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Abstract: Stem cells (SCs) play a major role in advanced fields of regenerative medicine 
and other research areas. They are involved in the regeneration of damaged tissue or cells, 
due to their self-renewal characteristics. Tissue or cells can be damaged through a variety of 
diseases, including hematologic and nonhematologic malignancies. In regard to this, stem- 
cell transplantation is a cellular therapeutic approach to restore those impaired cells, tissue, 
or organs. SCs have a therapeutic potential in the application of stem-cell transplantation. 
Research has been focused mainly on the application of hematopoietic SCs for transplanta-
tion. Cord blood cells and human leukocyte antigen–haploidentical donors are considered 
optional sources of hematopoietic stem–cell transplantation. On the other hand, pluripotent 
embryonic SCs and induced pluripotent SCs hold promise for advancement of stem-cell 
transplantation. In addition, nonhematopoietic mesenchymal SCs play their own significant 
role as a functional bone-marrow niche and in the management of graft-vs-host disease 
effects during the posttransplantation process. In this review, the role of different types of 
SCs is presented with regard to their application in SC transplantation. In addition to this, the 
therapeutic value of autologous and allogeneic hematopoietic stem–cell transplantation is 
assessed with respect to different types of leukemia. Highly advanced and progressive 
scientific research has focused on the application of stem-cell transplantation on specific 
leukemia types. We evaluated and compared the therapeutic potential of SC transplantation 
with various forms of leukemia. This review aimed to focus on the application of SCs in the 
treatment of leukemia. 
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Introduction
Stem cells (SCs) are undifferentiated cells that can be differentiated into other types 
of cell andalso have the potential to proliferate and self-renew to producenew SCs. 
In mammals, there are two broad type of SC. Embryonic SCs (ESCs) are present in 
the early life of the embryo and isolated from the inner cell massor morula of the 
blastocyst (future germ layer, such as endoderm, ectoderm, or mesoderm of the 
embryo).1–4 The surrounding section of the morula is known as the trophoblast, 
which can develop to the future placenta. Adult SCs (ASCs) are found in various 
tissue types of developed mammals.5 ASCs are useful for tissue regeneration and 
repair after severe injuries.1,6

SC populations may behave abnormally or be altered by genetic or environ-
mental factor, resulting in the development of cancer. Leukemia comprises a group 
of hematologic disorders that usually begin in the bone marrow and resultin a high 
number of abnormal blood cells. It is the result of deregulation of normal 
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hematopoietic SC (HSC) development by genetic mutation 
that produces a cell population known as leukemic SCs 
(LSCs). The generation of blood cells depends on the 
regulation of differentiation and proliferation characteris-
tics of HSCs.7 Deregulated differentiation and prolifera-
tion activity of HSCs, including chromosomal 
translocation and somatic mutation, leads to different 
hematologic disorders. There are four major abnormalities 
identified under LSCs: such as acute myeloid leukemia 
(AML), acute lymphoblastic leukemia (ALL),8 chronic 
LL (CLL) and chronic ML (CML).4 Leukemia and lym-
phoma (Hodgkin’s lymphoma [HL] and non-HL [NHL]) 
are the two major types of blood cancers that result from 
uncontrolled proliferation of white blood cells, and were 
the first to be treated clinically using HSC transplantation 
(HSCT).1,–9-11 In addition, HSCT is used as a therapeutic 
option for many nonhematopoietic malignancies, aplastic 
anemia, and certain inherited disorders like 
severe thalassemia, sickle-cell disease, and other inherited 
metabolic disorders. Historically, HSCs were obtained 
only from bone marrow, but are now mostly harvested 
from peripheral blood after mobilization through adminis-
tration of hemaTtopoietic growth factor and from the 
umbilical cord blood (UCB) of newborns.4,9

SC-based therapies become the major concern of 
researchers after the first effective bone-marrow transplant 
in 1968.12 Globally, food and drug administrations design 
regulations on the application of SC therapies. An increase in 
scientific knowledge of cell-differentiation pathways has 
promoted the application of SC therapy.12 Since the applica-
tion of SC therapy emerged as a new insight into cellular 
therapeutic potential, food and drug administrations have 
continuously driven awareness and designed regulation 
with regard to SC therapies. SCs serve as a novel cellular 
therapeutic approach in the field of regenerative medicine to 
treat various disorders.13 In addition to renewing and prolif-
erating themselves, they are capable of differentiation to 
specialized functional cells.14 This enables them to substitute 
various injured cells, such as cardiomyocytes, fibroblasts, 
and endothelial cells.15 In addition, regenerative medicine 
has significant therapeutic potential through the application 
of SCT to restore impaired blood cells.16

HSCT has broad application in treating different malig-
nant and nonmalignant hematologic disorders. Researchers 
have noted that >40,000 HSCTs are performed every year to 
treat these disorders.17 In this context, autologous SCT (auto- 
SCT) and allogeneic SCT (allo-SCT) are the best known and 
most applicable.18 There are SC types that have the capability 

of being the source for SCTs. Bone-marrow SCs are the 
major sources for treating hematologic and nonhematologic 
disorders.19 Similarly, peripheral blood CD34+ cell have 
hematopoiesis potential for HSCT.20 With respect to recent 
scientific advancement,HSCs are generated from pluripotent 
ESCs that require the transition state from endothelial to 
hematopoietic progenitor cells to resolve HLA-mismatched 
problem.21 The recent investigation done by Serap et al 
(2019) and his colleagues hypothesized that achievement of 
effective HSCT may also associate with non-hematopoietic 
progenitor cells, very small embryonic-like 
SCs (VSELSCs).22 They differentiate into HSCs in vitro.23 

With specific forward reprogramming protocols, induced 
pluripotent SCs (iPSCs) have therapeutic potential to gener-
ate hemato-endothelial progenitor (HEP) cells.

Co-administration of chemotherapy along with auto- 
SCT leads to a decrease in the level of regulatory 
T-cells. In response to the dysregulated immune system, 
biological characteristics of mesenchymal SCs (MSCs) 
contribute to hematopoietic reconstitution and an efficient 
HSC engraftment.24,25 On the other hand, bone marrow 
derived MSCs are other components of hematopoietic 
niche.26 Therefore, this review assessed different types of 
SCs that are utilized as the source and as support of SC 
transplantation. In addition, we also summarized the role 
of allogeneic and auto-SCT in the treatment of various 
types of leukemia.

Generation of Hematopoietic Stem 
Cells from Human Embryonic Stem 
Cells
The involvement of ESCs is the new therapeutic insights 
having a regenerative potential to restore impaired tissue or 
cells.27 ESCs are the source of SCs for cellular transplantation 
therapies; however, they may also lead to uncontrolled cell 
proliferation which also results in the development of 
cancers.28 The challenges of using these cells are their char-
acteristic features of chromosomal abnormality and mutation 
during in vitro.29 Regard to this, c-MYC oncogene may be 
expressed that results in cancer cells than their cellular ther-
apeutic significant.29 They require a safety concern due to 
their teratoma formation.30 Although they have teratoma 
effect, ESCs have a significant role in the transplantation 
process.28 Human ESCs (hESCs) serve as the source of devel-
opment of cellular lineages through signaling pathways.13 

Recently, protocols have been on the way to be designed to 
generate HSCs from pluripotent ESCs in vitro. The generation 
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of HSCs from those pluripotent ESCs requires a transition 
from endothelial to hematopoietic progenitor cells to resolve 
HLAmismatching.21 The hematopoietic transcription factor 
Runx1 promotes the commitment of hematopoietic cellular 
lineages by activating the expression of Runx1a. NOTCH 
signaling enhances the transition state, while the TGFβ- 
signaling pathway inhibit it.31 Recently, generation of HSCs 
was achieved by Wang et al from hESCs andhumaniPSCs 
(Figure 1). The commitment stages that had been examined by 
those scientists confirmed the synthesis of hematopoietic cells 
from hESCs.32 In support of this, recently the ESC gene 
SLL4was identified and used as a therapeutic target for leuke-
mia. Because of its importance in the ESC fate, SALL4 expres-
sion need to be reactivated during the reprogramming process 
of mouse embryonic fibroblasts to be converted into iPSCs. 
Under normal condition, SALL4 is expressed highly in 
CD34+CD38– HSCs and llittle in CD34+CD38 + hematopoie-
tic progenitor cells. Therefore, the main application behind 
this ESC gene product is as key player in hematopoietic 

differentiation. Consequently, downregulation of this gene 
could be considered a therapeutic option for leukemia.33

Generation of Hematopoietic 
Progenitor Cells from Induced 
Pluripotent Stem Cells
iPSCs were introduced as an alternative SC-based therapy 
method in 2006, by Takahashi and Yamanaka.34 

Reprogramming of SCs through the integration of viruses 
with these cells induces differentiation capability in various 
tissue types.35 These are pSCs, which are generated from 
adult somatic cells through in vitro experimental 
investigation.36 They are synthesized in vitro by reprogram-
ming mature mouse fibroblast cells through epigenetic 
modification.34 In human beings, production of iPSCs was 
started through the introduction of four genes — SOX2, 
MYC, OCT4, and KLF4 — into matured somatic 
fibroblasts37 and other human somatic cells.38 The genes 
are induced in these cells through the encoded retrovirus.39 

Figure 1 Role of different types of SCs in SC transplantation. MSCs were the nonhematopoietic source utilized to reduce GVHD (reduce risk of graft failure by secreting 
soluble factors with anti-inflammatory properties), efficient HSCs support to engraftment of transplant, hematologic reconstitution, and to improve the HSCT outcome. 
HSCs can be generated from the hematoendothelial transition process from HESCs to HiPSCs, and commonly from bone-marrow SCs, PBSCs, and umbilical cord blood. 
The pluripotent potential of VSELSCs also enables to generate HSCs. 
Abbreviations: GVHD, graft-vs-host disease; HESCs, human embryonic SCs; HSCs, hematopoietic SCs; HSCT, hematopoietic SC transplantation; HiPSCs, human induced 
pluripotent SCs; MSCs, mesenchymal SCs; PBSC, peripheral blood SC; VSELSCs, very small embryonic-like SCs.
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The ability of iPSCs to expand into multicellular lineages 
enables them to be a potential SC-therapy method. Various 
types of patient-specific SCs have been synthesized from 
their expansion process in vitro.40 Research has revealed 
their cellular therapeutic significance in various hematologic 
malignancies, such as CML, MDS, AML,22 and BCR-ABL− 
myeloproliferative neoplasms.41 Donor blood cells are repro-
grammed to iPSCs to generate patient-specific SCs.40 With 
specific forward-reprogramming protocols, iPSCs have the 
therapeutic potential to generate hematoendothelial progeni-
tor cells. Lange et al demonstrate the possible generation of 
hematopoietic progenitor cells by combinatorial expression 
of transcription factors SCL, LMO2, GATA2, and ETV242 

(Figure 1). Moreover, researchers have been trying to gen-
erate hematopoietic progenitor cells from PSCs. Shan et al 
described possible strategies for generation of HSCs from 
human mesenchymal cells with hematopoietic potential 
(Figure 1). They revealed the derivation or generation of 
hematopoietic progenitor cells from mouse PSCs using 
in vitro induction methods. Therefore, iPSCs can be have 
possible therapeutic potential in SCT; however, they present 
safety concerns, due to their teratoma formation.30 

Allogeneic transplantation of bone marrow or umbilical 
cord reveals rejection, due to the effect of graft-vs-host dis-
ease (GVHD) and disease relapse, which restricts its 
applicability. In cases of auto- 
HSCT, there is no risk of rejection, but there remain leukemic 
cells that induce disease relapse. Collectively, these 
disadvantages of bone-marrow HSCT mandate alternative 
sources of HSCs aiming to reduce GVHD, disease relapse, 
and bone marrow–failure syndrome. Considering this, iPSCs 
represent a suitable source to generate HSCs in vitro with 
limited immunogenicity.43 These have a major advantage 
over bone-marrow and cord types, since their autologous 
transplantation from iPSCs does not induce GVHD.44

Very Small Embryonic-Like Stem 
Cells
Bhartiya et al characterized VSELSCs as the “true SCs” and 
the subset of different SC population, such as HSCs, ovarian 
SCs and MSCs. They express the OCT4A antigenic marker in 
their nucleus.30 The pluripotency features of 
VSELSCs enhance their expansion in vitro using the pyrimi-
doindole-derivative molecule UM171,45 and in turn are uti-
lized for expansion of CD34+ HSCs.46 VSELSCs are 
involved in homeostatic processes, because they are found in 
quiescent stage, and later they differentiate into ASCs. They 

differentiate into HSCs in vitro.23 VSELSCs can be generated 
from primordial germ cells and undergo further differentiation 
into HSCs47 (Figure 1). Bone marrow–derived VSELSCs may 
not have features characteristic of hematopoietic progenitor 
SCs, but they can retain hematopoietic features through exter-
nal-stress growth factors.48 The transcriptional factors Oct4A), 
Nanog, and Rex1 are found in VSELSCs, but they are not 
expressed in HSCs.22 Treatment of immunocompromised 
ALL8 patients with granulocyte colony–stimulating factorin-
creases mobilization of VSELSCs to the peripheral 
circulation.49 Dissemination of VSELSCs to the circulation 
promotes the regeneration of tissue.49 A recent investigation 
done by Serap et al hypothesized that achievement of 
effectiveHSCT may be associated with nonhematopoietic pro-
genitor cells — VSELSCs.22 The expression of transcription 
factors and pluripotent markers may contribute to their ther-
apeutic potential in SC transplantation. Demonstrations on 
immunocompromised mice have shown that VSELSCs have 
a lower teratoma effect.47 Similarly, an investigation done on 
animal models showed that they have the capability to 
differentiate into HSCs.46

Potential Effect of 
Cotransplantation of Mesenchymal 
Stem Cells to Treat Leukemia
Bone marrow–derived MSCs are important to regenerate 
injured tissue.50 Recently, MSCs have served as a new cel-
lular therapy method in the field of regenerative medicine.13 

They inhibit cancer-cell proliferation through secretion and 
inhibition of Dkk1- and Wnt-signaling pathways, 
respectively.51 Besides this, MSCs alter the immune system 
to regenerate damaged tissue and decrease inflammation.52 

GVHD is one of the complications of both auto-SCT and 
allo-SCT during treatment.53 This posttransplantation com-
plication is associated with immunologic intolerance.53 

Indeed, MSCs have been shown to support the engraftment 
of autologously or allogeneically transplanted HSCs by 
secreting soluble factors or immunomodulators, such as 
TGFβ1 and HGF which inhibit the proliferation of CD4+ 

TH1, TH17, CD8+ T, and natural-killer cells, leading to pre-
vention of GVHD.6,24,26 Therefore, GVHD that occurs after 
HSCT can be treated by coinfusion with MSCs.54 Bone 
marrow–derived MSCs are components of the hematopoietic 
niche. Additionally, they have the capability to regulate the 
hematopoiesis process through interactionand communicat-
ing with HSCs and progenitor cells55 (Figure 1).
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Umbilical Cord Blood Cells and 
Haploidentical Transplantation
Donor availability is a very important issue, particularly in 
patients from ethnic minorities. A haploidentical donor and 
CB allow allo-HSCT in the majority of transplant-eligible 
patients.UCB is a well-established cellular product source for 
hematopoietic reconstitution and transplantation.37 It is derived 
from fetal tissue and acts as a potential source of progenitor 
SCs to synthesize matured HSCs16 (Figure 1). The lower 
complication rate of GVHD and less stringent HLA- 
matching requirements make it a valuable source of HSCs.56 

It is more highly enriched with HSCs/progenitor cells than 
peripheral blood with regard to colony-forming unitgranulo-
cyte/macrophage progenitors and CD34+-cell content.57

The effect of HLA mismatching is less severe in mis-
matched UCB transplantation than unrelated peripheral and 
bone marrow–blood transplantation;58 therefore, higher 
numbers of mismatched donors may donate to save lives. 
Compatibility at the DRB1-allele and HLA-A and 
-B antigen level is better for UCB transplantation to be 
selected traditionally without consideration of HLA-C.59 

UCB has significance for allo-HSCT transplantation, because 
it requires lower HLA matching than for unrelated donors.59 In 
AML, unrelated CB transplantation has failed, due to nonre-
lapse mortality.60 However, the cost of CB delaying engraft-
ment and risk of infection are still challenges in its application 
for hematologic diseases, including leukemia.61,62

In cases of rapid requirement of allograft and absence of 
an HLA-matched donor, HLA-haploidentical SC transplan-
tation is considered a therapeutic option.63 Peripheral and 
bone-marrow SCs can be donated from these family mem-
bers if they have one common haplotype.64 HLA- 
haploidentical cells are considered an optional source for 
HSCT.65 In haploidentical transplantation, the graft contains 
lower of T-cell content to diminish GVHD.66 Outcomes of 
haploidentical HSCT may be affected by innate immune 
cells like T cells and natural-killer cells.67 In high-risk acute 
leukemia, the applicabilion of HLA-haploidentical HSCT is 
elevated.65 However, outcomes of nonrelapse mortality and 
GVHD may be increased from haploidentical HSCT with 
higher HLA mismatching including from partially related 
donors, as the content of T-cell is replete.68

Bone-Marrow Stem Cells as Source 
for Stem-Cell Transplantation
A soft, gelatinous tissue, bone marrow is used as the source of 
peripheral HSCs.69 Researchers have argued that both bone 

marrow and peripheral blood are major sources of 
SCs. SCASCs generated from bone marrow are known as 
bone-marrow SCs,37 having clinical significance in restoring 
damaged cardiac tissue through gene therapy.70 Also, they can 
be a potential source for auto-HSCT..37 There is an improve-
ment in GVHD in patients with bone-marrow SC transplanta-
tion compared to peripheral blood SCs (PBSCs).19 Bone 
marrow–SC transplantation is utilized in various hematologic 
malignancies, such as AML, ALL, and CML. The use of 
bone-marrow transplantation from compatible donors is the 
most effective treatment for CML.71 Allogenic bone-marrow 
transplantation is an effective alternative treatment option for 
patients who are resistant to chemoradiation therapy and have 
a higher probability of relapse.72 The physician removes mar-
row from the donor’s hip bone using surgical procedures, 
including anesthesia, sterile needles, and syringes, and 
replaces the donated bone marrow within 4–6 weeks. As the 
level of T cell compare in both bone-marrow transplantation 
and PBSCs, the concentration of T cells is reduced in bone- 
marrow transplantation.19

Peripheral Blood Stem Cells as 
Source for Stem-Cell 
Transplantation
Recent SC-transplantation protocols state that mobilization 
of HSCs from bone marrow to peripheral blood is an effec-
tive treatment method in the majority of transplanted 
patients.73 Although bone marrow is major source of SCs, 
a hematopoietic growth factor found in PBSCs showed that 
these are also another possible source of SCs.74 PBSCs from 
bone marrow are a valuable source in restoring hematologic 
disorders.69 The potential effect of PBSCs depends on hema-
topoietic development and enhancement of immunologic 
profiles, and hence they are a valuable source of HSCs to 
treat hematologic disorders. Peripheral blood CD34+ 

cells have hematopoietic potential for SCT.20 Javarappa 
et alpurified hematopoietic progenitor cells from CD4+ per-
ipheral blood cellsafter which the cells differentiated into 
megakaryocytes and myeloid-lineage cells75 (Figure 1). 
PBSCs serve as a valuable SC source if mobilization is 
supported by granulocyte colony–stimulating factor.19 They 
are applicable in autolo-SCT in the treatment of multiple 
myeloma.76 The utilization of peripheral SCs as a source of 
SCs may induce the occurrence of GVHD.77 Even if they 
have such effects, the immune system has been enhanced, 
due to elevation of T-cell secretion. On the contrary, the 
elevation of T cells may also cause GVHD development;19 
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however, PBSC collection in children may expose them to 
metabolic complications, including hypocalcemia and 
hypoglycemia.78

Hematopoietic Stem-Cell 
Abnormalities in Leukemia
The tight control in proliferation and differentiation of 
HSCs has significant value for the synthesis of blood 
cells.7 Multipotent HSCs are responsible for cell division 
and proliferation.79 Somatic mutation of T cells during 
DNA methylation and posttransplantation alteration are 
risk factors for ALL.8,80 CML is a hematologic disorder 
induced by reverse chromosomal translocation on t(9;22) 
(q34;q11)81 and BCR–ABL oncogene effects on prolifera-
tive myelogenous cells.82 Mutated gene BCR–ABL, has 
a tyrosine-kinase effect and induces the release of highly 
proliferative myelogenous cells from bone marrow.81 The 
MYC gene is another oncogene that induces gene expres-
sion and has a proliferative effect on hematopoietic pro-
genitor cells.83 In addition to this gene, BCL2 is another 
mutated gene that inhibits programmed cell death. As 
such, cancerous cells proceed with their continued prolif-
eration and leukemic cells are released from the tissue 
where they were generated.84 Hitzler et al reported that 
a mutation of the GATA1 gene in acute megakaryoblastic 
leukemia affects hematopoietic transcriptional factor. On 
the other hand, chromosomal translocation of t(7;11)(p15; 
p15) HSCs lead to the integration of genes, including 
HOXA9 and NUP98, which also leads to distortion in the 
transcriptional process of hematopoietic precursor cells.85 

Aberration of the transcriptional process in these cells 
induces abnormal cell proliferation, which may lead to 
AML.85 Overproliferation of lymphoblasts within bone 
marrow can also result in the pathogenesis of ALL.8,49

Hematopoietic Stem-Cell 
Transplantation to Treat Leukemia
Emphasis on the eradication of hematologic malignancies 
has shifted from cytotoxic chemotherapy to donors’ immune 
cells.86 HSCT is utilized by 20,000 people in the 
US every year.87 It is applicable in treating patients with 
rare diseases, such as AML,22 ALL,8 CML, Burkitt’s lym-
phoma, HL, and NHL,11 and other hematologic 
malignancies.88 Although it serves as an alternative treatment 
method, HSCT still has a relapse risk among 40%–80% of 
recipients.89 Both auto-HSCT and allo-HSCTare the main 
alternative cellular therapeutic methods to treat leukemia. 

Auto-HSCT is the appropriate and applicable therapeutic 
option for multiple myeloma1,18 and HL.11 Charles et al 
explained that auto-HSCT was more frequently utilized by 
European and North American countries than allo-HSCT to 
treat myeloma. A lower mortality rate for myeloma is seen 
with auto-HSCT. Auto-HSCT is an established treatment 
approach if myeloma is at an acute stage, but for older 
patients it requires extra improvement.90 The occurrence of 
GVHD among myeloma patients who undergo allo-HSCT is 
50% compared to 5%–20% of occurrence of auto-SCT 
patients91 (Figure 2). As such, fewer GVHD effects have 
been seen in auto-SCT n treating multiple myeloma and 
HL.11 Furthermore, in HIV-related lymphoma, auto-HSCT 
is considered an applicable therapeutic option in both 
relapsed HL1 and relapsed NHL patients.18,92

On the other hand, allo-HSCT is a curative treatment 
approach for severe AML93 It has been confirmed that hema-
tologic toxicity is lower in these recipient patients. Allo- 
HSCT has also been used as a treatment option for acute 
lymphoid leukemia and multiple myeloma.1,23,94 Though 
alternative treatments remain undefined, it is a valuable treat-
ment tool for hematologic malignancies. Reduced-intensity 
conditioning after allo-HSCT has been seen in Spain.95 The 
toxic effect of allo-HSCT is associated with graft-vs- 
leukemia reactions. Chronic myelogenous leukemia patients 
show lower relapse rate than other allogeneically trans-
planted leukemia patients.96 The therapeutic landscape of 
CML has shifted dramatically with developments tyrosine- 
kinase inhibitors (TKIs), which target the BCR–ABL1 
hybrid oncoprotein and block the constitutive activity of 
tyrosine kinase. The course of CML is typically triphasic, 
with an early indolent chronic phase (CP), followed by an 
accelerated phase and a blast (crisis phase (BP).97,98 For 
selection of appropriate TKIs, of CML patients should be 
tested for BCR–ABL1 kinase–domain mutation (mutation 
profile), disease phase, and patient comorbidities. For exam-
ple, if the patient has such mutations as Y253H, E255K/V, or 
F359C, physicians recommend dasatinib or bosutinib as TKI. 
On the other hand, if patients are in an advanced disease 
phase (BP) or CML-CP (with T315I mutation), third- 
generation ponatinib is preferred over imatinib.99–103 

However, allo-HSCT remains a therapeutic option for 
patients in CML-CP whose CML has progressed after at 
least two TKIs and after trialing ponatinib therapy (for 
T315I mutation) to reduce the CML burden, and for the 
effectiveness of the transplantation.99,100,102 An improve-
ment in immunologic tolerance and lowered GVHD effect 
mean allo-HSCT is the only curative treatment option for 
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CML-BP104 (Figure 2). Similarly to CML, highly compli-
cated and severe AML is effectively treated with allo- 
HSCT.22 Complications of AML may lead to higher 
mortality and morbidity rates, which may be due to chronic 
GVHD among patients >50 years old.105 Pediatric ALL 
patients presenting with indications of higher relapse risk 
are treated (10% of treatment) with allo-HSCT.106

ALL patients who develop high relapse risk are indica-
tions for treatment with allo-HSCT.107 Allo-HSCT is 
a standard treatment method for ALL patients who are at 
higher risk.108 The use of allo-HSCT has lower toxicity in 
young patients.86 Allo-HSCT has lower relapse risk than 
auto-HSCT in multiple myeloma.18 Graft-vs-tumor 
reactions in hematologic malignancies depend on the 
donor’s T cells and donor lymphocyte infusions. The deci-
sion to perform allo-HSCT depends mainly on reduced 
intensity conditioning.109 Researchers haverecommended 
that the use of allo-HSCT should depend on strong clinical 
data; however, 28%–49% of allo-HSCT patients develop 

relapse risks for disease.110 Moreover, allo-HSCT has been 
widely applied as a therapeutic option in both HL and 
NHL.11

Conclusion
SCs play a major role in cell-based therapy to treat both 
hematologic and nonhematologic malignant disorders. They 
are mainly involved in the application of transplantation. 
Adult SCs (bone-marrow SCs), PBSCs, and UCB are the 
major potential sources of HSCs used during SC transplanta-
tion. Similarly, apart from ethical issues associated with 
disruption of inner cell mass, ESCs and ELSCs are also 
sources of HSCs as a therapeutic option to be utilized in SC 
transplantation. The generation of HSCs from iPSCs through 
hematopoietic–endothelial transition will be therapeutic 
options during times of inadequate availability of compatible 
donors. On the other hand, non-HSCs and MSCs are possible 
to use as coinfusion to support engraftment of transplants, 
hematologic reconstitution, and manage GVHD 

Figure 2 Comparison of allogeneic and autologous stem-cell transplantation with hematologic disorders. Autologous stem-cell transplantation has been utilized as 
a treatment protocol to treat MM and HL, due to its initial response, low relapse sensitivity, and positive positron-emission tomography (+PET). Patients at higher risk 
or progress of AML are treated with allo-HSCT. Chronic phase 1 (CP1), TKI intolerance, and blast crisis enables allo-HSCT to be a standard treatment option for the 
treatment of CML. Allo-HSCT is also a treatment option for NHL patients presenting with complete remission 1 and 2 (CR1 and CR2) indications and also relapse after 
auto-HSCT. Although they have graft-vs-leukemic toxic effects, they are a significant alternative cell-based therapy to treat hematologic malignancies. 
Abbreviations: ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia; CML, chronic myeloid leukaemia; HL, Hodgkin’s lymphoma; MM, multiple myeloma; NHL, non-HL.
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posttransplantation. Auto-HSCT and allo-HSCT are the 
major cellular therapeutic options to treat leukemia. The 
lower relapse risk, blast crisis, TKI-intolerant patients in the 
CP and at higher risk of disease, and higher relapse risk are 
indications to utilize allo-HSCT rather than auto-HSCT to 
treat different types of leukemia. Likewise, primary refrac-
tory sensitivity to relapse and positive PET are basic 
indications to prefer auto-HSCT to allo-HSCT in treating 
both multiple myeloma and HL. Therefore, allo-HSCT is 
a more applicable standard cellular therapeutic option than 
auto-HSCT for many classes of leukemia.

Abbreviations
Allo-HSCT, allogeneic hematopoietic stem–cell transplanta-
tion; auto-HSCT, autologous HSCT; CML, chronic myeloid 
leukemia; GVHD, graft-versus-host disease; ESCs, embryo-
nic SCs; iPSCs, induced pluripotent SCs;MSCs, mesenchy-
mal SCs; PBSCs, peripheral blood SCsVSELSCs, very small 
embryonic-like SCs.
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