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Error margin analysis for feature gene extraction
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Abstract

Background: Feature gene extraction is a fundamental issue in microarray-based biomarker discovery. It is
normally treated as an optimization problem of finding the best predictive feature genes that can effectively and
stably discriminate distinct types of disease conditions, e.g. tumors and normals. Since gene microarray data
normally involves thousands of genes at, tens or hundreds of samples, the gene extraction process may fall into
local optimums if the gene set is optimized according to the maximization of classification accuracy of the
classifier built from it.

Results: In this paper, we propose a novel gene extraction method of error margin analysis to optimize the feature
genes. The proposed algorithm has been tested upon one synthetic dataset and two real microarray datasets.
Meanwhile, it has been compared with five existing gene extraction algorithms on each dataset. On the synthetic
dataset, the results show that the feature set extracted by our algorithm is the closest to the actual gene set. For
the two real datasets, our algorithm is superior in terms of balancing the size and the validation accuracy of the
resultant gene set when comparing to other algorithms.

Conclusion: Because of its distinct features, error margin analysis method can stably extract the relevant feature
genes from microarray data for high-performance classification.

Background
Gene expression data commonly involve thousands of
genes at, tens or hundreds of samples. In order to
reduce the computation cost and complexity of the clas-
sification, feature extraction on gene expression pattern
is necessary. The objective of feature gene extraction
process is to select the gene set that can be used to
effectively and stably discriminate distinct types of dis-
ease statuses, e.g. tumors and normals.
According to the terminology proposed in [1], one of

the major approaches available in feature selection is
filter model. It uses statistical techniques over the
training patterns to “filter out” irrelevant features. Yet
the “filtering” process can be further divided to for-
ward selection and backward elimination. In forward
selection [2], variables are progressively incorporated
into larger and larger subsets, whereas in backward
elimination, one starts with the set of all variables and
progressively eliminates the least relevant ones. In the
field of bioinformatics, there is a belief that the class
of a gene expression pattern, either normal or

cancerous, correlates to the amount of changes in
expression levels of feature genes. Thus, inversely, the
gene level difference between normal-class patterns
and cancer-class patterns is a promising guidance to
identify feature gene. The p-value in t-test between
normal-class and cancer-class patterns is a more reli-
able guidance as it considers not only the level differ-
ence but also the significance of the difference. In [3],
a gene is regarded as feature if the corresponding p-
value is higher than a pre-determined cutoff value. Cao
et al. [4] defined the relevance of a gene as the sensi-
tivity of the output to the inputs in terms of the partial
derivative. Guyon et al. in [5] defined the relevance of
a gene in terms of its contribution to the cost function
in Support Vector Machine (SVM). The corresponding
gene ranking method names Recurrsive Feature Elimi-
nation (RFE). Several modifications on RFE, such as
SQRT-RFE and Entropy-based RFE [6], were proposed
to speed up the rank list construction process. Since
the importance of variables is not assessed in the con-
text of which other variables are not yet included,
weaker subsets found by forward selection. Backward
elimination method may outsmart it by eliminating the
least promising variables and meanwhile providing the
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best classification from dependent variables (the vari-
ables that together perform best classification).
Wrapper is another approach to feature gene selec-

tion. In this approach, a feature gene set is found by
optimizing certain measure quantities. Examples of
these quantities include cross-validation [7] and boot-
strap [8]. Shevade and Keerthi in [9] extracted feature
gene by optimizing a SVM-liked energy function. Zhu
et al. [10] presented a Markov blanket-embedded
genetic algorithm (MBEGA) for gene selection problem.
They used memetic operators to add or delete features
(or genes) from a Genetic Algorithm (GA) solution in
order to speed-up the GA convergence. Hong and Cho
[11] enhanced the population divergence of a GA-based
wrapper model by explicit fitness sharing. They also
modified the representation of chromosome in GA to
suit for large scale feature selection. Li et al. [12] pre-
sented a statistical approach for feature gene selection.
Many subsets of genes that can well classify the training
samples are identified; using GA, and the most fre-
quently appeared genes in the subsets are then pre-
sumed as feature genes. Raymer et al. [13] reported a
feature extraction algorithm to which feature selection,
feature extraction, and classifier training are performed
simultaneously, using a GA with the objective function
involving training accuracy and the number of feature
genes. Huerta et al. [14] suggested combining GA with
SVM for the classification of microarray data. GA was
used to evolve gene subsets, whereas SVM was used to
evaluate the fitness values of the gene subsets in terms
of classification accuracy. Shen et. al. in [15] reported a
similar feature gene selection algorithm. It combined a
discrete Particle Swarm Optimization (PSO) for search
and SVM for fitness evaluation.
Gilad-Bachrach et al. [16] introduced a margin based

feature selection criterion and applied it to measure the
quality of a gene subset. A gene subset is said as optimal if
the corresponding classifier has maximum error margin.
Most of the proposed feature selection algorithms

[9-15] presume that the performance of feature gene set
is associated with the training accuracy of the classifier
built from it. However, since the number of training
patterns related to the pattern dimension is small, train-
ing accuracy is not a representative performance mea-
sure. Alternatively, validation accuracy is a more
objective and reliable performance measure. Though
validation accuracy is never known in the training pro-
cess, one can divide a training set of n samples into m
non-overlapping subsets of roughly equal size; m - 1 of
these subsets are combined as new training set and the
remaining 1 subset is as validation set. The correspond-
ing error is so-called cross-validated (CV) error. As
noted by Ambroise and McLachlan [17], CV error may
introduce a bias to the feature gene selection process. In

addition, they proposed to tackle it (i.e. obtain an almost
unbiased estimate) by a two-layered cross-validation
approach. On the other hand, the validation accuracy
relates to the generalization of a classifier whilst the
generalization of a classifier is commonly measured
from its error margin. It is reasonable to hypothesize
that validation accuracy is proportional to the width of
error margin. And it is worth to represent the perfor-
mance of a feature gene set by its error margin.
In this paper, we proposed a novel feature gene extrac-

tion scheme, namely Error-Margin Analysis (EMA).
EMA, as the name suggests, equates the performance of
a feature gene set to error margin instead of classification
accuracy. EMA starts from building an error margin
curve representing error margin versus the number of
mostly relevant genes. Afterwards, an analysis on the
curve is performed to identify the optimal feature gene
set. The proposed approach differs from [5] in the senses
that the selection criterion is margin-based and para-
meter-less. It is also in contrast to [16], in which the fea-
ture genes are preferred to solely maximizing the error
margin. Though [18] considers error margin in measur-
ing the performance of a feature gene set, proper selec-
tions of penalty coefficient and the size value are critical.
In summary, EMA has an advantage over [7-15] in mea-
suring the performance of a feature gene set. Addition-
ally, it is superior to [3-5] in the sense that the number of
the feature genes extracted EMA is parameter-indepen-
dent, whereas others are according to parameter settings.
EMA is based on two assumptions. It is assumes that

1) genes are independently expressed; 2) the distribu-
tions of gene expression are in Gaussian.
The rest of this paper is organized as follows: We first

present an analysis on the relation between error margin
and the number of feature genes. Afterwards, we pro-
posed a novel feature gene extraction algorithm based
on the error margin analysis. The experimental results
are then reported and conclusions are drawn.

Results
Datasets
In this section, the performance of EMA is evaluated on
three datasets:
i. Synthetic dataset
The Synthetic dataset acts as a control to check
whether an algorithm underestimates or over-estimates
the number of feature genes. It is assumed that the fea-
ture genes are distributed in Gaussian and the non-fea-
ture genes are uniformly and randomly distributed.
Given an artificial pattern x = [x1, x2,..., x500] with the
class y, the distribution pi(x) of the gene xi is shown in
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suggested that an ideal feature selection algorithm
should extract as many desired feature genes from the
dataset as possible, in order to maximize the amount of
possible pathways to the cancer diagnosis. Thus, the
result on the Synthetic dataset indicates the ability of
which the feature genes extracted by an algorithm cover
the actual feature gene set. In this data set, each artifi-
cial pattern consists of 500 genes; the first 20 genes are
assigned as desired feature genes and the remaining 480
genes are assigned as non-feature genes.
ii. Gastric cancer dataset [19]
This dataset shows expression levels of 123 samples
(Osaka University Medical School Hospital). A hundred
and twelve of them are normal-class patterns and the
remaining twelve patterns are cancerous-class. It is
available at the link: http://lifesciencedb.jp/cged/
iii. Oral cancer multiple datasets
We have available four microarray datasets; the first was
measured with HG-U133 Plus2 and it has 11 normal
and 50 cancerous samples, the second is from a HG-
U133A and it has 22 normal and 22 cancerous samples,
the third set comes from a HG-Focus and has only 22
cancerous samples and the fourth has 12 normal and 26
cancerous samples and measured also with HG-U133
Plus2. All the chips are manufactured by Affymetrix
(Santa Clara, CA).
Algorithms for Comparison
To evaluate the impact of EMA, we compare its perfor-
mance with five algorithms. The designs and settings of
EMA and the algorithms for comparison are summar-
ized below.
Test algorithm 1 - SVM with Feature Gene Extraction by
Error Margin Analysis (SVM-ema)
SVM-ema estimates the number of feature genes f0
through the analysis on error margin. Given the gene
relevance list, SVM-ema constructs the corresponding
error margin curve and f0 is estimated as the critical
point of the curve.
Test algorithm 2 - SVM with t-test based feature gene
extraction (SVM-ttt)
In SVM-ttt [3], the relevance of a gene is measured on
its p-value in t-test. A gene is indicated as a feature if
its relevance is higher than a given cutoff p-value.

Test algorithm 3- SVM with Recursive Feature Elimination
(SVM-rfe)
The gene relevance list is computed according to recur-
sive feature elimination (RFE) [5]. At each iteration, RFE
figures out and removes the least contributed gene from
a set of considered genes. The iteration is repeated until
all genes are removed from the set. The relevance of a
gene is represented as the iteration index which it is
removed. The curve representing the cross-validation
error versus the number of mostly relevant features f is
fitted by an exponential function g(f). The optimal num-
ber of feature genes is obtained as the value to which
the change of g(f) is just smaller than threshold.
Test algorithm 4 - SVM with Margin-based Selection
Criterion (SVM-msc)
SVM-msc [16] performs selection by search the feature
gene set that maximizing a margin-based criterion.
Test algorithm 5 - Bayesian Logistic Regression (BLogReg)
BLogReg [20] is a gene selection algorithm based on
sparse logistic regression (SLogReg). The regularization
parameter arising in SLogReg is eliminated, via Bayesian
marginalization, without a significant effect on predictive
performance. The source code of BLogReg is taken from
[21].
Test algorithm 6 - STW feature selection using generalized
logistic loss (STW)
STW [22] was implemented exactly the same as SVM-
RFE except that the hinge loss in SVM-RFE is replaced
with the generalized logistic loss.
For SVM-ema, the parametric model G(.) for the esti-

mation of LOOErM curve is chosen as second-order
polynomial. The cutoff p-value of SVM-ttt is assigned as
0.005. For SVM-rfe, as suggested in [6], the threshold
for obtaining the optimal number of feature is 0.0001
and the error is based on 3-fold experimental structure.
The results of BLogReg and STW are obtained under
the default parameters assigned in the corresponding
source codes.

Experiment Settings
For the Synthetic dataset, five hundreds patterns are
generated in each run. Twenty five of them form train-
ing pattern set and the remaining four hundreds and
seventy-five patterns form validation pattern set for per-
formance measure. In each of the pattern sets, half of
the patterns belong to negative class and another half
belong to positive class.
For the Gastric cancer dataset, suppose n- is the

number of normal-class patterns and n+ is number of
cancer-class patterns in T, and r is the sampling rate,
we randomly pick rn+ positive-class patterns and rn-
negative-class patterns in T to form the training set.
The remaining (1-r)n+ positive-class patterns and the

Table 1 The distribution of gene expressions in the
synthetic dataset
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remaining (1-r)n- negative-class patterns in T forms the
validation set. The simulation is repeated with the sam-
pling rate rising from 0.3 to 0.6.
For the Oral Cancer multiple datasets, the first three

datasets form a superset O. Suppose n- is the number of
normal-class patterns and n+ is number of cancer-class
patterns in O, and r is the sampling rate, we randomly
pick rn+ positive-class patterns and rn- negative-class
patterns in O to form the training set. Meanwhile, the
fourth dataset is regarded as the validation set. The cor-
responding accuracy represents the generalization ability
of a test algorithm on the oral cancer classification pro-
blem. The simulation is repeated with the sampling rate
rising from 0.1 to 0.7.
To provide a fair and repeatable comparison amongst

the test algorithms, the performance of each test algo-
rithm on a particular simulation is evaluated based on
statistics obtained from 100 independent runs. For the
Synthetic dataset, the patterns in both training set and
validation set are randomly generated for each run. For
the Gastric cancer dataset, the substituted random
number is regenerated for each particular invalid expres-
sion in each pattern. For Oral cancer multiple datasets,
the patterns in the training set are randomly re-picked
for each run. All test algorithms are implemented in
MATLAB language.

Simulation Results
Synthetic dataset
Table 2 lists the statistics of the numbers of the feature
genes extracted by the test algorithms. Table 3 lists the
statistics of the validation accuracies of the test algo-
rithms. The values inside blankets represent the aver-
aged number of actual feature genes (i.e. the 20
predefined feature genes) extracted by the correspond-
ing algorithms. The averaged numbers of feature genes
extracted by SVM-ema, SVM-ttt, SVM-rfe, SVM-msc,
BLogReg and STW are 17.9, 43.27, 65.38, 448, 2.45 and
45.42 respectively. Though BLogReg extracted the smal-
lest amount of feature genes, it ranks the last on the
accuracy measure. The averaged accuracies of BLogReg
and STW are 50% and 93.79% respectively; the

remaining algorithms are with 100% averaged accura-
cies. On average 16.63 out 17.9 genes extracted by
SVM-ema are actual feature genes. The averaged num-
ber of actual feature genes extracted by SVM-ttt, SVM-
rfe, SVM-msc, BLogReg and STW are 19, 19, 18.93, 1
and 8.51 respectively.

Gastric cancer dataset
Figure 1 shows the averaged numbers of feature genes
extracted by the test algorithms against the sampling
rate r ranging from 0.3 to 0.6. The y-axis of the figure is
in log scale. The results of SVM-ema, SVM-ttt, SVM-
rfe, SVM-mcs, BLogReg and STW are represented by
the lines with the markers ‘O’, ‘∇’, ‘▖’, ‘*’, ‘◊’ and ‘Δ’
respectively. Seen from the figure, as the sampling rate
increases, the number of feature genes fttt extracted by
SVM-ttt increases from 263.1 at r = 0.3 to 458.9 at r =
0.6, which is approximately linearly proportional to r.
For SVM-rfe, the number of extracted feature genes frfe
slightly increases from 79.5 at r = 0.3 to 84.7 at r = 0.6.
For SVM-ema, the number of feature genes fema is
insensitive to r. It is in the range [51.4, 55.8]. For SVM-
mcs, the number of extracted feature genes fmcs is again
insensitive to r but constantly stay at a large value ran-
ging in [2002.7, 2033]. In contrary to SVM-mcs, BLo-
gReg constantly selects small set of feature genes; the
corresponding number of extracted feature genes fBLR is
in a small range from 2 to 3. Interestingly, the number
of extracted feature gene fSTW by STW is inversely pro-
portional to the sampling rate. The value of fSTW
decreases from 6.85 at r = 0.3 to 2.83 at r = 0.6.
Figure 2 shows the averaged validation accuracy of the

test algorithms against the sampling rate r varying from
0.3 to 0.6. The results of the test algorithms are repre-
sented by the lines with the same markers in Figure 1.
Seen from the figure, SVM-ema, SVM-ttt and SVM-rfe
constantly and accurately classify the validation set, the
corresponding accuracies range from 99.34% to 100.0%.
The validation accuracy of SVM-mcs is just slightly
lower than those of the above three algorithms. It ranges
from 96.8% at r = 0.3 to 99.19% at r = 0.6. On the other
hand, the validation accuracies of BLogReg and STW
decrease along with r. The accuracies of BLogReg and

Table 2 The statistics of the numbers of feature genes
extracted by the test algorithms: Synthetic dataset

Mean Std. Median Min. Max.

SVM-ema 17.90 (16.63) 1.40 18.00 15.00 23.00

SVM-ttt 43.27 (19.00) 4.72 43.00 31.00 56.00

SVM-rfe 65.38 (19.00) 4.62 66.00 50.00 75.00

SVM-mcs 448.01 (18.93) 36.92 455.50 356.00 500.00

BLogReg 2.45 (1.00) 0.56 2.00 2.00 4.00

STW 45.42 (8.51) 6.24 47.00 16.00 48.00

The values inside blankets represent the averaged number of actual feature
genes extracted by the corresponding algorithms.

Table 3 The statistics of the validation accuracies of the
test algorithms: Synthetic dataset

Mean Std. Median Min. Max.

SVM-ema 100.00% 0.00% 100.00% 100.00% 100.00%

SVM-ttt 100.00% 0.00% 100.00% 100.00% 100.00%

SVM-rfe 100.00% 0.00% 100.00% 100.00% 100.00%

SVM-mcs 100.00% 0.00% 100.00% 100.00% 100.00%

BLogReg 50.00% 0.02% 50.00% 50.00% 50.22%

STW 93.79% 7.71% 97.56% 64.44% 100.00%
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Figure 1 The number of feature genes extracted from Gastric cancer dataset by test algorithms.

Figure 2 The validation accuracies evaluated on Gastric cancer dataset by test algorithms.
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STW are in the ranges [85.96%, 87.14%] and [87.23%,
89.88%] respectively.

Oral cancer multiple datasets
Figure 3 shows the averaged numbers of feature genes
extracted by the test algorithms against the sampling
rate r ranging from 0.1 to 0.7. The y-axis of the figure is
again in log scale. Similar to Figure 1 and Figure 2, the
results of SVM-ema, SVM-ttt, SVM-rfe, SVM-mcs, BLo-
gReg and STW are represented by the lines with the
markers ‘O’, ‘∇’, ‘▖’, ‘*’, ‘◊’ and ‘Δ’ respectively. Seen
from the figure, for SVM-ema, SVM-ttt, SVM-rfe and
SVM-mcs, the influences of the sampling rate to the
number of feature genes are similar to those on the
Gastric cancer dataset: As the sampling rate increases,
the value of fttt linearly increases from 890.9 at r = 0.1
to 2826.3 at r = 0.7; the value of frfe is insensitive to r
and is in the range [81.5, 88.4]; the value of fema slightly
increases from 36.5 at r = 0.1 to 56.48 at r = 0.7; the
value of fmcs is again insensitive to r but constantly stay
at large values ranging in [5367, 5458]. Comparing
between SVM-ema and SVM-rfe, though the grow rate
of fema is large than that of frfe, fema is consistently lower
than frfe. And it is also significantly lower than fttt and
fmcs. For BLogReg, the number of extracted feature
genes is yet in low range from 2.37 to 11.53. The value
of fSTW increases from 5.31 at r = 0.1 to 34.6 at r = 0.7.
Figure 4 shows the averaged validation accuracy of the

test algorithms against the sampling rate r varying from

0.1 to 0.7. The results are represented by the lines with
the same markers in Figure 3. Seen from the figure,
with the exception of BLogReg and STW, the validation
accuracies of the test algorithms slightly increase along
with r. The range of the accuracy of SVM-ttt is [83.32%,
91.58%]. For SVM-ema, its accuracy ranges from 80.5%
to 88.6%. The validation accuracies of SVM-rfe and
SVM-mcs are in the ranges [81.9%, 86.0%] and [87.7%,
92.26%] respectively. For BLogReg, its validation accu-
racy is insensitive to the sampling rate; the accuracy
keeps at a low value ranging from 68.42% to 68.53%. In
contrary to BLogReg, the validation of accuracy of STW
is much affected by the size of training set. When the
value of r is in between of 0.3 and 0.4, the correspond-
ing accuracy is at a relatively low value ranging from
[69.95%, 85.11%]. As the value of r reaches 0.6, the
accuracy of STW increases to the same of SVM-rfe but
is yet lower than that of SVM-ema.

Discussion
Providing a cancer disease correlates to certain amount
of genes (namely the actual feature genes), an ideal fea-
ture selection algorithm can extract this set of genes
from training set without over-extracting the irrelevant
genes or filtering-out some of the actual feature genes.
The ideality is due to the fact that as more actual fea-
ture genes are extracted, the more pathways are pro-
vided to the cancer diagnosis. Thus, under a controlled
environment, it is suggested to measure the

Figure 3 The number of feature genes extracted from Oral cancer dataset by test algorithms.
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performance of an algorithm according to the ratios
between the number of feature genes f extracted by this
algorithm, the number of actual feature genes fA
extracted, and the number of actual feature genes f0.
The so called hitting rate rh of this algorithm is defined
as fA/f0; and the missing rate rm is defined as (f - fA)/f.
The algorithm J is suggested to be superior to another
algorithm K if rh(J) is larger than rh(K) and rm(J) is smal-
ler than rm(K). Table 4 lists the hitting rates and the
missing rates of the test algorithms measured on the
synthetic dataset. Seen from the table, SVM-ttt, SVM-
rfe and SVM-mcs are with high hitting rates but also
high missing rates, which infer there are over-extrac-
tions of the features. Alternatively, it is suggested that
STW underestimates the number of features as its rela-
tively low hitting rate. Moreover, BLogReg extremely
underestimates the number of features as its unusual
low hitting rate, i.e. 5%. In general, SVM-ema is superior
to other algorithms as its hitting rate is high and miss-
ing rate is low. The results show that SVM-ema can
extract the most relevant set of feature genes.

For the cases of two real datasets, Figure 1 and Figure
3 indicate the number of feature genes extracted by dif-
ferent algorithms. We found that SVM-ema, SVM-rfe
and SVM-mcs are insensitive to the sampling rate, for
which the numbers of feature genes just slightly
increase along with the sampling rate r. Though SVM-
ema and SVM-mcs both employ error margin on their
gene selection criterions, SVM-ema consistently result
in much less number of feature genes. As indicated in
previous sections, irrelevant genes may also contribute
to the error margin. The maximization approach of
SVM-mcs tends to extract as more genes as possible.
Thus, SVM-mcs overextracts feature genes in order to
achieve larger error margin. Seen from Figure 1 and
Figure 3, the numbers of feature genes extracted by
SVM-mcs are unusually large: For the Gastric cancer
dataset, the minimal number is 2002, for which nearly
99% genes are regarded as feature. For the Oral cancer
data, the number is more than 5000, in which nearly
87% genes are considered as features. Comparing to the
results of SVM-ema, the number of feature genes
extracted by SVM-mcs is around 35 times and 149
times more than that of SVM-ema for the Gastric can-
cer dataset and the Oral cancer datasets respectively.
The reason of this difference is that EMA is able to
decompose the contributions of the feature genes from
those of the background genes. This also indicates that
purely maximizing error margin is not a practical selec-
tion criterion.

Figure 4 The validation accuracies evaluated on Oral cancer dataset by test algorithms.

Table 4 The average hitting rate rh and the average
redundancy rate rr of the test algorithms: Synthetic
dataset

SVM-ema SVM-ttt SVM-rfe SVM-mcs BLogReg STW

rh 83.15% 95.00% 95.00% 94.65% 5.00% 42.55%

rr 7.09% 56.09% 70.94% 95.77% 59.19% 81.27%
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While comparing the validation accuracies amongst
the test algorithms, SVM-ttt and SVM-mcs should be
ignored as their high accuracies are archive by overex-
tracting feature genes. Seen from the results shown in
Figure 2 and Figure 4, the performance of SVM-ema is
better than that of SVM-rfe in terms of not only the
validation accuracy but also the number of feature
genes. SVM-ema is also superior to BLogReg and STW.
This superiority of SVM-ema suggests that 1) margin-
based criterion is more suitable to represent the perfor-
mance of a feature gene set; and 2) this criterion is
more robust than those of BLogReg and STW in the
sense that BLogReg and STW may under-estimate the
number of feature genes.

Conclusions
This paper proposes a feature extraction algorithm of
error margin analysis that uses margin-based criterion
to measuring the quality of a feature set. Error margin
is a better indicator than training accuracy in repre-
senting the generalization ability of a classifier. How-
ever, maximizing the error margin may lead to
overextraction of features. Therefore, we propose to
make a tradeoff between the performance and the
number of features, which is done by analyzing the
curve of error margin. Under the assumptions on gene
independency and on gene distribution, the analysis
shows that the error margin of only involving the rele-
vant genes grow faster than that of involving random
genes. Based on this observation, we model the extrac-
tion process as an estimation of critical point in the
error margin curve of error margin versus the number
of mostly relevant genes. Compared with existing algo-
rithms that use either margin-based selection criterion
or “filtering” approach, our algorithm has distinct
advantage, which has been proven from theoretical
framework.
Computational experiments of comparing EMA with

other approaches including wrapper models and filtering
models. The experimental results show that:

1) Error margin is a more representative measure to
the generalization ability of a classifier than training
accuracy;
2) Solely maximizing error margin may lead to over-
extraction of features;
3) SVM-ema can make right balance between the
performance and the size of resultant feature gene
set.

Possible future works include 1) an analysis on the
error margin curve when the gene distribution is non-
Gaussian, 2) deriving a more accurate parametric model
for the margin curve segments wI and wR and 3) an

extension to the analysis on error margin of non-linear
classifier.

Methods
Error-Margin as an Indicator to Feature Genes
Gene expression level difference and the p-value of the
expression level are promising relevance measures of a
gene. The gene rank list sorted according to these mea-
sures provides guidance for feature gene selection. On
the other hand, margins play a crucial role in modern
machine learning research. It represents the generaliza-
tion ability of a classifier or the confidence of the deci-
sion made by the classifier. It is valuable to investigate
the possibility of which uses error margin as a criterion
to decide how many genes should be selected from the
list. In this section, an analysis on the relation between
error margin and the number of mostly relevant genes
is presented.
Given a training set S = {[xj | yj]} where xj Î X ⊆ ℜd

and yj Î {-1, 1}, and [u Î ℜd, l] is the decision hyper-
plane of S obtained by SVM, the corresponding error
margin w is defined as:

w y v y u x
j

j j
j

j i j i

i

d

= = +
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
∑min min , 

1

(1)

where {hi} are constants, {xj, i} and hence {vj} are ran-
dom variables.
Suppose C- contains the indices of all normal-class

patterns (i.e. yj = -1 for j Î C-) in S and C+ contains the
indices of all cancer-class patterns (i.e. yj = 1 for j Î C+)
in S, since SVM guarantees that the error margin is
maximal, the minimal error margin amongst the nor-
mal-class patterns equals to that amongst the cancer-
class patterns:

w v v
j C

j
j C

j= − =
∈ ∈− +

min( ) min (2)

In the rest of this paper, the analysis considers the
minimal error margin amongst of the cancer-class pat-
terns {vj} for j Î C+.
We start the error margin analysis by studying the dis-

tribution of error margin of a training pattern. The first
assumption made in this analysis is that the probability
density function qi(x) of the ith gene xi is Gaussian:

q x

i

x i

i
i( ) exp

( )
= + −

− +

+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1

2

2

2 2 




(3)

where  i j i
j C

n x+

∈
=

+
+

∑1
, and  i j i i

j C
n x+ +

∈
= −

+
+

∑2 21 ( ), . Figure 5
shows the general classification model of gene expres-

sion level.  i j i
j C

n x−

∈
=

−
−

∑1
, and  i j i i

j C
n x+ +

∈
= −

−
+

∑2 21 ( ),
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shown in the figure represent the mean and the variance
of the ith gene amongst the patterns in C-. (the physical

meanings of    i i i i
− + − +, , , and the level difference wi

of the ith gene). One important assumption of gene pat-
tern in bioinformatics is that the level difference mR for
relevant (feature) gene is much larger than the level dif-
ference mI for irrelevant (non-feature) gene, i.e. mR >>mI.
Since w is translation-invariant, we translate the gene

pattern xj Î X to zj = xj - μ- Î Z for all j where
−

− − −= [ , , ]  1 2  d . Meanwhile, the decision hyper-
plane of S in Z is transformed as [h, b] = [u - μ-, l+u·μ-].
Figure 6 and Figure 7 show a 2-dimensional example of
the pattern translation.
Figure 6 shows the original 2-dimensional feature

space X. The white ellipse represents the region of nor-
mal-class patterns whilst the grey-filled ellipse repre-
sents the region of the cancer-class patterns. The center

of the normal-class patterns is [ , ] 1 2
− − , whereas the

center of the cancer-class patterns is [ , ] 1 2
+ + . The

dotted line represents the decision hyperplane obtained
by SVM. Figure 7 shows the translated feature space Z.
The centers of the normal-class patterns and of the can-
cer-class pattern are translated to [0, 0] and
[ , ]   1 1 2 2

+ − + −− − respectively.
After the translation, the probability density function

ri(z) of zi is:

r z q z

i

z i i

i

i

i i i( ) ( )

exp
(( ) )

= +

= + −
+ − − +

+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= +

−

 

 





1

2

2

2 2

1

22

2

2 2

 


exp

( ( ))
−

− + − −

+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

z i i

i

(4)

Since  i i
+ −− is the level difference mi of the ith

gene, the eq. (4) can be further expressed as:

= + − −
+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1

2

2

2 2  i

z mi

i

exp
( )

(5)

Let ai = hizi, the corresponding probability density
function pi(a) is expressed as:

= + − −
+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1

2 2

2

2 2h i

a himi
hi i  

exp
( )

( )
(6)

Figure 5 General classification model based on gene
expression level.

Figure 6 A two-dimensional example of pattern translation:
before translation.

Figure 7 A two-dimensional example of pattern translation:
after translation.
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At this stage, we made the second assumption that
genes {zi}, and hence {ai}, are independent. Under this
assumption, the probability density function pv(v) of v =
〈h, z〉 + b appeared in eq. (2) can now be expressed as:

p v p p p vv i d( ) ( * * * * )( )= 2   (7)

where ( )x
x b

x b
=

+∞ =
≠

⎧
⎨
⎩ 0

Since the convolution of two Gaussian functions is
still a Gaussian function:

i e  . . ( * )( )
( )

.

exp
( ( ))

( )

f g m

f g

m w f wg

f g

=
+

−
− +

+

⎛

⎝

⎜
⎜
⎜

1

2 2 2

2

2 2 2

  

 

⎞⎞

⎠

⎟
⎟
⎟

(8)

where

f m

f

m w f

f

g m

g

m
( ) exp

( )
( ) exp

(
= −

−
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= −1

2 2

2

2 2
1

2 2  
 and 

−−⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

wg

g

)2

2 2

pv(v) can be simplified as:

1

2 2

2

2 2 w

v mw

w
exp

( )− −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ (9)

where  w i i
i

d
h2 2

1
=

=
∑( ) and m h m bw i i

i

d
= +

=
∑

1
.

The analysis on the relation between error margin and
the number of mostly relevant genes can be divided into
three cases:

Case 1: Linearly separable training set with zero gene
variance
It is commonly to assume that microarray pattern set is
linearly separable. The linear separability of a pattern set
is discussed at Appendix I. When the training set is lin-
early separable, the probability of which w is lower than
a given value w0 is described by the function:

D w p t dtw v

w n

( ) ( )0 1 1
0

= − −
⎛

⎝
⎜

⎞

⎠
⎟

−∞∫
+

(10)

where n+ is the cardinality of C+. The probability den-
sity function pw(w) of w is:

p w
Dw w

w

n p w p t dt

w

v v

w n

( )
( )

( ) ( )

= ∂
∂

= −
⎛

⎝
⎜

⎞

⎠
⎟+

−∞

−

∫
+

1
1 (11)

The expected error margin w for linearly separable
training set is:

w wp w dw n mw w w= = ++
−∞

∞

∫ ( ) ( )  (12)

where h(.) is monotonic increasing and depends on on
n+. The details of eq. (12) can be found in Appendix II.
A pattern set is said as ideal if the gene variance

approach to zeros, i.e. si ® 0, for all i Î [1, d]. For
such case, pw(w) can be simplified as pv(w).

p w p ww v( ) ( )= (13)

and the expected error margin w is computed as
a weighted sum of the expected gene level differences
{mi}iÎ[1, d]:

w h mi i

i

d

=
=
∑

1

(14)

Given a gene relevance list L = {ji} where a gene is at
a former position of the list if it has higher relevance,
we define wi , as the expected error margin when the i
mostly relevant genes are considered:

w h mi
k

i

k k
=

=
∑  

1
(15)

In this paper, the term error margin curve W(i) refers
to the curve representing error margin versus the num-
ber of mostly relevant genes, i.e. W(i) = wi .
Suppose there are nR feature genes (i.e. the nR mostly

relevant genes are the feature genes), the error margin curve
can be divided into two segments: 1) the relevant gene seg-
ment WR(i) for i Î [1, nR] and 2) the irrelevant gene seg-
ment WI(i) for i Î [nR + 1, d]. As we hypothesize that mR is
significantly larger than mI, in addition to that the expected
error margin is a weighted sum of the gene level differences
of the considered genes, the averaged grow rate of WR(i)
must be higher than that of WI(i). Thus, there should be a
critical point on the error margin curve, and this point indi-
cates the boundary between relevant genes and irrelevant
genes. Figure 8 shows a typical error margin curve for ideal
pattern set. Seen from the figure, the critical point of the
curve is at the boundary between the relevant and the non-
relevant genes. In other words, the estimation of the num-
ber of feature genes is equivalent to find the critical point
on the error margin curve.

Case 2: Linearly separable training set with non-zero
gene variance
For the case of which the training set is linearly separable
but si > 0, the influence of si to the error margin curve
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can be expressed as follows: When si increase, gene pat-
terns spread wider in X and they have higher chance to
get closer to the decision hyperplane. Thus, a narrower
error margin is expected. Furthermore, when more genes
are considered, mw and sw in pv(v) grow in different rates,

in which w , as a weight sum of mw and sw according to
the eq. (12), is neither monotonic increasing nor mono-
tonic decreasing. Therefore, the error margin curve for
si > 0 is filled with small oscillation. Figure 9 shows a typi-
cal error margin curve for si > 0.

Figure 8 A typical error margin curve for ideal pattern set.

Figure 9 A typical error margin curve for case of non-zero variance.
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Case 3: Linearly non-separable training set
In case of linearly non-separable training set, the soft-mar-
gin idea choose a decision hyperplane that the classifica-
tion accuracy is as high as possible, while still maximizing
the error margin of the correctly-classified pattern set
V’ ÎV v j j C= ∈ +

{ } . Thus, the error margin in this case is
measured from V’. Since the excluded patterns from V’ are
those with minimal (and negative) error margin vi, it is
expected that 1) the mean of V’ is larger than that of V
and 2) the variance of V’ is smaller than that of V. Under a
practical assumption that the gene distributions in V’ are
also Gaussian, the soft-margin idea brings the error mar-
gin analysis of linearly non-separable training set back to
the case of linearly separable pattern set.
In summary, when a training set is linearly separable

and si = 0 for all i, the critical point of the error margin
curve is definitely the boundary point between relevant
and irrelevant gene sets. However, if 1) si > 0 for at
least one gene and/or 2) the training set is linearly non-
separable, oscillation is introduced to the curve and
blunts the critical point. For such case, feature gene
extraction is modeled as the estimation of critical point
of the error margin.

Feature Gene Extraction by Error-Margin Analysis
In this section, we report a novel feature gene extraction
algorithm, namely Feature Gene Extraction by Error
Margin Analysis (EMA). Based on the error margin ana-
lysis presented in the previous section, the feature gene
extraction can be modeled as the search for the critical
point of the error margin curve.
In order to moderate the dependency of error margin

on pattern set, Leave-One-Out Error margin (LOOErM)
is used. LOOErM, as the name suggests, leaves a single
pattern from the training set and compute the error
margin of the decision hyperplane defined by the
remaining patterns. This is repeated such that each pat-
tern in the training set is left once. For a training set S
consisting of n patterns, n error margins {gj}jÎ[1, n] are
obtained. The LOOErM of S is defined as the average of
{gj}. Algorithm A1 summarizes the procedure of
LOOErM.
Algorithm A1: Leave-One-Out Error Margin
Input: 1) Pattern set S = {[xj | yj}]}j Î [1, n], 2) the index
set of the considered genes F
1. For j : = 1 to n
1.1 Define the pattern subset Z = {[xk(i)iÎF | yk]}k≠j
1.2 Train SVM on Z: the corresponding decision

hyperplane denotes by Hj(z): 〈h·z〉 + b where 〈a·b〉 is the
dot-product of the vectors a and b.
1.3 Compute the error margin gj of Hj:

g H ij k j j i F=
≠ ∈min ( ( ) )x k

2. Next j
3. w gn j

j

n
:=

=
∑1

1

Output: the leave-out-one error margin w
Since the error margin curve is filled with small oscil-

lation due to gene variations amongst patterns, the criti-
cal point of the curve is not as significant as that shown
in Figure 7. Thus, a noise reduction on the error margin
curve is necessary. It can be done by fitting a parametric
function G(i|a) to the curve. Recalling that the error
margin curve is composed of two segments: WR for rele-
vant genes and WI for irrelevant genes, the estimation
W (i) of W(i) consists of two parts: G(i|aR) and G(i|aI).

The first part deals with the noisy WR whilst the second
part deals with the noisy WI, i.e. WR(i) ≈ G(i|aR) and
WI(i) ≈ G(i|aI). In addition, since the error margin curve
is expected as a continuous function, WR should meet
WI at the critical point c, i.e. G(c|aR) = G(c|aI). In a
whole say, the error margin curve can be estimated as:

W i W i
G i i c

G i
( ) ( )

( | ) [ , ]

( | )
≈ =

∈⎧
⎨
⎩

 


R

I

for 

otherwise

Subject to

1

  G c G c( | ) ( | ) R I=
(16)

and the corresponding estimation error ε is defined as:

( , , ) ( ( | ) )

( ( | ) )

c G i w

G i w

i

i

c

i

i c

d

  



R I R

I

= − +

−

=

= +

∑

∑

2

1

2

1

(17)

Seen from eq. (17), ε naturally depends on c, aR and
aI. In other words, the performance of an arbitrary criti-
cal point c = f can be represented by the error
 f f= min ( , , )

, 
 

R I
R I . Given that G(.) is sufficient to

model WR and WI, the optimal critical point f0 of the
error margin curve is defined as the critical point where
the estimation error of W (i) is minimum, i.e.
f

f d f0 1
=

∈
min

[ , ]
 .

Given a training set S = {[xj = [xj,1, xj,2,..., xj,d] Î ℜd | yj Î
{-1, 1}]}jÎ[1, n], we first rank the genes according to their
relevancies. We denote L = {jk}k = 1,2,..., d as the gene rele-
vance list to which the relevance of the jath gene is larger
or equals to that of the jbth gene for all a < b. The list L is
then used to rearrange S as {[xj(L) | yj]}jÎ[1, n]. Afterwards,
we compute the error margin curve W(i) = wi where wi
is the LOOErM computed from Algorithm A1 with
F = {1, 2,..., i}.
In this paper, G(.) is chosen to be a polynomial func-

tion. The corresponding estimation error εf for an arbi-
trary critical point c = f can be obtain by the least
square method. The details of the method can be found
in Appendix III. As benefitted from the prior-knowledge
that the number of feature genes is commonly lower
than a pre-determined value fmax, say for example
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fmax = 100, we only need to examined the estimation
errors up to first fmax mostly relevant genes, i.e. {εf} for
f Î [1, fmax]. The optimal critical point f0 is estimated as
the one with minimum estimation error, i.e.

f
f f f0 1

=
∈
min
[ , ]max

 , and the index set of the feature gene

F0 is { } [ , ]k k f∈1 0
. Algorithm A2 summarizes the proce-

dure of Feature Gene Extraction by Error-Margin
Analysis.
Algorithm A2: Feature Gene Extraction by Error-Margin
Analysis
Input: 1) Pattern set S = {[xj = [xj,1, xj,2,..., xj, d] Î ℜd | yj
Î {-1, 1}]}jÎ[1, n], 2) maximum number of considered
genes fmax, 3) parametric error margin model G(.)

/* Construct the gene relevance list L: BEGIN */
1. Compute the relevance ri of the ith gene:

r x xi k i k C k i k C= ∉ ∈− +
Ω({ } ,{ } ), ,

where Ω(A, B) is the p-value of two point sets A and
B, C- contains the indices of all normal-class patterns in
S and C+ contains the indices of all cancer-class patterns
in S.
2. Define the gene relevance list L = {jj}j = 1,2,..., d

where the relevance of the ja
th gene is larger or equals

to that of the jb
th gene, i.e. r r

b 
≥ for all a <b.

3. Rearrange the gene order of S according to L: S ¬
{[xj(L) | yj]}jÎ[1, n]

/* Construct the gene relevance list L: END */
/* Construct the LOOErM curve {wi }: BEGIN */

4. For i : = 1 to fmax

4.1 Compute wi by Algorithm A1 where the set F
used in the algorithm is defined as {1, 2,..., i}.
5. Next i
/* Construct the LOOErM curve { wi }: END */
/* Search for the critical point of the LOOErM

curve: BEGIN */
6. For f : = 1 to fmax

6.1 Compute the estimation error

 f i
i

f

i
i f

d
G i w G i w= − + −

= = +
∑ ∑min ( ( | ) ) ( ( | ) )

, 
 

R I
R I

2

1

2

1
. If

G(.) is a polynomial function, the optimal aR and aI can
be found by the method listed in Appendix III.
7. Next f
8. Compute the optimal critical point f0 as arg
min
[ , ]maxf f f∈1



/* Search for the critical point of the LOOErM
curve: END */
Output: The index set of the feature genes

F k k f0 1 0
= ∈{ } [ , ]

Figure 10 and Figure 11 show two examples of feature
gene extraction by error margin analysis. For each

example, the blue curve represents the error margin
curve. The black lines represent the parametric estima-
tions of the curve segments WR and WI. The red line
represents the boundary between the relevant genes and
the irrelevant genes, which passes through the intersec-
tion of the black lines. Figure 10 illustrates the gene
extraction on the Gastric cancer dataset whilst Figure
11 illustrates the gene extraction on Oral cancer multi-
ple datasets. The details of the datasets can be found in
the experimental result section. Seen from the figure,
each of the error margin curves composes of two line
segments and they grow in different rates.

Appendix I
Linearity of Gene Patterns
Given a pattern set S = {[xj = [xj,1, xj,2,..., xj, d] Î X ⊆ ℜd

| yj Î {-1, 1}]}kÎ[1, n] where the first n+ patterns is posi-
tive-class and the remaining n- = n - n+ patterns is
negative-class patterns, if there exisit a d by n transfor-
mation matrix T such that every pattern xj is trans-
formed to a point xj’ in n-dimensional Euclidean space,

xjT = xj’ =
[ , , , , ]0 0 1 0 0

1

   
j n j

n

− −

∈ ℜ :

PT I P x x x I1 2 n= = where  and  is an  by  identity matr[ ; ; , ] n n iix (18)

We must be able to found at least one

decision hyperplane hI, for example
hI = − −

− +

[ , , , , ]1 1 1 1   
n n

such that the transformed patterns {xj’} can be linearly
separable:

y j ′ =x hj I, 1 (19)

Since T is a linear transformation, the eq. (19) can be
rewritten as

y j x Thj I, = 1 (20)

Eq. (20) infers that S can be linearly separated by the
hyperplane ThI. In conclusion, S is linearly separable if
the transformation matrix T exists.
Existence of the transformation matrix
According to eq. (18), T is defined as the right inverse
of P, which can be decomposed as PT(PPT)-1. Thus, T
exists if P has the rank m.
When the number of genes d is much larger than the

number of training patterns n, i.e. d >>n, the probability
of that T exists is higher. Reminding that gene pattern
analysis deals with small sample size and high sample
dimension, the existence of T can be easily archived.
Thus, gene patterns are reasonably assumed to be line-
arly separable. Additionally, since support vector
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Figure 10 Gene extraction by error margin analysis on the Gastric cancer dataset.

Figure 11 Gene extraction by error margin analysis on the Oral cancer dataset.
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machine guarantees that the decision hyperplane has
maximum error margin, linear SVM model is ideal for
gene pattern classification.

Appendix II
Study of the expected error margin w for linearly
separable training set:
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Considering the first integration part of eq. (21)
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Let z w z mw mw
w w w= = +−

 , and dw = swdz. Addi-
tionally, z = -∞ when w = -∞ and z = ∞ when w = ∞.
Thus, eq. (22) is transformed as:
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We further let y t mw
w

= −
 , t = ysw + mw and dt =

swdy. Additionally, y = -∞ when t = -∞ and y = z when
t = zsw + mw. Thus, eq. (23) is further transformed as:
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Therefore, the expected error margin for linearly
separable training set is:

w n mw w= ++ ( ) (24)

Appendix III
Suppose G(.) is a g-order polynomial, the estimations of

wR and wI are G(x | aR = [A, B]) = A x Bi
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The estimation error ε of W can be rewritten as:
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The optimal values of A, B and C can be computed
from the least square method. Firstly, we set the deriva-
tive of ε with respect to {Ak}kÎ[1, g], C and {Ck}kÎ[1, g] as
zeros:
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Afterwards, we define the matrices M and Y:
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The optimal parameter vector Ψ = [A B C]T is com-
puted as Ψ = M-1Y and the optimal value of D can be
found by the eq. (25).
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