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Abstract: The interplay between shrimp immune system, its environment, and microbiota contributes
to the organism’s homeostasis and optimal production. The metagenomic composition is typically
studied using 16S rDNA profiling by clustering amplicon sequences into operational taxonomic units
(OTUs) and, more recently, amplicon sequence variants (ASVs). Establish the compatibility of the
taxonomy, α, and β diversity described by both methods is necessary to compare past and future
shrimp microbiota studies. Here, we used identical sequences to survey the V3 16S hypervariable-
region using 97% and 99% OTUs and ASVs to assess the hepatopancreas and intestine microbiota
of L. vannamei from two ponds under standardized rearing conditions. We found that applying
filters to retain clusters >0.1% of the total abundance per sample enabled a consistent taxonomy
comparison while preserving >94% of the total reads. The three sets turned comparable at the family
level, whereas the 97% identity OTU set produced divergent genus and species profiles. Interestingly,
the detection of organ and pond variations was robust to the clustering method’s choice, producing
comparable α and β-diversity profiles. For comparisons on shrimp microbiota between past and
future studies, we strongly recommend that ASVs be compared at the family level to 97% identity
OTUs or use 99% identity OTUs, both using tailored frequency filters.

Keywords: shrimp microbiota; 16S profiling; OTUs; ASVs; clustering methods; denoising

1. Introduction

Crustacean production is one of the fastest-growing economic activities to embrace
aquaculture as its primary source for commercial produce [1], with over 9.38 million tons of
specimens produced worldwide as of 2018, accounting for 22% of the international aquatic
species market. Since the Pacific whiteleg shrimp, L. vannamei, is the most commonly
cultured shrimp species worldwide [2], several studies have explored its genetics and, more
recently, the impact of bacteria in its digestive tract both under wild-type and standardized
environmental condition in farms [3–8].

Organ or niche-specific bacteria have shown to contribute to the modulation of the
shrimp’s immune response, its overall nutrient absorption, vitamin production, and the
physiological development and regulation of its metabolic processes, which ultimately
have a relevant impact on shrimp production and can be finely tuned in farms [5–7,9,10].
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Thousands of different microorganisms populate the gastrointestinal tract of shrimp.
However, the hepatopancreas and the intestine are widely different ecological niches.
Each tissue presents specific environment-associated biochemical conditions and nutrient
availability, and they are colonized by different sets of bacteria [4]. The taxonomic variations
in the microbiota have been mainly explored using 16S rDNA profiling from environmental
and aquaculture samples [4,6,7], frequently selecting up to two consecutive hypervariable
regions [9,11]. A previous study determined that the hypervariable region V3 is a cost-
effective alternative to determine the microbiota diversity in the shrimp hepatopancreas
and the intestine [12]. Although amplicons spanning both the V3 and V4 regions bore
a higher taxonomic resolution and diversity, the V3 region showed optimal family-level
resolution and better performance than V4 at the genus level using current sequencing
technologies [12].

By far, the most common type of clustering method for shrimp studies has been
identity clustering, producing operational taxonomic units (OTUs), which use a fixed
sequence identity cutoff, usually 97% for sequences from the same species [13]. However,
different regions vary in their discriminating power in practice, and some phylogenetically-
related taxa share a less predictable identity percentage [14].

In recent years, denoising has been introduced through several different popular
algorithms as an alternative clustering method based on predicting and correcting actual
sequencing errors (noise) before forming clusters, here referred to as amplicon sequence
variants (ASVs) [15–17]. Thus, ASV clustering is based on sequence probability rather
than sequence identity (as in OTUs). The denoising approaches use well-established
statistical models to determine which low-prevalence sequences appear more than would
be expected for artifacts and are therefore valid sequence variants. This results in fewer
but self-consistent custom clusters that have been thoroughly validated to have a more
acceptable precision [18–20]. In recent years, the field of microbiota research has been using
ASVs increasingly often, in addition to the traditional OTUs methods. The differences
of both identity and denoising methods have been explored on mock communities, soil,
mouse feces, human milk, and intestinal samples [19–24] but remain largely unexplored in
shrimp-related ecological niches.

To this date, few studies have used denoising methods to assess the microbiota in
culturable aquatic species, and their obtained taxonomy, α, and β-diversity profiles need
to be compared to OTUs findings to unify the microbiota discoveries. The first such study
in L. vannamei was carried out for the microbiota of Malaysian and Vietnamese specimens
by Zoqratt et al. in 2018 [25] focused on V3-V4 amplicons for studying differences in the
Vibrio genus using a sequence-specific approach.

Now, the objectives of our study were: (i) to obtain adequate sequence filters that make
the taxonomy comparable between OTUs and ASVs 16S profiling for shrimp microbiota,
and (ii) to validate those sequence filters to identify the variations in the microbiota from
different biological (organ) and environmental (pond) niches between OTUs and ASVs.
To this end, we analyzed the 16S profiles from the shrimp intestine and hepatopancreas
from different ponds using the same set of V3 amplicons with 97% and 99% identity OTUs
ASVs using standard algorithms for 16S profiling [15,26]. Our study determined whether
traditional and new clustering approaches are comparable in taxonomy, α, and β-diversity
profiles for shrimp microbiota.

2. Materials and Methods
2.1. Sample Collection

Twelve cultured shrimp, identified as adult L. vannamei specimens by morphological
keys [27], were obtained from two different farming ponds (water salinity ~40 ppm and
temperature ~29 ◦C) in a farm from Northwest Pacific in Sinaloa, Mexico in summer 2016:
Six from pond F3 (henceforth “E” samples, with coordinates 26◦01′45.4′′ N 109◦23′52.9′′ W)
and six from pond R2 (“L” samples, at 26◦01′55.8′′ N 109◦23′12.4′′ W), shown in Figure 1.
Shrimp were fed two times per day using commercial feed (~35% protein) for three months.
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The hepatopancreas and intestine were aseptically dissected in situ from each specimen
and stored in an RNA-later solution at −80 ◦C until used. In total, 12 hepatopancreas and
12 intestines were collected for this study.
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Figure 1. Pond location and anatomic distribution of shrimp organs. (A) Anatomical representation of L.vannamei studied
organs, hepatopancreas, and intestine (both organs were taken from the same specimen). (B) Satellite overview of sample
collection sites in Sinaloa, México (CNES/Airbus©, 2020). Six specimens were taken from each pond: F3 (26◦01′45.4′′ N
109◦23′52.9′′ W) and R2 (26◦01′55.8′′ N 109◦23′12.4′′ W). (C). Diagram showing the source of artefactual variation due to
high-throughput sequencing and different types of clusters used in the present study. Circles represent abundance and
colors different sequence identities.

2.2. DNA Extraction, 16S rDNA Amplicon Preparation, and Sequencing

Total DNA was extracted from each individual organ with Quick-DNA Fecal/Soil
Microbe Miniprep kit (Zymo Research, Irvine, CA, USA) following the manufacturer’s
recommendations. The DNA integrity and concentration were then determined by Agarose
gel electrophoresis and Qubit (LifeTechnologies, Carlsbad, CA, USA), respectively. Primers
338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 533R (5′-TTACCGCGGCTGCTGGCAC-
3′, that have been broadly used for studying shrimp microbiota were used for amplifying
the V3 hypervariable region of the 16S rDNA [28]; primer target sequences were selected so
that the resulting PCR products were purified with AMPure XP beads (Beckman Coulter,
Inc., Brea, CA, USA) and barcoded according to the sequencing library preparation user’s
guide (Illumina, San Diego, CA, USA). Finally, the concentration was assessed with a Qubit
fluorometer and the size distribution with an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA). The V3 libraries were sequenced in an Illumina MiniSeq
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platform (Illumina, San Diego, CA, USA) with as 2x150 Paired-Ends at the Research Center
on Food and Development A.C. (CIAD) in Mazatlán, Sinaloa, Mexico.

2.3. Data Preprocessing

Two operational taxonomic units (OTU) sets were created with identity clustering
methods, and one amplicon sequence variants (ASV) set was created with denoising
methods to evaluate different clustering approaches for the V3 amplicon reads (Supplemen-
tary Figure S2.1). To achieve this, Illumina adapter sequences and amplification primers
were previously removed with Cutadapt v2.0 [29]. For creating datasets 01_OTU_97 and
02_OTU_99, PRINSEQ v0.20.4 [30] was used to filter low entropy sequences, trim low
quality 3′ and 5′-ends, and remove sequences with low mean quality reads were then joined
with COPE v1.2.5 [31]. For creating the 03_ASV set, the Cutadapt-trimmed set was filtered
to remove error-prone paired-end sequences with DADA2 v1.12 suite in R v3.6.0 [15,32].
More detailed methods are available in Supplementary File S1.

2.4. OTU Clustering (Identity-Based)

The COPE-joined set was clustered into operational taxonomic units (OTUs) with
VSEARCH v2.7.0 [33] algorithm in QIIME2 v2019.1 [26] specifying open-reference clusters
at 97% identity for set 01_OTU_97 and 99% identity for set 02_OTU_99 against Greengenes
13_5 references [34]. The QIIME 2 suite was selected for convenience and ease of use. The
clustering algorithm was chosen as it uses a similar centroid approach to that of an earlier
version of UCLUST, the default clustering approach in earlier versions of QIIME 1, one of
the most common pipelines used for aquatic species’ 16S profiles. The 99% threshold was
used to emulate the theoretical maximum identity achieved by DADA2.

2.5. ASV Clustering (Denoising)

The DADA2-filtered reads were used for constructing ASVs with DADA2 in R. This
algorithm was selected due to its ease of use, open-access availability, and because it has no
sequence-length limitations. Error models were created with all sequences and a maximum
of ten iterations, followed by sample-independent denoising. Paired-End reads were then
joined according to the V3 region overlap and filtering the resulting length. This produced
set 03_ASV.

2.6. Chimera Filtering, Taxonomic Identification, and Filters

All downstream procedures were the same for all three sets. Sample-singletons
were removed. Chimeras were detected with VSEARCH using the overlap of reference-
based chimeras (Broad Institute gold database [35]) and de novo chimeras. Taxonomy
identification was carried out with the 97% (set 01) and 99% (sets 02–03) Greengenes
clusters as references, using the scikit-learn classifier v0.19.1 [36], and collated tables were
created for all taxonomic levels. Features (OTUs, ASVs, or taxa) not comprising a minimum
of 0.1% of the total abundance in any sample were removed using in-house R scripts
to avoid filtering biases [37]. The reference database for taxonomy was selected mainly
due to its ubiquity in the field, but the newer clusters available for QIIME2 were used to
address some limitations and known bad assignations in the Pseudoalteromonadaceae and
Vibrionaceae families were corrected beforehand.

2.7. Comparing the Performance of OTU and ASV Sets

In-house R scripts were used for evaluating differences in the actual sequences and
the corresponding read composition of each cluster set. These sequence-based analyses
were carried out with VSEARCH and explored the sequence overlaps between sets and
how nucleotide variations accumulated, resulting in differential resilience of each set to
clustering. Such information also provided an insight into the maximum cluster resolution
of each method and the expected sequence redundancy in each set. Cluster/sequence
tables were compared before and after frequency filters, considering total reads per set,
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total unique clusters/taxa, and their intersection (Supplementary Figure S2.2). Taxa having
informative tags (those not having an empty terminal taxonomic node) were identified
and used to calculate Spearman’s rank correlations between V3 sets. Differences between
specific species were assessed between sets 01 and set 02–03. First, we analyzed taxa in
sets 02–03 with <33% abundance of that reported in set 01 (i.e., predominant in set 01), and
then, we analyzed taxa in sets 02–03 with ≥33% (i.e., predominant in sets 02–03).

2.8. α-Diversity Comparison (Within-Sample)

Diversity analyses were carried with Vegan (v2.5-6) [38] and in-house R scripts unless
stated otherwise. Shannon entropy, total observed features (OUT/ASV/taxa), and Chao1
richness were estimated for each sample from 10,000 rarefied tables at a depth of the
smallest sample. Shannon’s entropy is a proxy for feature diversity consisting of the
calculation of predictability of each new draw that is taken from a random sample and is
expressed as a natural logarithm. The higher the diversity, the greater the uncertainty of
predicting the following items. The Chao 1 index is a calculation of the expected richness,
consisting of the observed features plus additional uncaptured variation that is estimated
by evaluating the ratio of low-frequency features (namely, singletons and doubletons).
Samples were compared by Organ, Pond, and Organ-Pond using sample medians and an
α = 0.05.

2.9. β-Diversity Comparison (Between-Sample)

Tables standardized with average rarefied observations were constructed to calculate
Jaccard (absence/presence) and Bray–Curtis (abundance) dissimilarity matrices. Analysis
of similarities (ANOSIM) tests was used to compare groups (as defined in the previous
section) and carry out pairwise post hoc testing. Matrices were subjected to principal coor-
dinate analysis (PCoA) ordinations. Standardized tables were used to construct weighted
and unweighted UniFrac matrices based on phylogenetic reconstructions created with
SEPP [39]. These distance matrices were analyzed as above.

3. Results
3.1. Different Preprocessing and Clustering Methods Produced Distinct Sets of Clusters

A total of 1,102,570 paired-end (PE) sequencing reads (mean = 45,940.42 ± 8766.43)
were generated from the 24 biological samples, 12 hepatopancreas, and 12 complete in-
testines from the same specimens (Figure 1A), six from each of two ponds (Figure 1B).
Sequences not flanked by the corresponding 16S primer sequences or having spurious
Illumina adapters were removed, obtaining a total of 957,415 reads (39,892.29 ± 8592.20),
which were used for ASVs and OTUs taxonomic profiling (Supplementary Table S3.1). The
V3 sequences were subjected to different quality filters and sequence-joining procedures
to create three types of sequence clusters, two from OTUs at 97 and 99% identity and one
for ASVs, see Experimental Procedures (Figure 1C, Supplementary Figure S2.1). The most
common types of pipelines for the creation of OTUs and ASV clusters are represented by
01_OTU_97 (mean = 34,202.00 ± 8088.06) and 03_ASV sets (mean 36,677.71 ± 7543.79),
respectively, and set 02_OTU_99 (mean = 31,675.54 ± 7335.93) was created to compare the
impact of using a higher clustering identity.

3.2. Sequence-Level Analyses Show Well-Outlined ASV Clusters and Partially Clusterable OTU
Sets That Are Origin-Dependent

Following chimera filters and singleton removal, the set 03_ASV had the most se-
quences (854,841 reads), followed by 01_OTU_97 (780,472) and 02_OTU_99: (717,908).
Notably, both OTU sets retained fewer total reads than the ASV set, hindered by singleton
filters due to their vast number of low-abundance OTUs. These were clustered into 1407
ASVs and 4968 and 11,541 OTUs, respectively, each bearing one centroid (representative)
sequence. The lower diagram shows the total reads that match these compartments (out
of the total 2,353,221 in all three sets). Set 02_OTU_99 had the largest percentage of the
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complete read collection (96.58%), followed closely by the 03_ASV set (94.12%), and further
by set 01_OTU_97 (91.48%).

Despite the methodological differences, 927 of the cluster-sequences (12.96%) were
identical among all three sets (Figure 2A). Of this three-way overlap, their corresponding
clusters accounted for 87.71% of all reads. Regarding two-way overlaps, there was also
a relatively sizeable cluster-sequence overlap between both OTU sets (1,814 sequences,
12.96%), although their corresponding clusters accounted for only 2.63% of all reads in all
three sets. However, 234 sequences were exclusive to the 02_99_OTU, and 03_ASV sets
overlap but accounted for more reads (3.74%). Only a relatively small overlap occurred
between the 01_OTU_97 set and the 03_ASV (0.12% of cluster-sequences and 0.36% of all
reads). Most of the 11,005 set-specific cluster-sequences in this study were found in set
02_OTU_99 (8,566 cluster-sequences, 61.20%), but these accounted for a relatively small
proportion of all reads (2.50%). Despite having the minor collection of centroid sequences
(229), set 03_ASV summed more reads than the unique sequences in set 01_OTU_97 (2.31%
and 0.75%, respectively).
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overlap between the three methodological sets (top) and the corresponding total reads that match such sequences (bottom).
Black = total sequences/reads; red = percentages. (B) Distribution of unique centroid sequences per set. Open-reference
OTU sets include reference-based and de novo cluster sequences, presented as separate segments of each bar. Percentages
of reads matching these sequences per set are shown for each segment. (C) Maximum mismatches between any pair of
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alignment. The y-axis shows the percentage of all centroid sequences presenting a maximum of N punctual differences
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sequence identity threshold. The x-axis shows an increasing identity threshold for clustering exercises. The y axis shows the
percentage of sequences that remain as unique centroids after each clustering iteration. The inner panel shows the 100–96%
identity thresholds in more detail.
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To evaluate how each set of sequences compared to one another, is essential to notice
that clusters in the OTUs sets may have two possible origins under QIIME’s recommended
open-reference pipeline [40]. Either they might be derived from matching previously-
clustered references, or produced by clustering amplicon reads at a fixed sequence identity
cutoffs (de novo-based clusters). As Figure 2B shows, unique centroid-sequences in both
OTU sets were from de novo clusters, most notably in the 02_OTU_99 set. However, in
terms of total sequences, most reads were grouped into reference-based clusters.

Sequence variation within each set was evaluated as a proxy for the clustering resolu-
tion by determining how different each pair of sequences were to one another (Figure 2C).
Single nucleotide changes included indels and mismatches, and the minimum sequence
identity was set to 75%, a lower limit close to related phyla [14]. In total, 32.93% of all
03_ASV cluster sequences presented a single nucleotide difference, compared to 17.94% in
01_OTU_97 and 23.02% in 02_OTU_99, which were confirmed to be derived from reference-
based clustering. In contrast, most de novo clusters did not match any other sequence until
4, and 2 nucleotide changes accumulated, respectively, which matches the limit of predicted
97% and 99% sequence identity for short and medium-length V3 16S rDNA sequences, as
shown in the plot below. Whereas over 70% of all sequences in both OTU sets were less
than 5 nucleotides apart, the 03_ASV centroids produced much fewer variants but were
better outlined (the slope of the line in Figure 2C was not as steep and remained below the
others as changes increased).

Since the identity percentage was different due to the varying length of each ampli-
con, a complementary analysis was carried out to determine how each set endured an
increasing identity threshold for each pairwise permutations of its sequences. As seen in
Figure 2D, the most similar sequences in different clusters had an identity of 99.2%, most
of them observed in the 03_ASV set and to a lesser extent in both reference-based OTU
sets. As expected, de novo 02_OTU_99 clusters had cluster centroids that shared up to
98.8% similarity, whereas the sequences in set 01_OTU_97 showed up to 97% similarity. Set
03_ASV set was the most resilient to clustering as it had the smallest number of sequences
and a low proportion of homologous sequences in separate clusters.

3.3. Filters to Retain OTUs and ASVs, Accounting for >0.1% of the Total Abundance Per Sample

In order to reduce artifactual variation among the samples and low-frequency clusters,
we filtered all tables to retain the OTUs and ASVs, accounting for >0.1% of the total
abundance per sample. This filter only impacted the OTU sets more strongly; however,
it only decreased their number of total reads, with a loss of 5.16% and 12.32% of reads
in sets 01_OTU_97 and 02_OTU_99, respectively, whereas only 1.21% of reads is ASV set
(Figure 3A, dark bars; Supplementary Table S3.2). Precisely, both OTU sets were split
into a larger number of total clusters than their ASV counterpart (Figure 3B, light-colored
bars). However, the abundance filter effectively reduced variation in terms of unique
clusters among all sets, which was leveled off at <800 different clusters per set (Figure 3B,
dark-colored bars). OTU sets lost a much higher percentage of their clusters to filters,
89.27% in 01_OTU_97, and 94.78% in 02_OTU_99, since low-frequency or rare clusters were
more abundant. In contrast, set 03_ASVs lost 44.99% clusters to filters (Supplementary
Table S3.2), resulting in a higher number of unique ASV sets passing the filters (774) than
unique OTUs (01_OTU_97: 533 and 02_OTU_99: 603).
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The reduction of the unique OTUs and ASVs was also observed in the resulting
taxonomy, which was noticeably leveled off at all levels (Figure 3C, dark bars). Interestingly,
after the abundance filter, 58.33% phyla, 39.39% classes, 44.86% orders, 42.20% families,
36.17% genera, and 36.04% species of the total taxa remained independently of OTUs or
ASVs method (Figure 3C, light-colored bars, and Supplementary Table S3.2). Thus, the total
number of unique taxa and assigned taxonomies were similar between OTUs and ASVs
after filter abundance application. All results hereafter refer to the resulting filtered sets.

3.4. Evaluating Taxonomy-Related Differences

Regarding the maximum taxonomic resolution, all sets produced a similar number
of total taxa with informative (non-ambiguous) taxonomical names at each taxonomic
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level, showing limited success at the species level (Figure 4). All three sets assigned over
80% of all reads with a family-level resolution. It is important to note that the other 20%
did have a valid taxonomy, but the centroid sequences of those clusters were similar to
multiple phylogenetically-distant sequences. That resulted in a truncated taxonomy at a
lower taxonomic level, where the last common ancestor (LCA) of the resulting hits would
be found. A few of these, however, were truncated due to direct assignation to incomplete
taxonomies derived from the 99% reference database OTUs that was used for an assignation.
At genus-level resolution, the 47.50%, 67.49%, and 66.71% of sequences in the 97%, 99%
identity clusters, and ASVs were assigned, respectively (Figure 4). Likewise, 26.08% and
24.83% of the reads were assigned at the species level for 0TUs_99 and ASVs, respectively,
while only 16.38% of the reads were assigned for OTUS_97 (Figure 4). To delve deeper into
the possible causes of whether no species could be assigned for most sets, we traced back
the sequences previous to filtering to assay their matching taxonomy. It turned out that out
of the total sequences in the 01_OTU_97 set, 60.85% of all missing species were produced
by a lower LCA of the clusters, whereas 39.15% were due to references having no species
label. Similarly, 63.77% of 01_OTU_99 sequences had been truncated due to the LCA and
36.23% due to missing labels. Contrastingly, only 51.57% of the sequences with no species
in the 03_ASV set were due to LCA, whereas 48.43% were due to missing labels.
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After that, we explored whether the obtained taxonomic profiles were equivalent.
Venn diagrams in Figure 5 show a larger coincidence of matching taxa where 90.48% phyla,
94.87% classes, 90.36% orders, 86.30% families, 65.88% genera, and 58.41% species were
detected by the three datasets. Most importantly, these taxa accounted for 99.99% reads in
phyla and classes, 99.95% in orders, 99.77% in families, 97.40% in genera, and 94.95% in
species (Supplementary Table S3.3). In contrast, taxa uniquely associated with a specific set
represented <0.7% of reads regardless of the taxonomic level. It is also worth noting that the
03_ASV set had Archaea as their associated exclusive taxa, while set 01_OTU_97 showed
the highest number of exclusive taxa; however, most corresponded to non-informative tags
in higher taxonomic levels (unspecified genus and species). Interestingly, Venn diagrams of
shared and unique taxa at different taxonomic levels prior to the abundance filter showed
a high number of taxa associated with a specific set but with few sequences assigned
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(Supplementary Figure S2.2), suggesting the successful application of the abundance filter
to homolog the taxonomy between clustering methods.
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Next, we explored if the shared taxonomies were equivalent in terms of sequence
abundance between the three sets. To this end, we analyzed the correlations between sets
at all taxonomic levels, only considering taxa with informative tags (Figure 6). These were
higher (ρ ≥ 0.93) from phylum through family levels between all three sets. The larger
discrepancies were at the genus (ρ ≤ 0.65) and species levels (ρ ≤ 0.31) for the 01_OTU_97
set, showing higher correlations between the 02_OTU_99 and 03_ASV sets (ρ = 0.98 and
ρ = 0.95, respectively).

We further explored whether taxonomic discrepancies between the 01_OTU_97 set,
the most commonly used type of cluster used for studying shrimp microbiota, and the
rest of the sets may arise from resolution differences. Taxonomic composition and abun-
dance were similar up to the family level (Supplementary Figure S2.3), regardless of the
clustering method as expected by the larger co-occurrence of taxa in such levels (Figure 5).
Overall, Proteobacteria was the most abundant phylum, and Vibrionaceae, Methylobacte-
riaceae, Comamonadaceae, Caulobacteraceae, and Oxalobacteraceae the most abundant
families (Supplementary Figure S2.3). Genus-level composition and relative abundance
were congruent between the ASV and the 99% OTU-derived taxa but different from set
01_OTU_97.



Genes 2021, 12, 564 11 of 21Genes 2021, 12, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 6. Spearman’s rank correlation (ρ) of the informative taxa distributions in all sets on multiple taxonomic levels. 
Only taxa with a valid unambiguous terminal taxonomic node are included. The upper or lower sections of symmetric 
matrices are presented per level to show all set permutations. 

We further explored whether taxonomic discrepancies between the 01_OTU_97 set, 
the most commonly used type of cluster used for studying shrimp microbiota, and the 
rest of the sets may arise from resolution differences. Taxonomic composition and 
abundance were similar up to the family level (Supplementary Figure S2.3), regardless of 
the clustering method as expected by the larger co-occurrence of taxa in such levels 
(Figure 5). Overall, Proteobacteria was the most abundant phylum, and Vibrionaceae, 
Methylobacteriaceae, Comamonadaceae, Caulobacteraceae, and Oxalobacteraceae the 
most abundant families (Supplementary Figure S2.3). Genus-level composition and rela-
tive abundance were congruent between the ASV and the 99% OTU-derived taxa but 
different from set 01_OTU_97. 

The species-level showed a markedly different taxonomic distribution between the 
three sets, with the most pronounced differences in the 01_OTU_97 set (Figure 5 and 
Supplementary Figure S2.4). Approximately 25% of reads in this set were assigned to 
absent or low abundance species in the other sets (Supplementary Figure S2.4A), most 
importantly to undefined species from Vibrionaceae (17.42%). Other 56 such species 
represented 6.16% and included undetermined species from the order Burkholderiales 
and some bacilliary species only identified at order Gemellales. Contrastingly, 25.75% 
and 24.48% of all their reads for OTUs_OTU_99 and ASVs, respectively, were instead 
assigned to more specific species labels absent or in low abundance in the 01_OTU_97 set 
(Supplementary Figure S2.4B). These included undetermined species from genus Vibrio 
(10.72 ± 0.52% of reads in those sets, and 1.91% in set 01), and those from Vibrio tapetis 
(7.36 ± 0.28% in sets 02-05 compared to 0.83% in set 01). Other such 74 species collectively 
represented a cumulative abundance of 7.04 ± 0.16% in these sets, whereas, in set 01, 
these account for a much lower 0.21%. They included different species from Bacillales 
and Burkholderiales orders, and the Oxalobacteraceae family, Pseudoburkholderia malthae, 
Massilia niastensis, and an undetermined species of Massilia. 

  

Figure 6. Spearman’s rank correlation (ρ) of the informative taxa distributions in all sets on multiple taxonomic levels. Only
taxa with a valid unambiguous terminal taxonomic node are included. The upper or lower sections of symmetric matrices
are presented per level to show all set permutations.

The species-level showed a markedly different taxonomic distribution between the
three sets, with the most pronounced differences in the 01_OTU_97 set (Figure 5 and
Supplementary Figure S2.4). Approximately 25% of reads in this set were assigned to
absent or low abundance species in the other sets (Supplementary Figure S2.4A), most
importantly to undefined species from Vibrionaceae (17.42%). Other 56 such species
represented 6.16% and included undetermined species from the order Burkholderiales
and some bacilliary species only identified at order Gemellales. Contrastingly, 25.75%
and 24.48% of all their reads for OTUs_OTU_99 and ASVs, respectively, were instead
assigned to more specific species labels absent or in low abundance in the 01_OTU_97 set
(Supplementary Figure S2.4B). These included undetermined species from genus Vibrio
(10.72 ± 0.52% of reads in those sets, and 1.91% in set 01), and those from Vibrio tapetis
(7.36 ± 0.28% in sets 02-05 compared to 0.83% in set 01). Other such 74 species collectively
represented a cumulative abundance of 7.04 ± 0.16% in these sets, whereas, in set 01,
these account for a much lower 0.21%. They included different species from Bacillales
and Burkholderiales orders, and the Oxalobacteraceae family, Pseudoburkholderia malthae,
Massilia niastensis, and an undetermined species of Massilia.

3.5. Collated Group Richness and Entropy Evaluated through α-Diversity

We selected two organs, the intestine, and the hepatopancreas, to test a biological
variable and two ponds, F3 and R2, to test an environmental variable in the effects on within-
sample (α) and between-sample (β) diversity. Thus, for further analysis, we separated the
samples according to their organ and pond source. We found that all three sets identified
similar α-diversity trends for organ and pond, independently of the clustering method
(Figure 7). Interestingly, both OTU sets showed a significantly (α = 0.05) greater expected
richness (Chao1) than the 03_ASV set (Figure 7). On the contrary, the ASV set presented
lower, albeit non-significant, diversity (Shannon’s entropy), suggesting that the OTU sets
have a larger population of clusters with smaller frequencies that inflate the expected
richness, whereas there are a slightly larger number of equally-distributed clusters in the
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ASV set. Comparison of the samples’ inner diversity (richness and entropy) at the different
taxonomic levels revealed the same group differences observed in the diversity of OTUs
and ASVs (Supplementary Figure S2.5).
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Figure 7. Group-collated within-sample diversity estimations for all sets. Each sample’s estimator was calculated from
independent rarefactions drawn from each methodological set. Boxplots were drawn from the full array of observations per
group. (A) Chao1 estimated richness adjusted for doubletons. (B) Shannon’s entropy.

Within each set comparison, the hepatopancreas samples had a greater, but non-
significantly difference, expected richness (Chao1) and a greater and significant (α = 0.05)
diversity (Shannon’s entropy) compared to the intestine samples (Figure 7), suggesting
that three methods produce equivalent differences in within-sample diversity. We also
evaluated an impact on the pond on α diversity microbiota where the expected richness
difference between pond samples was significant in the OTU sets but not in the ASV set. In
addition, the three sets reported significant differences between the entropy pond groups.

3.6. Group Abundance and Composition Differences Evaluated through β-Diversity

All protocol sets were more homogeneous in between-sample diversity in terms
of abundance than in composition and this was observed in all taxonomic levels. The
unweighted UniFrac-derived PCoAs showed a sample separation between the intestine
and hepatopancreas and between the F3 and R2 pond (Figure 8). ANOSIM R analysis
showed that samples were homogenous in terms of composition between ponds (F3 and
R2; R mean = 0.32 ± 0.03) and organs (I and H; 0.25 ± 0.02) for the three sets (Figure 8).
When organ-pond groups were defined (IF3, IR2, HF3, and HR2), R statistics showed
a higher and statistically significant (α = 0.05) group heterogeneity of both variables in
shrimp microbiota for both the unweighted (R mean = 0.76 ± 0.63) and weighted (R mean
= 0.60 ± 0.01) UniFrac distances in the three sets (Table 1). Lastly, we confirmed that
diversity differences among groups were not restricted to cluster composition but reflected
in each group’s taxa (Jaccard). Supplementary Figure S2.6 and Supplementary Table S3.4
showed that, except for phylum and class, all taxonomic levels showed statistically different
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(α = 0.05) samples among ponds and organs (as analyzed with ANOSIM). Although the
sets had different power of resolution for diversity, they all produced the same patterns.
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Table 1. ANOSIM results for group comparisons with phylogenetic-based composition and abundance differences.

Metric Set Org R Pond R Org-Pond R Org Pval Pond Pval Org-Pond Pval

Unweighted Unifrac 01_OTU_97 0.297 0.336 0.802 0.006 0.001 0.001
Unweighted Unifrac 02_OTU_99 0.273 0.352 0.805 0.01 0.001 0.001
Unweighted Unifrac 03_ASV 0.226 0.294 0.692 0.013 0.002 0.001
Weighted Unifrac 01_OTU_97 0.168 0.165 0.607 0.022 0.031 0.001
Weighted Unifrac 02_OTU_99 0.166 0.153 0.592 0.028 0.034 0.001
Weighted Unifrac 03_ASV 0.159 0.159 0.596 0.022 0.028 0.001

4. Discussion

The most significant differences in the overall bacterial composition in our study were
those observed between the different organs, the intestine and the hepatopancreas. The
homeostasis of aquatic species is heavily influenced by environmental conditions, such
as temperature, salinity, pH, and nutrient availability impacting the diversity of microor-
ganisms that share the same habitats [41]. The relevance of host-associated microbiota has
been established by several studies focusing on the essential role that bacteria play in the
intestinal tract. These bacteria play a role by modulating the immune response, establishing
an ecological barrier by competing against pathogenic bacteria, and have critical roles in
nutrient absorption and the regulation of metabolic processes [9,10,42].

Differences between ponds were also significant, which can be explained as the
environmental microbial communities are particularly important in the establishment of
the gastrointestinal microbiota, as the initial bacterial colonization is thought to have its
origins in the surrounding water and sediment [4,43]. This has been supported by studies
reporting similarities in the bacterial composition of sediment and that from the tract of
aquatic species that present a burrowing behavior [41]. Even though rearing conditions are
controlled in aquaculture crustacean production settings, the microbial composition has
been found to vary between ponds in shrimp farms, but differences between ecological
niches within the specimens are far more patent [4,12,44]. In this regard, studies in different
shrimp species have reported a higher diversity in the hepatopancreas than in intestine
samples, both of which are part of the gastrointestinal tract [12,45]. This may reflect an
increased organ-specific selecting pressure, possibly due to its role in the immune response
through the production of lectin, hemocyanin, ferritin, antibacterial proteins, proteolytic
enzymes, and nitric oxide [46–49].

Currently, most studies exploring the 16S-profiles taxonomic composition of the gas-
trointestinal microbiota of aquatic species use identity-based OTU clusters to cope with the
artifactual variability produced by high-throughput sequencing platforms. A practical and
streamlined solution that groups 16S sequences is based on amplicon similarity between
different taxa and varies in terms of sensitivity depending on the identity cutoff [14], as
shown in Figure 1C. This was also seen in our study, where the 99% identity OTU set al-
lowed for a more detailed taxonomic characterization than the 97% set of the less abundant
amplicon variants, assumingly arising from less prevalent taxa [24].

The VSEARCH algorithm used in this study used the same type of centroid-based
clusters used in older QIIME1’s uclust sets. The 99% threshold was selected since DADA2’s
authors claimed their algorithm achieved a single-nucleotide resolution [15]. Since the
V3 region is approximately 127–168 nt long, this would represent roughly a 99% identity
variation. However, the higher sensitivity of this approach also introduced a larger number
of OTUs that actually pointed to the same extant sequences and taxa (Figures 2 and 3).
Denoising methods have gained momentum in recent years as an unconstrained alternative
(not sequence identity-dependent) that does not pose as much a tradeoff of sensitivity
and accuracy since they aim at classifying each amplicon variant separately, considering
the errors that may have been introduced during the sequencing [16–20,24]. Due to
the growing popularization of denoising methods, we deem it necessary to study how
future ASV-based profiles of aquatic species’ microbiota will compare to extant OTU-based
studies. The DADA2 algorithm was selected as it has good technical support and receives
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regular updates from its creators. It is free (unlike UNOISE3) and has no sequence length
limitations (as Deblur). As expected [15,18,19], the denoising approach used in the present
study produced far fewer ASVs than OTUs but with higher abundances. (Figures 1C and 3).
Even though ASVs led to a limited number of species, working with less than 500 species
is not necessarily detrimental but maybe, in fact, more accurate [19,20].

Rare cluster centroid variants in either the OTU or the ASV sets are where the three
methods diverge. To study them, we analyzed the actual sequence variation and how
their distribution varies between sets. The comparison showed that more than half of all
unique centroid (representative) sequences were detected exclusively in the 02_OTU_99
set. Interestingly, these accounted for a mere 2.50% of all reads in the three sets (Figure 2A).
Contrastingly, the much smaller overlap of unique centroid sequences existing between
the three sets (6.62% of all centroid sequences) accounted for over 87% of all reads, which
show that all three methods work well with the abundant amplicons.

Differences that may be attributed to the varying methodologies could be traced back
to punctual changes (detected as indels or mismatches between all pairwise permutations)
in the nucleotide sequence of amplicons sharing high sequence similarity (Figure 2C).
Based on the results, set 03_ASV showed the highest proportion of high-resolution centroid
sequences, with single-nucleotide level differences in almost twice as much as the percent-
age observed in set 01_OTU_97, all of which were found only in reference-based clusters.
In contrast, set 02_OTU_99 showed the highest sequence-redundancy, as close to 70% of all
sequences in that set differed in only two changes between one another, and more than 60%
of them could be clustered at 98% sequence identity and 80% at 97% identity (Figure 2D).

Despite having a smaller number of total reads than the ASV set, reads in both OTU
sets were grouped into a larger collection of clusters, each bearing a different unique
centroid sequence (Figure 2B), more noticeable in the 02_OTU_99 set. This was expected,
as rising the clustering identity assigned sequences into less populated clusters, resulting
in an overestimation of the actual diversity. Even differences of just a couple bases may
produce additional separate OTUs, compared with the 97% identity set. On the contrary,
the ASV sets had fewer clusters (Figure 2B, light bars), as was expected due to denoising,
which has been suggested to be a more accurate measure of the actual diversity [18].

In terms of maximum resolution, both the 99 OTUs and the ASVs had over 98%
sequence identity in their more similar sequences. Interestingly, it turned out that us-
ing reference-based clusters in both OTU sets produced a few clusters bearing a similar
resolution to that seen in the 03_ASV set (Figure 2C,D), while de novo clusters had the
expected identity (97% or 98.8%) in the corresponding 97 and 99 sets. The upper limit
of detection achieved in the 03_ASV set and the reference-based clusters appeared to be
at 99.2% sequence similarity, representing a variation of approximately 1 nt in a 135 nt
sequence. From these analyses, we concluded that set 03_ASV was the most resilient set,
meaning that its clusters are well-outlined, show a similar resolution to that observed in
the 02_OTU_99 but bearing a much lower cluster redundancy.

It is key to highlight that the main focus of the current study was not to evaluate
the technical challenges of producing either identity clusters or denoising, nor how well
they capture the known diversity. This is because most contemporary studies on aquatic
ambiances still use OTUs, and specialized revisions have already demonstrated the major
advantages and limitations of denoising methods [15,16,18–20]. Instead, we intended to
determine how both types of profiles compare to one another if past and future studies
may be compatible and may produce comparable shrimp taxonomy and diversity profiles.
Most studies comparing the resulting taxonomies between OTUs and ASVs have focused
on niches such as soil, mouse feces, human milk, and intestinal samples [19,21–23], but
aquatic species had remained largely unexplored.

Regarding taxonomy, as we concluded in a previous study, the Greengenes database
has some limitations for 16S profiling [12], mainly because it is no longer being maintained,
but it was selected for this study for comparison to legacy sets as it is still the most
commonly used reference in studies focusing on aquatic ambiances. Some of the issues in
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the database (common in the vanilla version of QIIME1) have been addressed as the cluster
references have been recalculated in latter versions of QIIME2 with a newer Bayesian
classifier algorithm [23], and we also fixed known issues with Pseudoalteromonas and Vibrio
assignations. We found that filtering low-frequency clusters produced highly comparable
microbiota sets in terms of taxonomy, α and β diversities (Supplementary Figure S2.5
and S2.6). This shows that existing OTU sets may be compared under even conditions
to upcoming ASV sets by providing adequate sequence filters because variation in OTU
sets is mainly comprised by large collections of small clusters whose centroid sequences
vary in just a few nucleotides from those in larger clusters, which are successfully by all
three approaches.

The frequency filters affected the 99% identity set more prominently, as a larger propor-
tion of sequences were in low abundance OTUs (Figure 3B). This phenomenon derives from
two main components that have been discussed in previous studies: first, the high sequence
identity cutoff makes biological and artifactual variants indistinguishable, resulting in an
overestimation of the total clusters [50–52]. Second, each 16S hypervariable region has a
distinct taxonomic resolution [14], and the identity cutoff for higher levels (genus/species)
is not evenly defined for all clades [12,53]. In our study, we have no means of determining
the actual biological composition. However, our ASV set showed an increased resolution
slightly higher than that of the 99% identity OTUs but with far fewer variants that differ in
1 or 2 bases as the ASV cluster centroids were more distant from one another(Figure 2C,D),
as a result of the denoising process [15]. Even though we cannot assume that this is in fact
due to overestimation in our case, it is clear that most of the additional sequences in the
02_OTU sets group into low-frequency clusters that are peripheric to the most abundant
ones as would be expected for artifactual variants (Figure 1) and these would normally be
discarded due to their low frequency. The taxonomic composition between the sets at all
levels showed a high correlation between the 97% identity clusters and the other sets from
phylum to family (ρ ≥ 0.93), which dropped at the genus and species levels (ρ ≤ 0.65, and
ρ ≤ 0.31, respectively). Therefore, the comparison of taxonomic composition between the
OTU and ASV sets is very feasible at most taxonomic levels (Figure 6), provided adequate
frequency filters are included in the analyses. Notably, the taxa shared among the three
datasets accounted for a high percentage of the total reads in all sets (99.76% in families,
97.40% in genera, and 94.95% in species).

The actual differences were seen in the abundance of ambiguous taxa, mainly found in
the 97% identity OTU set. As we previously reported comparing hypervariable regions [12],
most reads in the 97% OTU set from the V3 region can be unambiguously assigned to a
specific family and nearly half of them to the genus level. However, higher-level clades
often include several different species yielding non-informative assignations (Figure 4).
Although the family-level resolution was similar for all sets (>80% reads), a significantly
larger percentage of all reads had a genus-level resolution in the 99% identity and all ASV
sets, along with a discrete increase in the species level, compared to the 97% OTU set. Thus,
in the current study, in terms of taxonomic resolution, the ASV sets outperformed the 97%
identity OTUs and matched the 99% set, albeit with cleaner cluster limits and more reads
kept, as expected for denoising methods [15–17,19,20]. Regarding the reasons why clusters
cannot be assigned at the species level, our exploration of the taxonomy associated with
the centroid sequences revealed that ASVs had a lower proportion of non-assigned species
that were due to the lack of consensus LCA than both OTU sets. In this set, barely half of
the missing species could be explained by labels missing from the reference database.

Not all clusters that were derived from the different methodologies (OTUs/ASVs)
produced the same sequences, as paired-end processing and sequence grouping are carried
out differently between the methods, but the resulting taxonomic composition buffered
these differences. In this regard, we observed similar numbers of taxa shared in all raw
sets (Supplementary Figure S2.2, Supplementary Table S3.3) and similar abundance dis-
tributions between the 02_OTU_99 and the ASV set (Figure 6). Interestingly, the main
difference between 01_OTU_97 and the 02_OTU_99 and ASV sets arises from taxonomic
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resolution (Figure 4 and Supplementary Figure S2.4), showing a larger proportion of phy-
logenetically distant clades in higher taxonomic levels in the former. For instance, whereas
family Vibronaceae comprised >16% of the total reads in the 97% OTU set, these were
instead assigned to genus Vibrio and species V. tapetis in the 99% OTU, similarly to what
was reported for ASVs. Vibrio is a genus of Gram-negative bacteria from marine environ-
ments, which is pathogenic in culturable animals, such as Vibrio alginolyticus in fish [54],
V. tapetis [55] in mollusks and Vibrio parahaemolyticus, and Vibrio harveyi in crustaceans
such as prawn and shrimp [25,56–58]. In fact, the first study of shrimp microbiota using
ASVs (carried out with UNOISE instead of DADA2) focused on specific Vibrio species and
reported that the species’ diversity might be underestimated when using OTUs using direct
sequence comparisons [25]. Similar observations were made with undetermined species
from order Burkholderiales in set 01_OTU_97. The additional taxonomic resolution of 99
OTU clusters and ASVs allowed for the identification of M. niastensis and Pseudoburkholderia
malthae instead. Gram-negative Burkholderiales were prevalent in the river and cultured
shrimps [44,59], whereas genus Massilia comprise aerobic, motile bacteria that have been
found in water, soil, and air and have been associated with nitrate reduction and chitin
degradation [60,61]. Although its family, Oxalobacteraceae, has been reported to be preva-
lent in shrimp samples [44], there are few mentions of genus Massilia in related habitats [62]
and none specifically of M. niastensis in these samples in the literature. A similar case
occurs with P. malthae, a homotypic synonym of Noviherbaspirillum malthae, characterized
as anaerobic, rod-shaped bacterium present in oil-contaminated sites [63] but has not been
reported as part of shrimp microbiota. Together, these genera and species comprise 1–3%
of the relative abundance in 99% OTUs and ASVs (Supplementary Figure S2.4) and show
the difference in taxonomic resolution of ASVs, which will eventually require databases to
include closer homologous references as the exact species found in shrimp may be missing.

All sets produced similar trends for richness and entropy for organs and ponds regard-
less of the ASVs or OTUs protocols. In general, richness was higher in hepatopancreas than
in intestine samples, contrary to the Shannon entropy diversity (Figure 7). Taxa diversity
comparison also showed similar tendencies (Supplementary Figure S2.5). This was quite
positive since it suggests that previously published OTU surveys of shrimp microbiota
may be compatible with future ASV assays in taxa and α-diversity analyses. The main
difference with ASVs was that all the groups’ estimated values were lower, congruent to
the smaller number of clusters and more homogeneous taxa grouping in the sets. Still,
differences and proportions between organ and pond groups were a perfect reflection of
those detected in the OTUs sets (Supplementary Figure S2.5).

Regarding β-diversity, ordination methods produced a full separation of samples,
both by organ and pond, in all three sets using composition-based (unweighted) UniFrac
distances (Figure 7). This further supports compatibility between the ASV and OTU
methods, validating that both approaches can separate the microbiota from different
organs and different ponds. Nevertheless, these groupings accounted for only a part of
the explained variation. We also found that taxonomy can also effectively identify group
differences at higher levels in both ASV and OTU sets (Supplementary Figure S2.6).

It is also clear that the host exerts robust filtering on establishing external microbes [64],
and as stated before, both approaches show significant differences in the microbial com-
munities between the shrimp gut and hepatopancreas [4]. Here, we observed a more
substantial impact of the biological (organ) on microbiota structure than the environmental
(pond) factor. Consistent with this pattern, it has been shown that sediment microbes
are major sources for shrimp gut commensals in cultural pond ecosystems [65]. Also
importantly, the microorganisms in shrimp aquaculture ponds could be associated with
shrimp disease occurrence [66,67].

Regarding the limitations of the current study, we did not experimentally evaluate
how representative our profiles were of the microbiome analyzed [68]. As microbial
datasets are known to be compositional, experimental biases may be carried to downstream
analyses [69]. This may have been addressed by the addition of a suitable mock community
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as a control to adjust for experimental biases. Yet, commercially available solutions are
mainly focused on human-derived sites, and a separate design would be required in order
to standardize a custom aquatic collection that included bacteria such as members from
Vibrio species and from phyla Cyanobacteria and Verrucomicrobia, which are central to this
niche, to take full advantage [4,44]. However, as the same set of sequences was used for
creating all three profile sets, and since all samples were processed using the same protocol
and sequenced together in a single run, the same amount of technical bias is expected to be
homogenous in the whole set of sequences and hence in downstream analyses including
clustering methods. Thus, we would not expect this to pose a critical limitation that may
invalidate our results regarding comparability between methods.

Since the taxonomic composition and abundance in studies using OTUs and ASVs
can be compared for shrimp samples under confined conditions used in this study, future
prospect studies may include environmental samples from the rearing water and sediment.

5. Conclusions

We postulate that denoising techniques are indeed an alternative to identity clusters
for 16S profiling, the current study describes to what extend both methodologies are
comparable in terms of taxonomy, α, and β diversity profiles when exploring L. vannamei’s
microbiota, as the advantages of ASVs have been amply explored elsewhere. An adequate
preprocessing and filtering as the one proposed in this work will allow for a more even
comparison between current shrimp microbiota studies that use OTUs and future studies
using ASVs. The taxonomic resolution obtained by ASVs was very similar to the 99%
identity OTUs, but having far less low prevalence clusters, showing a promising new
alternative for studying shrimp microbiota. Most importantly, the OTU and ASV clusters
can produce comparable α and β diversity profiles using the described frequency filters,
allowing the detection of analogous organ and pond group differences as long as adequate
filters are applied in order to remove the least populated clusters and taxa.
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