through local rotating cross-section profile analysis. IEEE Trans. Med.

Imaging 2012, 32, 400–407. [CrossRef] [PubMed]

http://doi.org/10.1016/S0302-2838(02)00354-8
http://doi.org/10.1016/S0022-5347(01)64508-7
http://doi.org/10.1111/j.1464-410X.2012.11119.x
http://www.ncbi.nlm.nih.gov/pubmed/22540956
http://doi.org/10.1111/j.1464-410X.2005.05574.x
http://www.ncbi.nlm.nih.gov/pubmed/15963128
http://doi.org/10.1016/S0022-5347(05)67449-6
http://doi.org/10.1016/S0022-5347(02)80323-8
http://doi.org/10.1016/j.juro.2008.03.058
http://www.ncbi.nlm.nih.gov/pubmed/18499179
http://doi.org/10.1038/nrurol.2011.106
http://www.ncbi.nlm.nih.gov/pubmed/21844906
http://doi.org/10.1155/2021/8875380
http://www.ncbi.nlm.nih.gov/pubmed/33880379
http://doi.org/10.3390/app10144908
http://doi.org/10.1142/S0218001421520145
http://doi.org/10.1016/j.compeleceng.2017.11.008
http://doi.org/10.1049/el.2011.0831
http://doi.org/10.1080/01431160412331269698
http://doi.org/10.1016/j.eswa.2010.11.030
http://doi.org/10.1186/s40064-016-2941-7
http://www.ncbi.nlm.nih.gov/pubmed/27547678
http://doi.org/10.1109/TMI.2012.2228665
http://www.ncbi.nlm.nih.gov/pubmed/23192523

	Introduction 
	Materials and Methods 
	Using Segmentation Model to Eliminate the Cutting Loop 
	Machine Learning Classification Models Overview 
	Random Forest 
	SVM 
	K-Nearest Neighbor (KNN) 
	Naïve Bayes 


	Experiment and Results 
	Dataset Description 
	Evaluating for the Segmentation Model 
	Performance of the Classification Models 
	Scatter Plot of Classification Model Results 
	Quantitative Evaluating of Classification Model 

	Correlation Coefficient between Ground Truth and Predictions 

	Conclusions 
	References

