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ARTICLE INFO ABSTRACT

Keywords: Background: Osteosarcoma (OS) is a common type of malignant bone tumor in adolescents with high risk of
Osteosarcoma metastasis. However, the clinical management still remains unsatisfactory. Traditional Chinese medicine (TCM)
Baicalein

has been widely considered as an alternative treatment, and their extracts have proved to possess great potential
for drug discovery. Baicalein (BA), the active pharmaceutical ingredient of rhizoma coptidis, was proved to have
anti-tumor properties in OS, but the mechanism remains poorly understood.

Methods: The potential anti-cancer effects on cell growth, cell cycle, apoptosis and migration were examined in OS
cells. Moreover, the IncRNA-Neighboring Enhancer of FOXA2 (IncRNA-NEF) and Wnt/f-catenin signaling were
detected by qPCR and Western blotting assays. The in vivo effect of GA on tumor growth was investigated using a
xenograft mice model.

Results: In the present study, BA was found to significantly suppress tumor growth in vitro and in vivo. And it was
also found to inhibit the invasion and metastasis as well. As for the mechanism investigation, IncRNA-NEF was
obviously upregulated by BA in OS cells, and thus induced the inactivation of Wnt/p-catenin signaling. Moreover,
IncRNA-NEF knockdown partially reversed the BA-induced anti-cancer activities; and successfully compensated
the suppressive effect on Wnt/p-catenin signaling. We therefore suggested that BA induced the inactivation of
Wnt/f-catenin signaling through promoting IncRNA-NEF expression.

Conclusions: In conclude, our results demonstrated that BA suppressed tumor growth and metastasis in vitro and in
vivo through an IncRNA-NEF driven Wnt/p-catenin regulatory axis, in which IncRNA-NEF was upregulated by BA,
and thus induced the inactivation of Wnt/p-catenin signaling.

The Translational potential of this article: The findings derived from this study validates the anti-cancer activity of
BA in OS and provides a novel underlying mechanism, which suggest that BA may be a potential candidate to
develop the effective drug for OS patients.

Wnt/p-catenin signaling
IncRNA-Neighboring Enhancer of
FOXA2(IncRNA-NEF)

Metastasis

1. Introduction affecting mainly children and adolescents. They often locate in the long
bone including the distal femur and proximal tibia. Current treatments
Osteosarcomas (OS) are the most frequent primary bone sarcomas, for OS patients typically include surgery in combination with adjuvant
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and neo-adjuvant chemotherapeutic agents [1,2]. However, OS are very
heterogeneous tumors both at the intra- and inter-tumor level, which
makes the OS patients with high risk of metastasis and recurrence. The
clinical management still remains insufficient, and the patient survival
has not improved significantly in recent decades [3,4]. It is therefore
urgently to identify a more effective therapeutics strategy for OS patients.

Traditional Chinese medicine (TCM) has been practiced for thousands
of years and is widely accepted as an alternative treatment for cancer.
Many herbs have been reported to exhibit anti-cancer activity, and their
extracts have proved to possess great potential for drug discovery. A
number of TCM phytochemicals have been reported to play anti-tumor
roles in OS [5,6]. Baicalein (BA) is a flavonoid compound derived from
the root of Scutellaria baicalensis which has historically been used to
protect against oxidant, virus, bacteria, inflammation and allergy [7,8].
Recently, BA has been found to own anti-cancer activities in various
cancers, and it induced apoptosis and inhibited metastasis in OS [9-11].
However, the underlying mechanism remains sketchy and sparse.

A large number of studies in the past decade have changed our
perspective of ncRNA from junk transcriptional products to vital roles
that regulate cellular processes, with extensive literature confirming that
ncRNA are involved in chromatin remodeling, transcription, post-
transcriptional modification, and signal transduction. As two important
members of the ncRNA family, a large number of studies have confirmed
that miRNAs and IncRNAs are involved in regulating a variety of bio-
logical activities and human disease progression. For example,
microRNA-378, microRNA-218, and lincROR have been confirmed to
participate in osteogenesis [14-16]. There is mounting evidence con-
firming that IncRNAs constitute an important component of tumor
biology, and several IncRNAs such as H19, Hotair have been identified to
modulate cell proliferation, apoptosis, and metastasis in tumorgenesis
[17]. LncRNA-Neighboring Enhancer of FOXA2 is one recently identified
IncRNA, and our group firstly named it as IncRNA-NEF. Our previous
study demonstrated that this IncRNA antagonized epithelial to mesen-
chymal transition (EMT) and cancer metastasis in hepatocellular carci-
noma (HCC) [18]. During last three years, dozens of papers reported this
IncRNA mediated tumor growth and metastasis in various cancers such as
breast cancer [19], cervical carcinoma [20], esophageal carcinoma [21],
gastric carcinoma [22], lung cancer [23], etc. Wnt/f-catenin signaling
was also demonstrated to participate in this IncRNA mediated tumori-
genesis and metastasis [18]. Especially in OS, IncRNA-NEF was found to
be down-regulated, and its overexpression inhibited cancer cell migra-
tion and invasion by suppressing miRNA-21 [24].

In this study, BA was confirmed to exhibit anti-tumor activity against
OS in vitro and in vivo. Regarding to the investigation of underlying
mechanisms, our results showed that IncRNA-NEF was obviously up-
regulated by BA in OS cells, and thus led to the inactivation of Wnt/
B-catenin signaling. Therefore, BA suppressed tumor growth and metas-
tasis in OS via the IncRNA-NEF driven Wnt/f-catenin regulatory axis. The
findings obtained from this study suggest that BA may a potential
candidate to develop the effective drug for OS patients.

2. Materials and methods
2.1. Preparation of BA

Baicalein was purchased from Aladdin (Shanghai, China) with purity
over 99%. This drug was dissolved in DMSO and stocked at —20 °C for
usage.

2.2. Cell culture and treatment

Three OS cell lines including 143 B, MG63 and U20S were cultured in
DMEM (Gibco, Carlsbad, CA) supplemented with 10% fetal bovine serum
(FBS, Gibco) and 1% penicillin/streptomycin (P/S, Hyclone, Pasching,
Austria) in humidified incubator at 37 °C with 5% CO2.
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2.3. Cell proliferation assays

The OS cells were seeded in 96-well microplates at the density of
3000 cells per well. They were treated with various concentrations of
baicalein for 24, 48, and 72 h, and then 10 pl methylthiazoletetrazolium
(MTT, beyotime, Shanghai, China) solution (5 mg/ml) was incubated for
another 4 h. The medium was removed, and 100 pl dimethylsulfoxide
(DMSO) was added to dissolve the formazan crystals. The absorbance
was measured at 570 nm with Multiskan FC plate reader (Thermo Sci-
entific, USA). The DMSO (0.1%) was used as the control.

2.4. Colony formation assay

Cells were seeded in 6-well microplates at a density of 300 cells per
well, and were treated with baicalein for 24 h. Then, they were main-
tained for another two weeks in baicalein-free medium. Colonies were
fixed with methanol and stained with crysital violet stain, and the
numbers of colonies were counted by ImmunoSpot analyzers (CTL).

2.5. Flow cytometry examination

Cells were treated with 50 pM baicalein for 48 h, and harvested for
flow cytometry examination. The cells were resuspended and stained by
the Cell Cycle Detection Kit (KeyGEN, Nanjing, China) for cell cycle ex-
amination. On the other hand, the cells were stained with the cell
Apoptosis PI Detection Kit (KeyGEN, Nanjing, China) for apoptosis
analyses.

2.6. Wound healing assays

The cells were cultured in 6-well and allowed to reach confluence.
The scratch was made using a 1 ml sterile pipette tip across the cell
monolayer. Media was removed and the cells were incubated with 50 pM
baicalein in DMEM supplemented with 1% FBS for another 24 h, and
images were captured under a microscope. The migration rate was
calculated following the formula: migration rate (%) = (original width -
final width)/original width x 100%. All experiments were performed in
triplicate.

2.7. Transwell invasion assays

The transwell membranes were purchased from Corning Inc (New
York, NY, USA). Transwell invasion assays were performed according to
the manufacturer's protocol. Briefly, 1.0 x 10* baicalein-treated cells and
control cells were resuspended in serum-free medium and seeded in the
upper chamber, which was coated with Matrigel (Corning, USA). The low
chambers were filled with the complete DMEM containing 10% FBS.
After incubation for 48 h, cells on the upper surface were removed and
the membrane were fixed with methanol for 20 min. Then the membrane
was stained with 0.1% crystal violet, and images were captured by
Multifunctional Cell Imaging Microplate reader (BioTek, USA). The
invaded cells were counted in five different fields under microscopy.

2.8. RNA extraction, reverse transcription, and quantitative real-time
polymerase chain reaction (qRT-PCR)

Total RNA was extracted using Animal Total RNA Isolation Kit
(Invitrogen, Carlsbad, CA, USA), and cDNA was reversely transcribed
from RNA by PrimeScript™ RT Reagent Kit (TaKaLa, Japan). Quantita-
tive PCR reactions were set up in triplicates and conducted on a Light-
Cycler 480 system (Roche, Basel, Switzerland) using PowerUp™ SYBR™
Green Master Mix (Thermo Fisher, USA) according to the manufacturer's
protocol. Relative expression levels of candidate genes were calculated
via 2722¢ method and normalized to the housekeeping gene GAPDH.
The primer sequences for real-time PCR were listed in Table 1.
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Table 1
Primers for qRT-PCR.

Name Primer sequences used for RT-PCR
IncRNA-NEF_F CTGCCGTCTTAAACCAACCC
IncRNA-NEF_R GCCCAAACAGCTCCTCAATT
p-catenin_F CCGTTCGCCTTCATTATGGA
p-catenin_R GGCAAGGTTTCGAATCAATCC
GAPDH_F ACTTTGGTATCGTGGAAGGACTCAT
GAPDH_R GTTTTTCTAGACGGCAGGTCAGG
MMP2_F GAGTGCATGAACCAACCAGC
MMP2 R AAACTTGCAGGGCTGTCCTT
MMP9_F TCTATGGTCCTCGCCCTGAA
MMP9 R TTGTATCCGGCAAACTGGCT
N-cadherin_F GACAATGCCCCTCAAGTGTT
N-cadherin R CCATTAAGCCGAGTGATGGT
Vimentin-F GACGCCATCAACACCGAGTT
Vimentin-R CTTTGTCGTTGGTTAGCTGGT
CCND1_F CTGGAGGTCTGCGAGGAACA
CCND1_R CCTTCATCTTAGAGGCCACGAA
CCND2_F GAGCCGGACCTAATCCCTCA
CCND2 R CGGTGCAGCGTCTAGGG
OCT3/4_F TCGAGAACCGAGTGAGAGGC
OCT3/4_R CACACTCGGACCACATCCTTC
Survivin_F ATTTGAATCGCGGGACCC
Survivin_ R GAGAAAGGGCTGCCAGGC

CD44 F CAGCACCATTTCAACCACAC
CD44 R GTTGCCAAACCACTGTTCCT
Name siRNA sequences

silncRNA-NEF-1 GGAGCUGUUUGGGCAAUAATT
silncRNA-NEF-2 GGCACAACGAUCAAAUUCUTT

2.9. Western blotting

Total protein was extracted using the Lysis Buffer (Thermo Fisher
Scientific). The nuclear and cytoplasmic fractions were isolated by the
Nuclear and Cytoplasmic Protein Extraction Kit (KeyGEN, Nanjing,
China) according to the manufacturer's instructions. The supernatant
fraction was collected by centrifugation and the protein concentration
was determined by Pierce™ BCA Protein Assay Kit (Thermo Fisher Sci-
entific). Equal amounts of protein were separated by 10% SDS-PAGE
(Epizyme, Shanghai, CHN) at 120 V for 80min, and then transferred
electrophoretically to a nitrocellulose membrane at 100 V for 90min. The
transferred membranes were blocked with 5% skim milk for 1 h and then
incubated with primary antibody including f-catenin (1:2000; Cell
Signaling Technology, USA), Lamin B1 (1:2000; Cell Signaling Tech-
nology, USA) and GAPDH (1:2000; Cell Signaling Technology, USA) at 4
°C for 12 h. The membrane was subsequently incubated with second
antibody for 1 h, and exposed by the FluorChem R system (Pro-
teinSimple, San Jose, CA, USA) for chemiluminescence. LaminB1 and
GAPDH were used as the internal control of nucleic protein and total
protein, respectively.

2.10. Cell transfection

Specific small interfering RNA for IncRNA-NEF (siNEF) was designed
and synthesized by TSINGKE Biological Technology (Beijing, China). OS
cells were seeded and transfected by Lipofectamine 3000 (Invitrogen)
within 24 h.

2.11. Luciferase activity assays

Cells were seeded in 24-well plates, and the luciferase reporter
TOPflash was transfected into cells by Lipofectamine 3000 (Invitrogen).
Twelve hours later, cells were incubated with GA for 48 h, and then lysed
and subjected to firefly luciferase activity assays by the Bright-Glo™
Luciferase Assay System (Promega, Madison, WI, USA) on a Hybrid
Multi-Mode Microplate Reader. The renilla luciferase activity was used to
normalize the firefly luciferase activity. All the experiments were per-
formed in triplicates.
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2.12. Osteosarcoma intra-tibia tumor-bearing model

According to previous reports, the intra-tibia tumor-bearing model
was chosen for the in vivo experiments [25]. Female Balb/c-nude mice
(4-5 weeks old) were purchased from the Laboratory Animal Center,
Southern Medical University. All experimental procedures were
approved by the Ethics and Animal Research Committee of Southern
Medical University Guangzhou, China. MG63 cells (1 x 10%/100 pl) were
injected into the medullary cavity of the right tibia of mice. When the
tumor volume was visible, animals were randomly assigned to two
groups (n = 6). Group 1 was intraperitoneally injected BA (40 mg/kg),
and group 2 was administrated with vehicle solution buffer (10%DMSO
+ 40%PEG300 + 5%Tween-80 + 45%saline) with same volume as group
1. BA was administrated every day, and tumor size was measured every 2
days. Tumor volume was calculated according to the following formula:
volume=(W1 x W22)/2, where W1 = major diameter(mm) and W2 =
minor diameter(mm) of tumors.

2.13. Histological examination

Tumor specimens were fixed in 4% paraformaldehyde overnight and
then embedded in paraffin. The tumor sections were incubated with the
Ki-67 antibody (Calbiochem, Darmstadt, Germany) and p-catenin anti-
body with 1:50 dilution for 4 h. Visualization was achieved by using the
3, 3'-diaminobenzidine substrate (Dako, Denmark) followed by coun-
terstaining with hematoxylin. The representative images were taken
with x 40 magnification and the positive cells were quantified with
Image J.

2.14. Statistical analysis

All the experiments were repeated three times, and the experimental
data were expressed as the means + SD. Difference between two inde-
pendent groups were compared by using Student's t-test and two-way
ANOVA. A p-value of less than 0.05 was considered statistically
significant.

3. Results
3.1. BA significantly inhibited cell viability in OS cells

To identify the anti-tumor effects of baicalein on OS, three OS cells
including 143 B, MG63 and U20S cells were treated with various con-
centration of BA. The cell viability was measured and BA was found to
significantly inhibit the cell proliferation in a concentration-dependent
manner (Fig. 1A). The IC50 value of BA was 81.44, 131.8 and 53 pM
for a 48-h treatment, respectively. We therefore selected the concentra-
tion of 80 pM for the further investigation. The results of colony forma-
tion indicated fewer and smaller colonies in BA-treated OS cells (Fig. 1B-
Q).

3.2. BA induced cell cycle arrest and apoptosis in OS cells

We next investigated the reason why BA inhibited cell viability in OS
cells. The three OS cells were treated with 80 uM BA for 48 h, and sub-
jected for cell cycle analyses. It was showed that the percentage of cells in
G1-phase was increased in MG63 and U20S cells; and higher percentage
of cells in S-phase was in 143 B cells (Fig. 2A). Moreover, BA induced
more apoptotic cells in the three OS cells (Fig. 2B). These results indi-
cated that BA induced cell cycle arrest and apoptosis in OS cells.

3.3. BA suppressed metastasis of OS cells
We next investigated the suppressive effects of BA on invasion and

metastasis in OS cells. As shown in Fig. 3A-B, the potential of cellular
migration was inhibited by BA through the wound healing examination.
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The further transwell assays exhibited less invaded cells in BA-treated
cells than control groups (Fig. 3C-D), which was consistent with the
wound healing results. We also monitored the expression of metastatic
and epithelial mesenchymal transition (EMT) related genes such as
MMP2, MMP9, N-cadherin and vimentin, and the results showed that
their expression was significantly suppressed by BA in OS cells
(Fig. 3E-G).

3.4. BA induced the inactivation of Wnt/f-catenin signaling in OS cells

As well known, Wnt/B-catenin signaling is an important cellular
signal transduction pathway and it plays a critical role in the develop-
ment of tumorigenesis [26,27]. We therefore wondered whether this
signaling participated in the BA-mediated anti-OS activity. To validate
our hypothesis, the luciferase reporter of Wnt signaling TOPflash, was
transfected into OS cells, and it was showed that BA significantly sup-
pressed the luciferase activities in all the OS cells (Fig. 4A). B-catenin, a
key component of the Wnt signaling, interacts with transcription factors
TCF/LEF and activates the downstream target genes of Wnt signaling
[28]. Our results showed the total p-catenin expression was significantly
reduced by BA in OS cells (Fig. 4B). The translocation of f-catenin from
cytoplasm to nucleus stimulates Wnt signaling, and we found the
expression of the cytoplasmic f-catenin remained unchangeable with BA
treatment (Fig. 4B). We also observed that less nuclear p-catenin was
enriched in the BA-treated HCC cells (Fig. 4B). Furthermore, several
downstream target genes of Wnt/p-catenin signaling such as CD44,
Oct3/4, CCND1, CCND2 and survivin were examined and the results

showed that their expression was suppressed by BA in OS cells
(Fig. 4C-E). All these results suggested that BA alleviated the canonical
Wnt/p-catenin pathway via disrupting its translocation from cytoplasm to
nucleus.

3.5. BA suppressed tumor growth and migration of OS cells in vivo

We next examined the in vivo function of BA in the tumorigenesis
using an orthotopic intra-tibia tumor-bearing model. 1 x 10® MG63 cells
were injected into the medullary cavity of the right tibia of nude mice,
and BA (40 mg/kg) was administered intraperitoneally (ip) every day.
Strikingly, the treated groups carried smaller burden when compared
with control groups (Fig. 5A-B). We also observed a significant reduction
in tumor growth (Fig. 5C) and weight (Fig. 5D) in BA-treated groups. The
further H&E staining showed that BA administration significantly sup-
pressed tumor growth in vivo (Fig. 5E). Ki67 has been considered as a
significant cellular marker of proliferation, and a decreased expression
was observed in tumor specimens derived from BA-treated groups by
immunofluorescence staining (Fig. 5F). And we also found that the
B-catenin expression was suppressed in treated groups as well (Fig. 5F).

3.6. BA suppressed cell viabilities and metastasis through promoting
IncRNA-NEF expression in OS cells

Our previous study demonstrated that IncRNA-NEF mediated metas-
tasis and epithelial to mesenchymal transition (EMT) in HCC cells [18].
In the present study, we monitored the expression of IncRNA-NEF in BA
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treated OS cells. And the results showed that LncRNA-NEF were obvi-
ously up-regulated by BA (Fig. 6A). To further clarify whether
IncRNA-NEF participates in BA-mediated anti-OS activity, the specific
small interfering RNA for IncRNA-NEF (siNEF) was designed for the
rescue study. Both cell viability (Fig. 6B) and colony formation

(Fig. 6C-F) investigation showed that LncRNA-NEF silence partially
attenuated the BA-induced inhibitory effects on OS cells. On the other
hand, the further wound healing and transwell investigation showed that
IncRNA-NEF knockdown alleviated the inhibitory effect of BA on
metastasis potential (Supplementary Fig. S1, Fig. 7A-C). We also
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evaluated RNA expression level of MMP2, MMP9, N-cadherin and
vimentin, and it was showed that the BA-induced the down-regulation of
these genes were significantly reversed by IncRNA-NEF knockdown in OS
cells (Fig. 7C-E).

3.7. BA suppressed the tumor growth via the IncRNA-NEF driven Wnt/
p-catenin signaling

Our previous study has demonstrated that IncRNA-NEF inhibited
migration via regulating Wnt/f-catenin signaling in HCC. We therefore
hypothesized that IncRNA-NEF mediated Wnt/p-catenin signaling might
participate in the BA-induced anti-cancer activity. As shown in Fig. 8A,
our results showed that IncRNA-NEF knockdown significantly abolished
the suppressive effect on luciferase activity of TOPflash. Furthermore, the
knockdown of IncRNA-NEF obviously compensated the inhibitory
expression of total p-catenin (Fig. 8B-C) and several downstream target
genes of Wnt/p-catenin signaling (Fig. 8D-F), thus partially cancelled the
inactivation of Wnt/p-catenin signaling in BA-treated OS cells.

4. Discussion

Although OS has a low incidence worldwide, it is an important cause
of cancer-related death in pediatric population which bring heavy burden
to family and society [29]. Treatment of OS clinical practice remains
unsatisfactory mainly due to a high risk of metastasis. Traditional Chi-
nese medicine (TCM) provides a promising approach for OS management
[30]. Compared with the traditional chemotherapy, natural active con-
stituents extracted from Chinese herbs have less adverse reaction and
better anti-tumor activities, which make them to be developed as po-
tential, novel anti-cancer drugs for OS patients [31].

Baicalein (BA) is an important bioactive flavonoid extracted from
Chinese herb Scutellaria baicalensis. Increasing evidence have demon-
strated that BA has fascinating anti-cancer properties in various cancers
such as breast cancer [32], colorectal cancer [33], lung cancer [34],
cervical cancer [35], thyroid cancer [36], etc. BA was reported to inhibit
the proliferation, induce apoptosis and autophagy, and suppress epi-
thelial-mesenchymal transitions (EMT) and metastasis as well [37]. On
the other hand, BA also serves as an adjuvant to improve the effect of
chemotherapy on cancer progression [38]. BA increased the cisplatin

sensitivity of lung adenocarcinoma cells [39]. In the present study, we
systematically investigated the anticancer effects of BA on OS in vitro and
in vivo. By cell viability and metastasis assays, BA was found to suppress
cell viability via inducing cell cycle arrest and apoptosis as well as
migration and invasion. The further orthotopic intra-tibia tumor-bearing
model confirmed the anti-cancer activity of BA in vivo. Recent evidence
also demonstrated that BA inhibited cell development, metastasis and
EMT and induced apoptosis in OS cells [40], which was consistent with
our results. However, the underlying mechanism of BA remains spare and
elusive. Our study firstly revealed that IncRNA driven Wnt/f-catenin
signaling participated in the process of BA-suppressed tumor growth.

Wnt/p-catenin signaling is one of the key cascades regulating devel-
opment and differentiation, and plays an important role in tumorigenesis
[41,42]. The role of Wnt signaling in carcinogenesis has most promi-
nently been described in various cancers [43]. Aberrant activation of Wnt
signaling has been implicated in human osteosarcoma, which may pro-
vide a genetic vulnerability that can be targeted in OS. Therefore,
inhibiting the Wnt/p-catenin signaling may be a promising strategy for
OS therapeutics. Recent studies have revealed that BA suppressed the
Wnt/p-catenin signaling in multiple cancers including OS [44,45]. In the
present study, BA was found to induce the inactivation of Wnt/p-catenin
signaling through the examination of the luciferase activity of TOPflash
reporter, B-catenin expression and downstream genes of this signaling.
However, how BA suppressed the Wnt/p-catenin signaling remains
obscure.

LncRNA represents a new member of heterogeneous noncoding RNAs
(ncRNAs), and its emerge provides a bridge between TCM and their
function [46]. As a kind of critical regulator, IncRNAs have been
demonstrated to mediate signal transduction in various biological ac-
tivities and diseases. Several IncRNAs was reported to mediate the
Wnt/p-catenin signaling in tumorigenesis [47]. For example, IncRNA
CCAT2 promoted breast tumor progression by stimulating f-catenin
expression, thereby activating the Wnt signaling [48]. Another IncRNA
HOTAIR was found to suppress the expression of Wnt-1, thereby inhib-
iting the activation of Wnt/p-catenin signaling and promoting the
apoptosis of synovial cells [49]. Our previous study showed that
IncRNA-NEF induced the inactivation of Wnt/p-catenin signaling to
antagonize cancer metastasis in HCC [18]. In this study, IncRNA-NEF was
significantly up-regulated by BA in OS cells, indicating that this IncRNA



F.-w. Zhang et al.

may involve in BA-induced anti-cancer activity. To further confirm the
involvement of IncRNA-NEF in this anti-cancer activity, siNEF was
designed to perform the rescue study. Our results showed that
IncRNA-NEF knockdown partially alleviated the BA-induced inhibitory
effects on cell growth, metastasis and invasion in OS cells; and success-
fully reversed the inactivation of Wnt/p-catenin signaling as well. These
data indicate that IncRNA-NEF driven Wnt/p-catenin signaling regula-
tory axis participates in the BA-mediated anti-cancer activity.

In summary, our data demonstrated that BA played anti-tumor roles
in OS through an epigenetic regulatory pattern in which IncRNA-NEF
expression was suppressed as well as Wnt/p-catenin signaling, thus
resulted in the inhibition of tumor growth and metastasis. The findings
provide a novel mechanism of the BA-mediated tumor suppression and
suggest BA may be developed as a promising candidate for OS patients.
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