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According to theWorld Health Organization, the world’s leading cause of death is heart disease, with nearly two million deaths per
year. Although some factors are not possible to change, there are some keys that help to prevent heart diseases. One of the most
important keys is to keep an active daily life, with moderate exercise. However, deciding what a moderate exercise is or when a
slightly abnormal heart rate value is a risk depends on the person and the activity. In this paper we propose a context-aware system
that is able to determine the activity the person is performing in an unobtrusive way. Then, we have defined ontology to represent
the available knowledge about the person (biometric data, fitness status, medical information, etc.) and her current activity (level
of intensity, heart rate recommended for that activity, etc.). With such knowledge, a set of expert rules based on this ontology are
involved in a reasoning process to infer levels of alerts or suggestions for the users when the intensity of the activity is detected as
dangerous for her health. We show how this approach can be accomplished by using only everyday devices such as a smartphone
and a smartwatch.

1. Introduction

Heart diseases are one of the most frequent causes of mor-
tality and responsible for nearly two million deaths a year. In
many cases significantly pathological tests in hospital can be
used as a basis for detecting patients at risk for heart disease.
However, one of the problems of disease prevention involves
deciding when a slightly abnormal value is a risk and when
a normal value can be a risk for a specific person according
to her features (e.g., age, weight, etc.) and/or her current
physical activity. Besides, when people are not confined to
hospitals, such information is not available and a medical
problem may not be detected in time.

In that sense, computational techniques are acquiring a
high importance in order to develop flexible and accurate
models of complex biological systems, specifically in the
health domain. Indeed, in recent years, rapid developments in
hardware and built-in sensors have generated the possibility
of sensing a large volume of biometric data. Specifically, it is
growing the use of data mining techniques to solve biological
problems by analyzing large biological datasets [1].

Modeling knowledge by means of ontologies in the
medical domain, especially in the e-health area, is an active
research field. In bioinformatics, ontology-based systems
provide reusable terminology resources and they can be
used to improve the management of complex systems [2–
4]. Thanks to these ontologies, different context information
(e.g., biometric data, user’s activity and medical information,
etc.) can be captured and validated. Furthermore, this ter-
minology enables the definition of expert rules, which in
turn are the input to reasoning processes aimed to infer new
knowledge.Thus, the adoption of ontologies in our approach
is oriented to empower the inference of alert situations from
the user’s current context.

In this work the heart rate and the intensity of the physical
activity are used to detect abnormal situations during the
execution of such activities. The approach takes into account
the variability between different people (age, health status,
fitness level, etc.). All this information is modeled through
ontology and a set of expert rules that form a context-aware
system designed to provide a personalized response when an
unexpected heart rate is detected. Here we introduce all these
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ideas in a research proposal format in order to provide the
guidelines and technical details of our system. Therefore, a
complete evaluation of our system cannot be supplied at this
point and instead we present a thorough study of the different
parts that compose it.

The main contributions in this paper are twofold. First,
the physical activity is determined using data mining tech-
niques over data gathered from nonintrusive wearable sen-
sors. Second, the definition of SHCOntology (simple health
care ontology) allows us to represent a health care context
in order to express expert rules. Such rules capture alert
situations according to the activity that the person is cur-
rently performing, her heart rate, age, fitness status, and
other conditions, such as if the person suffers some cardiac
dysfunction.

The rest of the paper is structured as follows. Section 2
defines the assessment system architecture. Next, Section 3
introduces the proposed sensors deployment and data min-
ing techniques used to determine users’ activities. Empirical
results on the viability of our approach are showed in this
section. Then, Section 4 sets the theoretical base about the
importance of overreaching and overtraining related to some
heart health problems. Section 5 presents the knowledge
model used to assess heart health risks according to the
person’s context. Later, Section 6 shows how this approach
is used in two specific scenarios. Section 7 discusses some
related works. Finally, conclusion and future work are given
in Section 8.

2. Assessment System Architecture

The rapid growth in hardware technology has become an
attractive option to collect data using a wide set of available
sensors. However, there is a need to rely on nonintrusive
sensors trying to keep a minimal deployment and especially
to avoid annoying users. Indeed, built-in cheap sensors are
now integrated into daily use devices, such as mobile phones.
Exploiting built-in sensors leads us to the possibility of large-
scale human sensing and collecting large datasets [5].

Under such conditions, we propose the use of inertial
sensors from a smartphone and a smartwatch to predict the
individual’s activity. As a result, we can use this knowledge
to provide her with some important information about her
health status.

With the aim of extracting such relevant information, this
paper proposes a system which involves two different phases.
Figure 1 shows the overall architecture of the system.

The first phase involves a physical activity recognition
using data mining techniques over the data gathered from
inertial sensors in a smartphone and a smartwatch (see
Section 3). The use of data mining over a data intensive
framework provides the possibility of detecting and learning
behaviors and patterns from biological domain problems.

In fact, bioinformatics research entails many problems
that can be solved by data mining tasks. Concretely, physical
activity recognition using wearable sensors can provide
valuable information regarding individual’s movements and
help us to determine some aspects of her health. Another
valuable information about the individual’s health is her heart

rate. In this first phase of our proposal, this information is
also monitored and gathered directly from the heart rate
sensors in the smartwatch. Note that, in this phase, the
user configures her smartphone with her own features (age,
weight, height,. . .) in order to personalize the system. These
parameters should be configured only the first time that the
system is used.

Once the activity has been determined and the heart
rate collected, this information is forwarded to the context-
aware model, starting the second phase of our proposal
(see Section 5). The context-aware model is responsible for
representing and reasoning over this information in order
to detect possible alert situations. The reasoning model is a
compound of the SCHOntology and a set of expert rules.
The SCHOntology represents our health care domain and
comprehends various aspects of the users and their activities,
including biometric data, possible diseases, fitness status,
and intensity of the activity. Based on the SHCOntology, a
set of expert rules are defined to infer alert situations and
suggestions according to the available knowledge about the
person.

Observe that the first phase of our system is data-driven;
that is, we construct a classifying model from previous
data. On the other hand, the second phase is knowledge-
driven; that is to say, models are now created by experts.
By combining both approaches, the goal of our two-phase
system is to offer an app for early detection of overreaching
of a person while she is doing her normal life or performing
some exercise.

Finally, it is worth mentioning that the app will include
a disclaimer in order to inform the user that it is intended
for informational purposes only and should not be used as a
medical diagnostic device. It should be noted that the system
does not purport to decide about amedical relevant condition
of the users. It is limited to offer a set of recommendations
about several alert situations based on experts’ knowledge
while using everyday devices, without the need of obtrusive
and annoying sensors.

3. Activity Recognition

The following sections explain the activity recognition phase
of our proposal. Specifically, first subsection describes the
components needed to gather the relevant data from a
person when she is performing everyday activity and how the
inherent noise and imprecision of the data are removed.

Second subsection shows howdatamining techniques are
able to determine the activity from the inertial sensors data.
This approach is validated over real data from the PAMAP2
physical activity monitoring dataset [6].

3.1. Sensor Devices and Data Collection. In this work sensors
signals from a smartphone and a multisensor wristband
(smartwatch) are used as the base signal to classify the
physical activity that the subject is performing. Concretely,
accelerometers, gyroscope, and magnetoresistive (AMR)
magnetic sensors are proposed to determine the activity.

Smartwatches are wearable devices that use sensors to
gather data about the user’s movement and other features.
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Figure 1: Overall architecture.

First examples of wristband sensors were based on the
use of accelerometers to measure steps and other move-
ments [7]. However, the latest models already include
other kinds of metrics like heart rate monitoring, tem-
perature, or blood oxygen levels using infrared sensor
[8].

Regarding smartphones, almost all the last models avail-
able on the market include a growing set of cheap powerful
embedded inertial sensors [9]. More specifically, triaxial
accelerometers, gyroscopes, and magnetometers are com-
monly found on smartphones and tablets. Under these
conditions, our approach can take advantage of these inertial
sensors by only requiring that the users wear the smartphone
in a pocket near her chest.

Therefore, activity data could be collected from the
aforementioned sensors in a noninvasive way. However, the
use of real time data from inertial sensors is subject to noise
and imprecision [10]. As a result, there is a need to filter out
noise before using the data for activity recognition. In order to
address this issue we propose a moving average filter of order
3. This simple method has been shown to be able to remove
the random noise [11].

Finally, to make our system activity-aware requires a
feature processing and a classification method able to infer
what activity an individual is engaged in. In that sense,
this work proposes the use of data mining techniques in
order to predict users’ activities throughout the day. Data
mining techniques provide the ability of analyzing large
datasets to infer patterns and generalizations. Then, pre-
dictive models can be built using classification algorithms
which are used to predict the physical activity of the
individual.

3.2. Feature Processing and PredictionModel. As described in
Section 3.1, data mining techniques enable inferring patterns
and generalizations from large datasets. It can be used to build
models that allow classifying between several predefined
classes (see [12] for further explanation on this topic). In this
work the use of data mining techniques is aimed at analyzing
raw data from sensors in order to determine what physical
activity the user is performing.

With the aim of validating the described approach, a
dataset for the analysis and classification of physical activity
was obtained fromPAMAP2, asmentioned above. It contains
data from 9 subjects performing 18 different physical activi-
ties with different intensities (to ascend/descend stairs, to be
seated, ironing, . . .). Therefore, we use the same classification
of activities as in the PAMAP2 dataset. A brief description of
each of these activities can be found attached to the published
dataset.

Subjects wear 3 inertial measurement units (IMU) and a
heart rate monitor. Each IMU contains two 3-axis accelerom-
eters, a 3-axis gyroscope, and a 3-axis magnetoresistive
(AMR) magnetic sensor. The sensors are placed onto 3
different body positions: chest, wrist, and ankle. The heart
rate monitor is attached to a chest strap.

This dataset provides a way to simulate the real data from
sensors. Consequently, it is possible to validate the feasibility
of the approach through this simulation. Furthermore, it
provides an easy method to evaluate different algorithms in
order to determine the accuracy of each technique and select
the most appropriated one.

Different classification methods using WEKA are suc-
cessfully used over the data in order to build a model to
determine the specific physical activity [6]. Authors have
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Table 1: Performance measures.

Full dataset
Classifier Precision 𝐹-measure Accuracy
Boosted C4.5 0.9997 0.9994 0.9995
kNN 1.00 1.00 1.00

Reduced dataset
Classifier Precision 𝐹-measure Accuracy
Boosted C4.5 0.9968 0.997 0.997
kNN 0.993 0.993 0.993

shown that, given the IMUs and heart rate values for a person
in an instant 𝑡, the model is able to recognize the physical
activity with a high accuracy (over 90% of success).

However, in systems for physical activity monitoring,
the number of sensor placements should be kept as low as
possible for reasons of practicability and comfort [6]. In fact,
our systems should be used during all daily activities in order
to provide a quick heart health risk assessment. Therefore,
comfortable, easy to handle, and wearable devices should be
used.

Since the PAMAP2 study allows us to determine the
physical activity using all the dataset with a 90% of success,
in this work we have investigated whether it is possible to
determine the activity without the use of some data from
the original dataset. With this aim, we preprocess the data
removing different variables in turn (e.g., heart rate, chest
sensors, wrist sensors, . . .).

After several tests, it has been shown that the resulting
classification models are able to determine the activity just
using the inertial chest and wrist sensors. Note that this
fact does not imply that there are no additional correlations
between the rest of variables and the activity. The tests also
show that the algorithms classify the activity with a high
accuracy using a reduced dataset.

Table 1 shows the results from the tests performed with
the original dataset (i.e., using all variables) and the results
using the reduced tests (i.e., using just the wrist and chest
sensors). Likewise, Table 1 shows the best results obtained
from the different algorithms for the full and reduced
datasets: boosted C4.5 decision tree (confidenceFactor = 0.15,
minNumObj = 50) and kNN (kNN = 7,𝑊 = 0).

Observe that although the precision and the accuracy are
lower in the tests with the reduced dataset, they are still very
high. As a result, it is affordable to reduce the number of
variables in order to get a less intrusive system.

4. Biomechanics of Cardiopulmonary Effort

This section deals with the theoretical background in biome-
chanics as the starting point to design our knowledge model
and expert rules. Section 4.1 reveals the importance of the
workload in aerobic or anaerobic exercises with respect to
the person’s physiology, fitness status, and health features.
Section 4.2 deals with the estimation of quantifiable units of
effort such asmetabolic equivalent of task (MET) and relative
maximal heart rate intensity in order to use such measures in
expert rules.

4.1. Activity Load. Overreaching and overtraining are the
accumulation of training over one’s capacity, whichmay result
in a short-term decrease in performance capacity and maybe
in a serious heart problem. In high-performance athletes, the
overreaching is common and intentionally induced as part of
a training regimen. However, in popular athletes, specially
beginners and people with critical problems, it could be a
frontier to avoid trespassing [13].There are several risk factors
like highly motivated athletes who respond to poor athletic
performance by increasing training loads, athletes without
individualized trainingwho think that they donot get enough
exercise and, more worrying, people without a good physical
shape or with some disease [14].

The general prevention about exercise overreaching—
especially in persons with some disease—must be based on a
test set like blood testing or coordination study that cannot be
self-made. Fortunately, there are other prevention alternatives
such as daily training log or activity monitoring based
on accelerometers and heart rate sensors that can be per-
formed daily without control of a specialist, as explained in
Section 3.

The activity load and his effort level determine the
cumulative strain involved with training. To be useful in
early detection of overreaching, it is necessary that a sys-
tematic documentation of subjective and objective factors
must be completed at baseline and reevaluated regularly.
The daily/weekly variations that occurred in the training log
effort of a person can help to identify an individual athlete’s
abnormal response to training at an early stage. This baseline
must be combined with the health level of a person and
her possible diseases. Once identified, interventions can be
made to prevent further deterioration and normalization of
subjective and objective criteria.

A workout log includes intensity, duration, and mode of
training based on accelerometer sensors along with a rating
of perceived exertion (RPE) for the entire training session
on a specific day, for example, with the Borg scale [15]. This
scale rates perceived effort from 6 (20% of effort) to 20
(exhaustion).TheRPE session can be recorded and represents
an objective measurement of daily raining load [16]. Actually,
the subjective perception is combined with other objective
indexes of physical activity, such as pulse or effort (i.e., power
obtained from sensor accelerometers).

4.2. MET and Relative Maximal Heart Rate Intensity Estima-
tion. We need to express the activity intensity in a quantifi-
able unit that could be used in expert rules.With this aim, the
term metabolic equivalent (MET), a well-known measure in
this area, is one of the most adopted alternatives. The basic
MET unit is equal to VO

2
(oxygen consumption) in a resting

state, equivalent to 3.5ml⋅kg−1 ⋅min−1 [17].Themost common
technique used to measure oxygen consumption nowadays
is the open-circuit spirometry that depends on complex
laboratory equipment managed by skilled people. However,
there have been several reports about how to calculate the
VO
2max in function of parameters such as gender, country,

ethnicity, activity level, body weight, and height of the subject
[18]. Most of these studies concluded that the prediction of
VO
2max must be based on age and gender.ThisVO

2max factor
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Table 2: Cardiovascular rules table.

Minimum cardiovascular
benefit Aerobic limit Anaerobic threshold Severe exercise

Borg scale RPE 11
(fairly light)

14
(between somewhat hard

and hard)

17
(very hard)

18–20
(extremely hard to exhaustion)

% VO
2max 50% 60–65% 80–85% ≥85%

% HRmax 70% 75–80% 90–92% 95–100%
Ventilatory responses Unnoticeable change Still barely noticeable Difficult to speak Exercise hyperpnea, cannot speak

is relative to the duration and intensity of the effort that
depends on the training session estimated by the RPE.

The most comprehensive equations for calculating
VO
2max are shown in (1) (males) and (2) (females) [19]

VO
2max (males)

= ((0.072 ⋅Ht) − 0.052)

⋅ (44.220 − (0.390 ⋅ Age)) + (0.006 ⋅Wt) ,

(1)

VO
2max (females)

= ((0.063 ⋅Ht) − 0.045)

⋅ (37.030 − (0.370 ⋅ Age)) + (0.006 ⋅Wt) ,

(2)

where Ht represents the person’s height measured in meters,
Wt is her weight in kilograms, and Age represents her age
expressed in years.

As described above, measuring oxygen consumption
implies an open-circuit spirometer in a specific laboratory.
However, such method does not provide users to know
their VO

2
levels while they are doing their normal activities.

Because of that, the most popular, simple, and practical
method to estimate the current intensity in VO

2
of a sport

activity is done by the heart rate (HR). It allows us a
nonintrusivemanner formeasuring the oxygen consumption
by a conventional HR monitor.

TheHR is one of themost important variables tomeasure
the intensity in the physical activity. The minimal intensity
threshold is 55% to 65% of maximal heart rate (HRmax) [20].
This range is based on individual variability in the exercise
intensity necessary to improve the aerobic fitness. Those
with low aerobic fitness will achieve fitness improvements by
training at a lower level of this range. Competitive athleteswill
need to train at higher intensities than people just interested
in improving her health. The highest level of the range is
approximately at 94% of HRmax. Nevertheless, most people
get the optimal values of intensity between the 77% and 90%
of their HRmax [17].

Since there is a relatively linear relationship between HR
and exercise intensity, it is possible to use (3), where the
current VO

2
is obtained as a linear regression formula from

experimental data gathered by Swain et al. [21]

current VO
2
= (

current HR/HRmax − 37.182

0.646

)

⋅VO
2max,

(3)

where the VO
2max is calculated by (1), (2) and the HRmax can

be estimated by several ways.
Several formulas are used to estimate individual max-

imum heart rates, mostly based on age. For example, the
simple Haskell’s formula [22], (4), Tanaka’s formula [23], (5),
or the more recent Gellish’s formula [24], (6), for people
from 30 to 75 years with a standard deviation of 6 to 15 bpm
according to the equation. As a result, with simple data such
as gender, age, weight, height, and current HR we can obtain
derived data like HRmax, VO2max, and current VO

2
. Table 2

shows some equivalence between the described parameters
and the mentioned formulas are given next

Haskell : HRmax = 220 − age variation of ± 15 bpm, (4)

Tanaka : HRmax = 208 − 0.7 ⋅ age, (5)

Gellis : HRmax = 207 − 0.7 ⋅ age variation of 6 to 15 bpm.
(6)

The most used equation to estimate the HRmax is
Haskell’s formula [25].This equation indicates that theHRmax
decreases approximately from the 5% to 7% per decade.
However, actually, the HRmax decreases from the 3% to 5%
in such a period. Therefore, the equation results in error
when the HRmax is estimated for people over 40 years old
approximately. Indeed, there are some works describing this
fact [23, 26]. According to these works, Haskell’s formula
underestimates HRmax for people over 40 years old, while
other formulas overestimate this value or give a more accu-
racy value for specific ages only.ThisHaskell’s formula feature
gives a more conservative approach for the calculation of
HRmax, since it is more suitable for a general use. For this
reason, Haskell’s formula is the most used in the fitness and
medical area. Consequently, following the domain experts’
suggestions from the Department of Cardiovascular Risk at
UCAM (http://international.ucam.edu/studies/masters-in-
cardiovascular-risks/presentation/), we also adopt Haskell’s
formula in this work.

By means of the parameters described above and thumb
tables such as Table 2, we can establish general rules about
the level of a physical effort which can be resized if the
physical capacity is increased or decreased, as the heart rate
to the same intensity of effort decreases or increases [27].
These changes may happen depending on the age, number
and frequency of exercise, diseases, and so forth. The next
section describes how these rules are defined and used in our
approach.



6 BioMed Research International

Person
+name
+age
+weight
+height

PhysicalActivity

+MET
+RPE

Context
+timestamp

MedicalContext
+contact

VeryLightActivity

LightActivity

ModerateActivity

VigorousActivity

VeryVigorousActivity

Man

Woman

Elderly

Cardiomyopathy

Sportsperson

Dyspnea

Obesity

(Other contexts)

performsActivity1 hasContext
N

+comment

+min percent hr max
+max percent hr max

+hr current
+hr max

+alarm level

· · · · · ·

· · ·

Figure 2: Partial representation of SHCOntology. The main concepts of the ontology are person, physical activity, and medical context.

5. A Simple Health Care Model to
Detect Alert Situations

This section explains the components of our model respon-
sible for representing and reasoning about possible alert
situations. Following the mainstream in representing context
in information systems (see Section 7), we define an ontology
named SHCOntology—simple health care (SHC)—to repre-
sent our health care domain (see Section 5.1). Based on this
ontology we are able to express expert rules to capture alert
situations with different levels of confidence according to
the available knowledge (see Section 5.2). Finally, we show
how the set of general expert rules can be extended to offer
personal recommendations to the users (see Section 5.3).

5.1. SHCOntology Representation. SCHOntology contains
the most relevant terms, relationships, and restrictions in
the health care domain proposed in this paper as studied in
Section 4. In particular, it contains basic biometrics features,
user’s contexts (with special interest in a medical context),
and different types of physical activities. Figure 2 offers a
schematic and partial representation of our ontology.

In the first place, the ontology captures several biometrics
features about each person, including age, weight, height,
and current heart rate, among others. The maximal heart
rate, which is estimated by means of one of the formulas
explained in Section 4 (i.e., the Haskell, Tanaka, or Gellish
formulas), is also included. Moreover, each person could
be classified according to her gender, physical condition,
and so forth. (e.g., a disjoint classification between man
and woman is included in the ontology, but they are not
exclusive with elderly or sportsperson. Therefore, a person
could be classified as an elderly womanwho practices sports).
The subclasses of person are based on the considered alert
situations, but they could be extended taking into account
other types of person when necessary.

Regarding physical activities, they are grouped accord-
ing to their intensity following the classification proposed

elsewhere [28]. For each type of activity, the model records
the maximal and minimal limits of the relative intensity
of the activity (expressed as percents of the maximal heart
rate of the person) along with its associated MET and
RPE (see Section 4). As a result, each specific activity
(e.g., cycling) is created for each person as an instance
of its corresponding intensity class (e.g., Vigorous) and it
is related to that person through the performsActivity
relationship (see Figure 3 for an example of this relationship
between Bob and BobCycling instances). Moreover, it is
possible to define default values for each intensity level
(i.e., VeryLightActivity, LightActivity, etc.) that can
be inherited for new activities whose specific values are
unknown.

Finally, the ontology also considers several possible
contexts for each person. In this manner, several types of
medical context (or any other type of context) could be used
to describe specific person’s situations. Specific context for
people affected by cardiomyopathy, dyspnea, and/or obesity,
among others, could be represented. The general description
of each context includes the timestamp in which the context
is considered and the level of the alert (e.g., ignore, low,
medium, and high) is generated by the system. Moreover,
the MedicalContext concept contains specific attributes to
indicate possible recommendations to the user and emer-
gency call numbers.

Instantiation of this ontology comes from the person’s
biometric information included in the smartphone. This
information—age, weight, height, and so forth—is config-
ured in the device by the user when she uses the application
for the first time during the initial setup (it may be changed
later at the user’s discretion). Regarding the current HR value
and the activity, they are provided by the smartwatch and the
datamining process, respectively, during the first phase of the
process explained in Section 2. Finally, expert medical infor-
mation (expressed by means of rules; see next subsection) is
introduced by the system administrator through a GUI (note
that the system administrator acts as amere translator among
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Figure 3: Instantiation of the main concepts of SHCOntology for representing two persons performing cycling: Alice, an elderly woman
without any specific medical context, and Bob, a male sportsperson affected by a cardiomyopathy.

Table 3: Alert levels inferred by expert rules and their associated
actions.

Alert level Action
Ignore N/A
Low Voice alert
Medium Voice alert + recommendation
High Emergency call

the medical and application languages). A complete example
of instantiation and relationships among these concepts can
be seen in Figure 3.

5.2. Defining Expert Rules to Detect Alerts. Once the ontology
has been defined, we can use it to reason about the possible
alert situations. To do this, we define a set of expert rules
using SHCOntology as vocabulary. These rules have been
defined and validated in conjunction with the Department
of Cardiovascular Risk at UCAM. In particular, we consider
24 expert rules grouped in three levels according to the
type of knowledge used by each of them. The levels range
from the less informed Level I to the most informed Level
III, as explained below. The types of alerts considered for
these rules are shown in Table 3. Each alert is related to an
action that is performed by the system after the reasoning
process. Hence, low-level alerts are associated with a voice
alert indicating risky HR values. Medium-level alerts extend
this voice alert with a recommendation (e.g., to stop the
activity or to reduce the intensity) based on the person’s
physical condition, activity, and/or medical context. Finally,
high-level alerts generate an automatic emergency call if the
person does not cancel the alert in 10 seconds. We explain
next an illustrative portion of the set of expert rules shown in
Algorithm 1 following the knowledge-based level partition.

Level I deals only with HR data. Additional knowledge
such as the activity, physical condition, and medical context
is considered as unknown at this level. Rule𝑅

1
in Algorithm 1

is an example of rules at Level I.This rule reads “if the person’s
HR exceeds her estimated maximal HR, then set the alarm
level to value High for this context.” Observe that exceeds
and set are functions, where the former checks if the first
value is higher than the second one and the latter sets the
value of a given attribute.

Level II includes knowledge of the person’s condition,
specific activity type, or a combination of both. Thus, rule 𝑅

7

is an example of including person’s condition knowledge. It
considers the classification of the Person concept to refine
the basic rules at Level I. In this case, knowing that the person
is athletic, exceeding the estimated maximal HR reduces the
alert level to Low, since it is possible that she is currently
practicing some sport. On the other hand, rule 𝑅

11
shows

an example of a rule taking into account activity knowledge.
Now the relative intensity of the activity amends the estimated
maximal HR when checking if the current HR exceeds it.
Moreover, if the activity is considered asVery Light like in rule
𝑅

11
, the alert level is set to Medium. Finally, rule 𝑅

12
shows

a combination of both types of knowledge. In particular, it
sets a High-level alert when an elderly person is practicing
a vigorous activity and her HR surpasses the maximal value
estimated for such an activity.

Rules at Level III include knowledge of the person’s medi-
cal context. Hence, the classification of the MedicalContext
concept in SCHOntology is employed to refine rules at
previous levels. For example, rule 𝑅

18
states that if the person

has a cardiomyopathy and her HR surpasses the maximal
HR recommended for an activity—regardless of its intensity
level—then the alert level is set to High. Note that this rule
refines rule 𝑅

11
, rising the alert level from Medium even

though the activity intensity is very light.
It is worth mentioning that during the reasoning process

several rules could be activated at different or same levels;
that is, conflicts among rules must be taken into account.
In case of multiple activations of rules at different levels, the
system keeps the highest-level rules and discards the rest.
This is due to the fact that the system considers these rules



8 BioMed Research International

Level I
Considering only the HR values:

𝑅

1
:
Person(?𝑝) ∧
exceeds(?𝑝.ℎ𝑟 𝑐𝑢𝑟𝑟𝑒𝑛t, ?𝑝.ℎ𝑟 𝑚𝑎𝑥) ∧
hasContext(?𝑝, ?𝑐)
⇒ set(?𝑐.𝑎𝑙𝑎𝑟𝑚 𝑙𝑒V𝑒𝑙 = “𝐻𝑖𝑔ℎ”)

Level II
Considering HR values and type of person:
𝑅

7
:
Person(?𝑝) ∧
exceeds(?𝑝.ℎ𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, ?𝑝.ℎ𝑟 𝑚𝑎𝑥) ∧
hasContext(?𝑝, ?𝑐) ∧
Sportsperson(?𝑝)
⇒ set(?𝑐.𝑎𝑙𝑎𝑟𝑚 𝑙𝑒V𝑒𝑙 = “𝐿𝑜𝑤”)

Considering HR values and type of activity:
𝑅

11
:
Person(?𝑝) ∧ Activity(?𝑎) ∧
performsActivity(?𝑝, ?𝑎) ∧
exceeds(?𝑝.ℎ𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, ?𝑎.𝑚𝑎𝑥 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ℎ𝑟 𝑚𝑎𝑥∗?𝑝.ℎ𝑟 𝑚𝑎𝑥) ∧
hasContext(?𝑝, ?𝑐) ∧
VeryLightActivity(?𝑎)
⇒ set(?𝑐.𝑎𝑙𝑎𝑟𝑚 𝑙𝑒V𝑒𝑙 = “𝑀𝑒𝑑𝑖𝑢𝑚”)

Considering HR values, type of person and type of activity:
𝑅

12
:
Person(?𝑝) ∧ Activity(?𝑎) ∧
performsActivity(?𝑝, ?𝑎) ∧
exceeds(?𝑝.ℎ𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, ?𝑎.𝑚𝑎𝑥 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ℎ𝑟 𝑚𝑎𝑥∗?𝑝.ℎ𝑟 𝑚𝑎𝑥) ∧
hasContext(?𝑝, ?𝑐) ∧
Elderly(?𝑝) ∧
VigorousActivity(?𝑎)
⇒ set(?𝑐.𝑎𝑙𝑎𝑟𝑚 𝑙𝑒V𝑒𝑙 = “𝐻𝑖𝑔ℎ”)

Level III
Considering also the medical context:
𝑅

18
:
Person(?𝑝) ∧ Activity(?𝑎) ∧
performsActivity(?𝑝, ?𝑎) ∧
exceeds(?𝑝.ℎ𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, ?𝑎.𝑚𝑎𝑥 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ℎ𝑟 𝑚𝑎𝑥∗?𝑝.ℎ𝑟 𝑚𝑎𝑥) ∧
hasContext(?𝑝, ?𝑐) ∧
Cardiomyopathy(?𝑐)
⇒ set(?𝑐.𝑎𝑙𝑎𝑟𝑚 𝑙𝑒V𝑒𝑙 = “𝐻𝑖𝑔ℎ”)

Algorithm 1: Several examples of general expert rules divided into levels according to the knowledge contained in them.

better informed than lower-level ones; that is, they contain
more relevant information. In case of multiple activations
of rules at the same level, the system keeps rules with the
highest alert level and discards the rest. This is due to the
fact that the system follows a conservative approach when
several types of alerts arise at the same level. Section 6 shows
a running example where several rules are activated for the
same person andhow these rule conflicts are solved.Note also
that the current set of rules does not include RPE and MET
information yet, but we keep this information in the ontology
for future steps. Next subsection explores how to personalize
expert rules for specific activities and users.

5.3. Extending Expert Rules. Expert rules defined in the
previous section follow a general and impersonal approach;
that is, they are oriented to capture the most common
heart health problems found in literature. However, there are
situations where a more personalized approach is necessary,
for example, whenmonitoring a professional sportsperson or
elderly people who wish to live independently in their own
homes. For these cases it is possible to define customized rules
without changing the SHCOntology. Our solution resides in
adding new rules with explicit references to the person or
activity of interest. The main goal of this kind of rules is to
offer personalized recommendations to the users more than
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𝑅

𝑃1
:
Person(?𝑝) ∧
performsActivity(?𝑝, “𝐶𝑦𝑐𝑙𝑖𝑛𝑔”) ∧
exceeds(?𝑝.ℎ𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 200) ∧
hasContext(?𝑝, “𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔”)
⇒ set(“𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔”.𝑎𝑙𝑎𝑟𝑚 𝑙𝑒V𝑒𝑙 = “𝑀𝑒𝑑𝑖𝑢𝑚”)
⇒ set(“𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔”.𝑐𝑜𝑚𝑚𝑒𝑛𝑡 = “𝑅𝑒𝑑𝑢𝑐𝑒 𝑠𝑝𝑒𝑒𝑑 𝑡𝑜 20 𝑘𝑚/ℎ 𝑑𝑢𝑟𝑖𝑛𝑔 10𝑚𝑖𝑛𝑠.”)

𝑅

𝑃2
:
Elderly(?𝑝) ∧
performsActivity(?𝑝, “𝑆𝑡𝑎𝑖𝑟 𝐶𝑙𝑖𝑚𝑏𝑖𝑛𝑔”) ∧
exceeds(?𝑝.ℎ𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 120) ∧
hasContext(?𝑝, ?𝑐) ∧
MedicalContext(?𝑐)
⇒ set(𝑐.𝑎𝑙𝑎𝑟𝑚 𝑙𝑒V𝑒𝑙 = “𝑀𝑒𝑑𝑖𝑢𝑚”)
⇒ set(𝑐.𝑎𝑙𝑎𝑟𝑚.𝑐𝑜𝑚𝑚𝑒𝑛𝑡 = “𝐶𝑙𝑖𝑚𝑏 𝑡ℎ𝑒 𝑠𝑡𝑎𝑖𝑟𝑠 𝑠𝑙𝑜𝑤𝑒𝑟 𝑛𝑒𝑥𝑡 𝑡𝑖𝑚𝑒”)

Algorithm 2: Two examples of personalized expert rules.

detecting high-risk situations.Therefore, themajority of these
extended rules set the alert level to Medium and include a
personalized recommendation.

Algorithm 2 shows two personalized expert rules. 𝑅
𝑃1

is addressed to professional cyclists during their training
sessions. If their HR exceeds a constant value, a recommen-
dation is issued to reduce speed during a period of time.
On the other hand, 𝑅

𝑃2
aims to offer a recommendation to

elderly people when climbing stairs too fast. Note that both
rules state explicitly the activity to be monitored and the
maximal HR threshold instead of using variables. Moreover,
𝑅

𝑃1
uses an explicit instance of context as well. Observe

also that the consequent in the rules contains personalized
recommendations.

As personalized rules would be better defined by physi-
cians, telecarers, or even the users themselves, a friendly
interface for them should be provided in future versions of
the system. In the current version expert rules (personalized
or not) are defined using Jena (http://jena.apache.org/) by
ontology experts. Jena is a Java framework for building
Semantic Web applications which also contains a RETE rule-
based reasoner with its own rule language.

6. Running Scenario

This section shows how the ontology and rules presented in
Section 5 could be used for representing and reasoning about
possible alert situations for two different persons.

Figure 3 offers a partial representation of the information
captured in SCHOntology about two persons, namely, Alice
and Bob. In order to explain how the rules are used, we
consider an illustrative scenario in which they are practicing
cycling. More examples of different users have been used to
validate the second phase of the system (see Section 2). The
outputs of such examples have been successfully validated by
the domain experts from the Department of Cardiovascular
Risk at UCAM.

Alice is an elderly woman without any specific medi-
cal context and Bob is a male sportsperson affected by a

cardiomyopathy. Alice is 69 years old; her weight and height
are 70 kg and 1.65m, respectively. The maximal heart rate
considered for her is hr max = 151 (this value is obtained
using Haskell’s formula; see (4)). On the other hand, Bob
is 42 years old; his weight and height are 70 kg and 1.82m,
respectively. His maximal heart rate is hr max = 178

(estimated again by means of Haskell’s formula, (4)).
We suppose that bothAlice’s andBob’s heart rates increase

during cycling, a vigorous activity. The current heart rates
registered for Alice and Bob are hr current = 136 and
hr current = 178, respectively. These data are obtained from
the smartwatch and the smartphone they are wearing while
practicing the activity.

According to the knowledge captured in the ontology
for Alice, rule 𝑅

12
is activated (see Algorithm 1). This rule

sets a High-level alert because Alice is an elderly person
performing a vigorous activity and her current heart rate
ℎ𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 exceeds the maximal limits according to her own
value of ℎ𝑟 𝑚𝑎𝑥 and the relative intensity of the activity
𝑚𝑎𝑥 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ℎ𝑟 𝑚𝑎𝑥, which is set to 89% (see Figure 3).

On the other hand, two rules are activated when the
system reasons about Bob’s context: 𝑅

7
at Level I and 𝑅

18
at

Level II (see Algorithm 1). 𝑅
7
concludes that the high value

of hr current = 136 is not significant due to the physical
condition of Bob; that is, Bob’s alarm situation is set as Low
because he is a sportsperson. 𝑅

18
is also activated when a

specific Bob’s medical context is taken into account. As Bob is
affected by a cardiomyopathy, a High-level alert is suggested.
Consequently, two different alarm situations are inferred
using different rules. This conflict must be solved taking into
account the rules’ level. Hence, the reasoning process sets
a High alert according to rule 𝑅

18
because it belongs to a

more informed level than rule 𝑅
7
(see Section 5.2). Table 4

summarizes the alert levels inferred for Alice and Bob.

7. Related Work

7.1. Physical Activity Recognition. Physical activity is increas-
ingly being more studied with the aim of identifying its
intensity and recognizing the activity being performed.
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Table 4: Alert levels inferred by expert rules for two persons
performing cycling: Alice, an elderly woman without any specific
medical context, and Bob, a male sportsperson affected by a
cardiomyopathy.

Level I Level II Level III Resulting alarm

Alice — High
(since 𝑅

12
) — High

Bob — Low
(since 𝑅

7
)

High
(since 𝑅

18
) High

Benchmarking on activity recognition task is presented in
[29] using a SVM classifier. In another study, the PAMAP2
dataset [6] was recorded on 18 activities with 9 subjects,
wearing 3 inertial measurement units and a heart rate
monitor. Authors have created a new dataset for physical
activity monitoring and it has been made publicly available.
In this paper we use this dataset to predict physical activity. It
focuses on four classification tasks: intensity estimation, basic
activity recognition, background activity recognition, and all
activity recognition. In general, very good performance is
achieved for all of them, where the best accuracy is given by
the K-NN and the boosted decision tree classifiers. Another
relevant work by Nam and Park [30] uses a single triaxial
accelerometer and a barometric sensor for physical activity
recognition. This work is oriented to prevent baby and child
accidents such as unintentional injuries at home; however no
fine-grained activities are recognized.

With respect to these previous works, our aim is not
only to reduce the number of required sensors to recognize
activity, but also disguise them in everyday devices such as
smartphones and smartwatches. Hence, we remove the ankle
sensor and the specific heart sensor attached to a chest band
employed in such previous works but keeping similar results.
In this manner we obtain a nonintrusive system that can be
used in user’s daily activities.

It is also worth mentioning that there exist several
commercial applications in this direction, specially designed
for smartphones and other mobile devices [31–33]. However,
although these devices share a nonintrusive philosophy as in
our proposal, they do not offer a medical expert rule system
to take advantage of the data these devices provide.Moreover,
our rules can be adapted to the specific conditions of each
subject, which augment the value of our proposal.

7.2. Ontologies for Modeling Health Context Information.
Ontologies have been used in several context-awareness
research domains, including e-health. The definition and use
of ontologies in the medical domain represent an active
research field, as it has been recognized that ontology-
based systems can be used to improve the management
of complex health systems [3]. Ontology provides reusable
terminology resources for clinical systems and for managing
organizational knowledge and cooperative work among care
networks. Bettini et al. [34] show a set of requirements that
context modeling and reasoning techniques should meet
based on database modeling techniques and on ontology-
based frameworks for knowledge representation.

However, despite increasing interest in the idea of smart
homes as part of an integral health care system, there are few
researches about how to cope with the context modeling in
this direction. Lee andKwan [35] define a platform for a smart
home health care system, but their context model focuses on
social relationships between users and medical experts, in a
different line from our work. Hristoskova et al. [36] develop
an ambient intelligence frameworkwhich provides a dynamic
adaptation of prebuilt medical workflows taking into account
the clinician’s location in order to ensure in time intervention
in case of an emergency. The proposed framework is able
to change context at runtime in case new services are
registered, new rules are defined, or failure/overload of the
network occurs. However, the proposed context model is
more focused onmedical actuation.Muñoz et al. [37] present
a decision support system to help caretakers when an alarm
is raised in a smart home. Caretakers are presented with
graphic and textual information and simulation software
to analyze the possible alerts. In this work, ontologies are
adopted to represent the smart home structure and alongwith
the inhabitant’s biometric data. However, only three simple
activities are considered: sleeping, resting, and active.

In this paper we have developed a context-aware model
that provides biometric information, a classification of activ-
ities, and information about the user’smedical context. In this
manner, we are able to define expert rules that include all this
knowledge to capture possible alert situation and prevent risk
cardiac problems.

8. Conclusion and Future Work

This paper has presented a novel rule-based system for heart
health risk assessment using sensors embedded in a smart-
phone and a smartwatch.The system provides a nonintrusive
solution by using the data from sensors in both devices to
determine the physical activity performed by the user. Then,
this activity information is combinedwith the user’s heart rate
obtained from the smartwatch and other biometrics features
to infer possible alert situations and suggestions oriented to
prevent cardiac risk.

Regarding the main contributions of this paper, on the
one hand our approach is able to determine everyday activi-
ties by means of data mining techniques. We have validated,
using real data, that it is possible to set the specific activity
with accuracy up to 90%employing only inertial sensors from
a smartphone and a smartwatch. On the other hand, this
work presents ontology as a context model for representing
the health knowledge in our system, including fitness status,
biometric data, and medical information related to the user
and relevant information about the physical activities she is
doing in every moment. Such information is used together
with a personalized set of expert rules to determine if
the person could be suffering from a heart problem or
even suggest her some recommendations about the exercise
being performed. Consequently, the system provides high-
accuracy, unobtrusive solution which offers personalized
recommendations to the users in order to detect any high-
risk situation in their daily lives.
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Regarding future works, firstly we are currently imple-
menting the full system in order to validate the proposal with
an enough meaningful sample of people (different age, sex,
etc.). Furthermore, the use of the MET and REP indicators
will be studied with the aim of taking into account the
subjective factor of exercise when defining expert rules. This
will provide a more personalized set of rules. Another future
work includes storing and analyzing historical information
about the person to improve our system in several ways.
Firstly, somepatterns could be discovered in a long term, such
as changes according to the seasons or circadian rhythms.
Secondly, by using historical data some anomalies could be
determined, such as frequent periods of ectopic heartbeat
or similar. Finally, another promising use of the historical
information is the possibility of making the system capable of
adapting to the user. With such an extension the users could
send information to the system to indicate whether the level
of suggestion or alarm is appropriated or not. This feedback
can then be used by the system to adapt the set of rules and
handle some changes in the users’ habits or fitness in a lifelong
learning mode.
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