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Multiple kinases and phosphatases act on the kinetochore to control chromosome

segregation: Aurora B, Mps1, Bub1, Plk1, Cdk1, PP1, and PP2A-B56, have all been

shown to regulate both kinetochore-microtubule attachments and the spindle assembly

checkpoint. Given that so many kinases and phosphatases converge onto two key

mitotic processes, it is perhaps not surprising to learn that they are, quite literally,

entangled in cross-talk. Inhibition of any one of these enzymes produces secondary

effects on all the others, which results in a complicated picture that is very difficult to

interpret. This review aims to clarify this picture by first collating the direct effects of each

enzyme into one overarching schematic of regulation at the Knl1/Mis12/Ndc80 (KMN)

network (a major signaling hub at the outer kinetochore). This schematic will then be

used to discuss the implications of the cross-talk that connects these enzymes; both

in terms of why it may be needed to produce the right type of kinetochore signals and

why it nevertheless complicates our interpretations about which enzymes control what

processes. Finally, some general experimental approaches will be discussed that could

help to characterize kinetochore signaling by dissociating the direct from indirect effect of

kinase or phosphatase inhibition in vivo. Together, this review should provide a framework

to help understand how a network of kinases and phosphatases cooperate to regulate

two key mitotic processes.
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INTRODUCTION

The kinetochore is a molecular complex of at least 100 different proteins that assembles on the
centromeric region of chromosomes to allow their attachment to microtubules during mitosis
(Cheeseman, 2014; Nagpal and Fukagawa, 2016; Pesenti et al., 2016; Musacchio and Desai, 2017).
As well as providing a structural platform for microtubules to bind, the kinetochore also safeguards
this attachment process in two ways: (1) it activates the spindle assembly checkpoint (SAC) to
arrest cells in mitosis until all sister kinetochores have attached to microtubules emanating from
opposite spindle poles (termed bi-orientation) (Musacchio, 2015; Joglekar, 2016; Corbett, 2017).
(2) It ensures this bi-orientation occurs correctly by sensing and destabilizing incorrect attachments
that do not generate sufficient tension, in a process known as error-correction (Cheerambathur and
Desai, 2014; Sarangapani and Asbury, 2014; Krenn andMusacchio, 2015; Lampson and Grishchuk,
2017). Both of these processes are regulated at the KMN network, which acts as a platform for
microtubule attachment and SAC signaling at the outer kinetochore (Varma and Salmon, 2012;
Foley and Kapoor, 2013).
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The KMN network is composed of 10 different proteins
that map to three separate subcomplexes: the Knl1 complex
(containing Knl1 and Zwint), the Mis12 complex (containing
Mis12, Pmf1, Dsn1, Nsl1), and the Ndc80 complex (containing
Ndc80, Nuf2, Spc24, and Spc25) (Musacchio and Desai, 2017).
The Mis12 complex acts to structurally tether the KMN
network to chromatin by binding to the constitutive centromere-
associated network (CCAN). The Ndc80 and Knl1 complexes,
on the other hand, are the key regulatory hubs that bind to
microtubules and scaffold SAC signaling, respectively (Caldas
and Deluca, 2014; Cheerambathur and Desai, 2014; Musacchio
and Desai, 2017).

Although the SAC and microtubule attachment processes are
very distinct, they must be precisely coordinated in time and
space. For example, as soon as a kinetochore makes a correct
end-on attachment to microtubules, local SAC signaling must
be rapidly extinguished. It is perhaps not surprising, therefore,
that at a molecular level these processes are extremely well
connected. In fact, they are each regulated by an overlapping
network of enzymes that includes at least five kinases (Aurora B,
Mps1, Bub1, Plk1, and Cdk1) and two phosphatases (PP1 and
PP2A-B56) (Funabiki and Wynne, 2013; Vallardi et al., 2017).
Although these enzymes undoubtedly have very specific roles at
the kinetochore, sometimes in only one particular process, their
multiple interconnections mean that it is incredibly difficult to
dissociate their direct from indirect effects.

In this review I will attempt to untangle this complicated
picture by first summarizing the established direct effects of
each particular enzyme at the KMN network. These connections
are depicted in Figure 1, which should be referenced in
conjunction with the text below where each of the arrows will be
mechanistically explained (the arrows are numbered and labeled
in the text to highlight where they are discussed). Even before
I delve into the mechanistic details, however, a quick glance at
this network will already reveal how interfering with any one of
these enzymes can produce knock-on effects for all the others.
The result is that if either one is inhibited specifically, there
will be consequential effects for both kinetochore-microtubule
attachments and the SAC. Therefore, the question of exactly
“who controls what” becomes a very difficult one to answer
definitively, which has most likely contributed to confusion and
controversy within the field. To help to resolve these issues,
after fully explaining Figure 1, I will then focus on each enzyme
individually to discuss some past and present questions relating
to the issue of direct vs. indirect effects. Finally, I will highlight
some general experimental approaches that could be used in
future to address some of the issues that still remain to be
resolved.

KINETOCHORE-MICROTUBULE
ATTACHMENT AND ERROR-CORRECTION

During mitosis, kinetochore pairs must become bioriented on
the mitotic spindle (i.e., one kinetochore attached to one spindle
pole and its sister kinetochore attached to the other). If this
configuration is achieved for every single kinetochore pair, then

upon mitotic exit, the sister chromatids will be split in opposing
directions and each daughter cell will receive the correct
complement of the genome. Since kinetochore-microtubule
interactions form stochastically, this whole process must be
regulated to ensure that improper attachments are continually
removed, in a process termed error-correction (Cheerambathur
and Desai, 2014; Lampson and Grishchuk, 2017).

A fundamental principle of error-correction is that incorrectly
attached microtubules are detached by the phosphorylation
of key binding interfaces at the kinetochore, many of which
exist on the KMN network (Cheeseman, 2014). Importantly, as
soon as the correct type of tension-generating attachments are
formed, these interfaces are dephosphorylated (or remain in the
unphosphorylated state), and the force-producing microtubule
attachments are rapidly stabilized. Tension itself plays a major
role in error-correction, as kinetochores appear able to “sense”
the level of tension and only phosphorylate and detach
microtubules when this tension state is low. Many other factors,
including spindle geometry and microtubule tip dynamics, also
contribute to error-correction, and the reader is directed toward
some excellent recent reviews to learn about this process in more
detail (Sarangapani and Asbury, 2014; Lampson and Grishchuk,
2017). Here, I will only present the key facts that are important to
understand how enzymes at the KMN network can regulate the
attachment of microtubules to the kinetochore.

Aurora B kinase phosphorylates numerous substrates at
the kinetochore to inhibit microtubule binding (Krenn and
Musacchio, 2015). The best characterized of these is Ndc80,
which is phosphorylated by Aurora B on multiple residues in
its N-terminal tail to detach microtubules (Cheeseman et al.,
2006; Deluca et al., 2006; Wei et al., 2007; Ciferri et al.,
2008; Guimaraes et al., 2008; Miller et al., 2008; Alushin
et al., 2010; Zaytsev et al., 2014, 2015). In addition, Aurora
B phosphorylates other kinetochore targets (Welburn et al.,
2010; Hua et al., 2011), microtubule binding proteins (Iimori
et al., 2016), and microtubule-depolymerizing kinesins (Andrews
et al., 2004; Lan et al., 2004; Ohi et al., 2004; Zhang et al.,
2007; Knowlton et al., 2009) to regulate kinetochore-microtubule
affinity and/or dynamics. Collectively, these inhibitory Aurora
B phosphorylations are represented by a thick inhibitory arrow
from Aurora B to kinetochore-microtubule attachment in
Figure 1 (arrow 1).

As well as binding to microtubules, the kinetochores must
also be able to hold onto the microtubule tips as they polymerize
and depolymerize. This “tip-tracking” is controlled by one of two
distinct but functionally homologous complexes (depending on
species; see Van Hooff et al., 2017): the DAM1 complex (found in
fungi; Westermann et al., 2005, 2006; Asbury et al., 2006; Tanaka
et al., 2007) and the Ska complex (found in mammals; Hanisch
et al., 2006; Gaitanos et al., 2009; Raaijmakers et al., 2009; Theis
et al., 2009;Welburn et al., 2009; Schmidt et al., 2012), which both
bind to Ndc80 and are recruited to kinetochores by microtubules
(activating arrow 2 from KT-MT in Figure 1). Importantly,
Aurora B can phosphorylate and inhibit both of these complexes
to detach kinetochore-microtubule fibers (Cheeseman et al.,
2002; Shang et al., 2003; Gestaut et al., 2008; Lampert et al.,
2010; Tien et al., 2010; Chan et al., 2012; Schmidt et al., 2012)
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FIGURE 1 | A schematic to depict kinase and phosphatase regulation at the KMN network. The model displays regulatory components that are known to localize to

the KMN network and regulate either kinetochore-microtubule (KT-MT) attachments or the SAC. The regulatory inputs are indicated by numbered arrows that are

explained fully at the appropriate place in the text.

(inhibitory arrow 3 from Aurora B in Figure 1). Aurora B
may be aided by other kinetochore kinases in this respect,
because Mps1 can also phosphorylate the Ska complex to prevent
its ability to track depolymerizing microtubules (Maciejowski
et al., 2017), and perhaps also to inhibit its localization to
kinetochores (Sivakumar and Gorbsky, 2017) (inhibitory arrow 4
fromMps1 in Figure 1). Furthermore, Aurora A can also regulate
kinetochore-microtubule dynamics by phosphorylating Aurora B
targets at the kinetochore when they come into the vicinity of
spindle poles (Chmátal et al., 2015; Ye et al., 2015) or perhaps
even on aligned kinetochores at metaphase (Deluca et al., 2018)

(not shown in Figure 1, because it is unclear if Aurora A itself
is regulated at the KMN network). In summary, various kinases
can impact on microtubule attachments to the kinetochore,
however, the principal regulator of these attachments is Aurora
B, which can phosphorylate a variety of different substrates to
disrupt kinetochore-microtubule affinity and alter microtubule
dynamics.

Aurora B is the catalytic subunit of the chromosomal
passenger complex (CPC), which also contains two regulatory
subunits, borealin and survivin, that are tethered to Aurora B by
INCENP (for inner centromere protein; Jeyaprakash et al., 2007).
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The CPC binds to chromatin at the beginning of mitosis and then
clusters at the centromere, where it is able to auto-phosphorylate
on key activating motifs in INCENP and the Aurora B catalytic
domain (Bishop and Schumacher, 2002; Honda et al., 2003; Yasui
et al., 2004; Sessa et al., 2005; Ruppert et al., 2018). At least
some of these phosphorylation’s occur in trans (Sessa et al., 2005;
Zaytsev et al., 2016), which explains why clustering of the CPC is
important for Aurora B activation (Kelly et al., 2007; Wang et al.,
2011). This requirement for clustering allows multiple different
feedback loops to work together to control Aurora B localization
and activity at the centromere: a histone-associated kinase
(Haspin) and phosphatase (PP1-RepoMan) work together with a
kinetochore-bound kinase (Bub1) to phosphorylate histone tails
(Histones H2A-pT120 and H3-pT3) specifically at centromeres
(for an in-depth recent review see Hindriksen et al., 2017).
For the purpose of this article, it is just important to note
that the centromeric recruitment of Aurora B is dependent on
Knl1-localized Bub1, which phosphorylates histone H2A-T120
adjacent to the kinetochore to recruit the CPC (Kawashima
et al., 2007, 2010; Tsukahara et al., 2010; Yamagishi et al., 2010)
(this binding is actually mediated via a protein intermediate,
shugoshin, but this is represented as a single arrow 5 from
Bub1 to the CPC in Figure 1). It is also important to point out
that although Aurora B is activated at the centromere, it must
ultimately act at the outer kinetochore to regulate microtubule
attachments. A pool of active Aurora B has been detected at or
near the outer kinetochore using a phospho-Aurora B (Thr232)
activation loop antibody (Posch et al., 2010; Deluca et al., 2011).
Although this kinetochore-proximal pool of Aurora B remains to
be fully characterized, it appears to require the KNL N-terminus
(Caldas et al., 2013) and CPC dimerization (Bekier et al., 2015).
Identifying the relevant binding site(s) for Aurora B at the
outer kinetochore remain an important future goal. At least one
potential binding site is the Ska complex, which can directly bind
Aurora B and enhances its catalytic activity (activating arrow 6 in
Figure 1) (Redli et al., 2016).

A key aspect of error-correction is the ability of Aurora
B to discriminate between different forms of kinetochore-
microtubule attachments, such that only the incorrect types
are destabilized. This is achieved because bipolar attachments
generate sufficient tension to inhibit Aurora B activity at the
kinetochore, whereas improper attachments do not (inhibitory
arrow 7 from KT-MT to Aurora B in Figure 1). Exactly how
tension reduces Aurora B activity is a matter of considerable
debate, although it is likely to involve an increase in centromere-
kinetochore distance and/or structural changes within the
kinetochore itself (Cheerambathur and Desai, 2014; Sarangapani
and Asbury, 2014; Krenn and Musacchio, 2015; Lampson and
Grishchuk, 2017). These structural changes may impact on the
activities of Aurora B, its antagonizing phosphatase(s), and/or the
accessibility of Aurora B substrates at the kinetochore.

In mammalian cells, a key phosphatase that supresses Aurora
B activity is PP2A-B56 (Foley et al., 2011), which localizes to
the KMN network by binding to the kinetochore-attachment
regulatory domain (or “KARD”) of BubR1 (Suijkerbuijk et al.,
2012; Kruse et al., 2013; Xu et al., 2013; Wang J. et al., 2016):
BubR1 is a KNL1-localized checkpoint protein that will be

discussed in detail later. The BubR1-KARD conforms to an
LxxIxE sequence that targets a variety of different substrates
and adaptors to PP2A by binding to a conserved pocket on
the B56 regulatory subunit (Hertz et al., 2016; Wang X. et al.,
2016). These interactions are strengthened by phosphorylation
within and around this motif, which for the case of the BUBR1-
KARD, is mediated by Cdk1 and Plk1 (Elowe et al., 2007; Huang
et al., 2008; Suijkerbuijk et al., 2012; Kruse et al., 2013; Wang J.
et al., 2016; Wang X. et al., 2016) (arrow 8 in Figure 1). Note
that Figure 1 only depicts Plk1 phosphorylation because Cdk1
phosphorylations will be discussed in detail later. Furthermore,
only one Plk1 site is illustrated, even though two were initially
identified (Ser676 and Thr680) (Elowe et al., 2007; Suijkerbuijk
et al., 2012; Kruse et al., 2013); this is because phospho-Thr680
does not appear to enhance B56 affinity in vitro (Wang J. et al.,
2016). The recruitment of PP2A-B56 to kinetochores is needed to
supress Aurora B activity enough to allow kinetochores to form
initial end-on attachments to microtubules (Suijkerbuijk et al.,
2012; Kruse et al., 2013; Xu et al., 2013; Shrestha et al., 2017)
(inhibitory arrow 9 from PP2A-B56 in Figure 1). Presumably,
this baseline state of low Aurora B activity can then be reduced
even further to fully stabilize attachments if a high tension is
achieved by biorientation (inhibitory arrow 7 from KT-MT in
Figure 1).

As well as inhibiting the effects of Aurora B on the
kinetochore-microtubule interface, PP2A-B56 also prevents
Aurora B from phosphorylating and inhibiting a PP1 docking
motif in the N-terminus of Knl1 (labeled as SILK and RVSF
in Figure 1 to reflect their amino acid sequence) (Nijenhuis
et al., 2014) (arrows 10 and 11 from Aurora B and PP2A-
B56, respectively, in Figure 1). This docking motif allows a
PP1-Knl1 complex to: (1) silence SAC signaling (as discussed
further below), (2) restrict kinetochore Aurora B activity, and (3)
remove PP2A-B56 from kinetochores (Liu et al., 2010; Meadows
et al., 2011; Rosenberg et al., 2011; Espeut et al., 2012; Nijenhuis
et al., 2014). The removal of PP2A-B56 occurs because PP1-Knl1
dephosphorylates KNL1 on “MELT” repeats to inhibit BubR1
recruitment (arrow 12), and also the BubR1-KARD motif to
inhibit BubR1-PP2A interaction (arrow 13, Figure 1) (Nijenhuis
et al., 2014). This negative feedback loop between PP2A-B56
and PP1-Knl1 has important implications for the SAC and
kinetochore-microtubule attachments, which will be discussed in
detail later. The ability of PP1-Knl1 to inhibit kinetochore Aurora
B activity may be restricted to aligned kinetochores, since it helps
to stabilize bipolar attachment at metaphase, but does not seem
to be needed for initial chromosome alignment (Liu et al., 2010;
Shrestha et al., 2017). One substrate that could be important
in this regard is the Ska complex, which is restricted from
accumulating at unattached kinetochores by Aurora B (arrow 3),
but is then rapidly recruited to bioriented kinetochores by PP1-
Knl1 (arrow 14, Figure 1) (Redli et al., 2016). The Ska complex
itself also binds to PP1 (Sivakumar et al., 2016), however, it is
currently unclear whether this PP1 complex helps to reinforce
Aurora B inhibition upon biorientation.

It should be noted that various other PP1 complexes have
also been identified at the kinetochore (Yamashiro et al., 2008;
Akiyoshi et al., 2009; Kim et al., 2010; Posch et al., 2010; Meadows
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et al., 2011; De Wever et al., 2014; Häfner et al., 2014; Tang
and Toda, 2015; Zhang et al., 2015; Bokros et al., 2016; Duan
et al., 2016), and three of these in particular (PP1-Sds22, PP1-
Cenp-E and PP1-ASPP1/2), have been implicated in Aurora
B and microtubule attachment regulation. These complexes
are currently omitted from Figure 1 for various reasons: PP1-
ASPP1/2 can be seen to bind to Ndc80 biochemically, but it does
not appear to accumulate at kinetochores (Zhang et al., 2015).
Sds22 knockdown positively and negatively regulates different
Aurora B substrates at the kinetochore (Posch et al., 2010;
Wurzenberger et al., 2012; Duan et al., 2016), but this is thought
to be due to regulation in the cytoplasm that has downstream
consequences for PP1-Knl1 activity (Eiteneuer et al., 2014).
Cenp-E binds to PP1, and the Aurora kinases can dynamically
regulate this interaction to promote chromosome alignment
(Kim et al., 2010). Although PP1-Cenp-E has been implicated
in stabilizing microtubule attachments at the kinetochore, it is
not currently included in Figure 1 because its effects on KMN
network regulation, and on Aurora B substrates in particular, still
remain to be elucidated.

THE SPINDLE ASSEMBLY CHECKPOINT

The SAC holds cells in mitosis until all kinetochores have
formed stable attachments to microtubules. In short, unattached
kinetochores provide a platform to generate the mitotic
checkpoint complex (MCC) which can diffuse throughout the
cell to inhibit the anaphase promoting complex/cyclosome
(APC/C); an E3 ubiquitin ligase needed for mitotic exit
(Musacchio, 2015; Joglekar, 2016; Corbett, 2017). The amount
of MCC produced at kinetochores is sufficient to allow just one
unattached kinetochore to arrest a cell in mitosis for many hours
(Rieder et al., 1995; Dick and Gerlich, 2013). This effectively
prevents mitotic exit until each and every kinetochore has formed
stable microtubule attachments. The full details of SAC signaling
are beyond the scope of this review, however, these are explained
in depth in a number of excellent recent articles (London and
Biggins, 2014b; Musacchio, 2015; Joglekar, 2016; Corbett, 2017).
I will focus here only on the key points needed to describe all of
the connections at the KMN network depicted in Figure 1.

The principal kinase that regulates the SAC is Mps1, which
localizes to kinetochores by binding to the calponin homology
(CH) domains of Ndc80 and Nuf2 (Hiruma et al., 2015;
Ji et al., 2015). From here, Mps1 is ideally positioned to
phosphorylate key substrates on the KMN network that are
needed for MCC formation. The best characterized of these are
the “MELT repeats” on Knl1 (London et al., 2012; Shepperd
et al., 2012; Yamagishi et al., 2012) (arrow 15, Figure 1), which
recruit a pseudo-symmetric Bub1/Bub3-Bub3/BubR1 complex to
kinetochores by virtue of an interaction between Bub1/Bub3 and
the phosphorylated MELT motif (MELT refers to the consensus
amino acid sequence Met-Glu-Leu-Thr) (Yamagishi et al., 2012;
Primorac et al., 2013; Vleugel et al., 2013; Zhang et al., 2014;
Overlack et al., 2015). Many of these MELT repeats also contain
an additional adjacentmotif (SHT; for Ser-His-Thr) that becomes
a substrate for Mps1 after priming phosphorylation of the

MELT (Vleugel et al., 2015). The phosphorylated SHT (SHpT)
motif can then collaborate with the phospho-MELT (MELpT)
to increase Bub1/Bub3 affinity (this dual phospho-MELT/SHT
motif is annotated as “MELT” in Figure 1). Collectively, these
Knl1 phosphorylation sites provide a platform for SAC signaling
at the kinetochore, because the Bub1/Bub3 complex co-recruits,
directly or indirectly, all of the other proteins needed for
SAC signaling (BubR1, Mad1, Mad2, Cdc20) (Corbett, 2017).
Therefore, Knl1 acts as a scaffold for MCC assembly at the
kinetochore (represented by a thick arrow 16 from the Bub
complex in Figure 1). Mps1 also directly phosphorylates both
Bub1, to regulate Mad1 recruitment, and Mad1 itself to stimulate
catalytic assembly of the MCC complex (London and Biggins,
2014a; Moyle et al., 2014; Mora-Santos et al., 2016; Faesen
et al., 2017; Ji et al., 2017, 2018; Qian et al., 2017; Zhang G.
et al., 2017). Therefore, these additional phosphorylations are
represented by arrows 17 and 18 from Mps1 to MCC formation
in Figure 1.

In addition to recruiting MCC components, the Bub complex
also recruits the kinase Plk1 to the KMN network (Qi et al., 2006;
Elowe et al., 2007; Wong and Fang, 2007) where it is able to
cooperate with Mps1 to enhance SAC signaling (Von Schubert
et al., 2015; Ikeda and Tanaka, 2017). Critical substrates in this
regard are the Knl1-MELT repeats, which are phosphorylated
by both Mps1 and Plk1 to activate the SAC (arrows 15 and
19, Figure 1) (Espeut et al., 2015; Von Schubert et al., 2015;
Ikeda and Tanaka, 2017). Plk1 and Mps1 both have a strong
preference for acidic residues at position −2 relative to the
phosphoacceptor site (Nakajima et al., 2003; Dou et al., 2011;
Santamaria et al., 2011; Oppermann et al., 2012; Hennrich et al.,
2013), and therefore they could potentially share many different
SAC substrates. Plk1 also phosphorylates Mps1 itself on multiple
different sites, which have been proposed to controlMps1 activity
Von Schubert et al., 2015; Ikeda and Tanaka, 2017). However, it
is unclear whether these phosphorylations directly activateMps1,
therefore this potential link is currently omitted from Figure 1. In
addition to stimulating MCC assembly, Plk1 has also been shown
to phosphorylate the APC/C co-activator Cdc20, which inhibits
the ability of Cdc20 to bind and activate the APC/C (Jia et al.,
2016). This phosphorylation is scaffolded by Bub1, which also
contributes to Cdc20 inhibition by phosphorylating an additional
inhibitory site in the N-terminus of Cdc20 (Tang et al., 2004)
(these two phosphorylations are represented by inhibitory arrows
20 and 21 from Bub1 and Plk1 to APC/CCdc20 in Figure 1).

The principal phosphatase that counteracts Mps1 signaling
at the kinetochore is PP1. This was first identified as the
primary SAC silencing phosphatase in C. elegans, S. pombe, and
S. cerevisae (Pinsky et al., 2009; Vanoosthuyse and Hardwick,
2009; Meadows et al., 2011; Rosenberg et al., 2011; Espeut
et al., 2012; London et al., 2012) and later validated as a
critical phosphatase in mammalian cells (Nijenhuis et al., 2014).
PP1 binds to a variety of different regulatory subunits at the
kinetochore (Akiyoshi et al., 2009; Kim et al., 2010; Liu et al.,
2010; Meadows et al., 2011; De Wever et al., 2014; Häfner et al.,
2014; Tang and Toda, 2015; Sivakumar et al., 2016), however,
specifically interfering with PP1-Knl1 interaction is sufficient to
give a strong defect in SAC silencing (Meadows et al., 2011;

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 June 2018 | Volume 6 | Article 62

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Saurin Kinase and Phosphatase Cross-Talk at the Kinetochore

Rosenberg et al., 2011; Espeut et al., 2012; Nijenhuis et al., 2014).
Moreover, this is not related to indirect effects on kinetochore-
microtubule attachments, because SAC silencing is effectively
prevented following Mps1 inhibition in nocodazole (Nijenhuis
et al., 2014). Therefore, although additional PP1 complexes
maybe important for SAC silencing following kinetochore-
microtubule attachment, these cannot substitute for PP1-Knl1 in
the absence of microtubules.

A critical feature of PP1-Knl1 is likely to be its precise location
at the outer kinetochore, since it lies adjacent to the site of MCC
production. Key substrates in this regard are the MELT motifs
on Knl1, which are dephosphorylated by PP1-Knl1 to reduce
kinetochore Bub1 levels (Nijenhuis et al., 2013; Zhang et al.,
2014; Kim et al., 2017) (arrow 12, Figure 1). In Drosophila, the
MELT motifs in the Knl1 homolog (Spc105) appear degenerate
and dispensable for the SAC (Schittenhelm et al., 2009), but in
this case, the activation loop of Mps1 itself is a key substrate
of PP1 (Moura et al., 2017). It is unclear, however, whether
this is regulated by PP1-Spc105 specifically, and in human cells
at least, interfering with PP1-Knl1 directly does not enhance
Mps1 activation loop phosphorylation (Nijenhuis et al., 2013).
As mentioned previously, there are other key Mps1 substrates
in the SAC and it will be important to test whether these
are also regulated by PP1-Knl1 or other PP1 complexes at the
kinetochore.

At least one other PP1 complex, PP1-Ska1, localizes to the
KMN network and regulates Knl1-MELT phosphorylation and
SAC silencing (Sivakumar et al., 2016) (arrow 22, Figure 1).
This is not essential in the absence of microtubules, since
Ska3 depletion removes the Ska complex from kinetochores,
but only causes a very mild (10min) delay in mitotic exit
following Mps1 inhibition in nocodazole (Sivakumar et al.,
2014; Zhang Q. et al., 2017). However, since the Ska complex
is recruited to kinetochores to track growing and shrinking
microtubules, one might predict that the Ska1-PP1 axis becomes
fully engaged to aid SAC silencing following end-on microtubule
attachment. Unfortunately, experiments designed to address this
are complicated by the fact that the exact PP1 binding motif in
Ska1 is currently unknown, which has necessitated deletion of
the entire C-terminal region to prevent PP1 binding (Sivakumar
et al., 2016). This region is also critical for microtubule binding
(Schmidt et al., 2012; Abad et al., 2014), and therefore until these
two key events can be functionally separated, care should be
taken when interpreting whether the Ska complex silences the
SAC directly (via PP1) or indirectly (via microtubule binding).
Furthermore, based on current experiments, it is not possible
to dissociate whether the effects of PP1-Ska on the SAC are
due to inhibition of Mps1 activity/localisation or downstream
dephosphorylation of Mps1 substrates (as discussed in detail
later). In summary, Ska-PP1 negatively regulates SAC activity,
but unlike PP1-Knl1, it does not appear to be essential for
mitotic exit, at least in the absence of microtubules. Perhaps PP1-
Knl1 is the primary SAC silencing phosphatase because it can
dephosphorylate the MELTs directly, and it can also antagonize
Aurora B to recruit Ska1-PP1 to kinetochores, thereby indirectly
antagonizing the SAC when kinetochores couple to dynamic
microtubules tips (arrows 12 and 14, Figure 1).

It is important to point out that additional kinetochore PP1
complexes have also been implicated in SAC silencing in other
species. In budding yeast FIN targets PP1 to kinetochores, but
this is principally involved in keeping the SAC silenced at
anaphase when Cdk1 activity is lost (Akiyoshi et al., 2009; Bokros
et al., 2016). In fission yeast, the kinesin-8 motors, Klp5 and Klp6,
bind to the Ndc80 loop region and help PP1-Knl1 to silence the
SAC (Meadows et al., 2011; Tang and Toda, 2015). However, the
kinesin-8 homolog in human cells, KIF18A, does not appear to
regulate SAC silencing, even though it can bind to PP1 and target
it to kinetochores (De Wever et al., 2014; Häfner et al., 2014). At
this stage, therefore, Kinesin-8motors are omitted from Figure 1,
since their effects on the KMN network may be specific to fission
yeast. This is an important issue to resolve in future.

At least one other KMN-localized phosphatase that is critical
for SAC silencing in human cells is BubR1-bound PP2A-
B56, because BubR1 mutations that prevent PP2A-B56 binding
delay SAC silencing and Knl1-MELT dephosphorylation (Espert
et al., 2014; Nijenhuis et al., 2014). PP2A-B56 can directly
dephosphorylate the MELT motifs in vitro, however, whether it
does this directly or indirectly via PP1-Knl1 (arrow 11, Figure 1)
in vivo is currently a matter of debate (Espert et al., 2014;
Nijenhuis et al., 2014). At this stage, I have omitted the direct
link from PP2A-B56 to the MELTs from Figure 1 because of
one important finding: specific inhibition of PP1-Knl1 prevents
MELT dephosphorylation and SAC silencing following MPS1
inhibition in nocodazole, but actually enhances PP2A-B56 at
the kinetochore (due to increased BubR1 levels and KARD
phosphorylation; arrows 12 and 13 in Figure 1) (Nijenhuis
et al., 2014). It is hard to explain why the MELTs are not
dephosphorylated under these conditions if PP2A-B56 can work
directly. BUBR1-bound PP2A-B56 has, however, been directly
linked to at least two other sites needed for SAC signaling at the
kinetochore. It can antagonize Plk1-dependent phosphorylation
of Cdc20 (Craney et al., 2016; Jia et al., 2016) and Mps1
dependent phosphorylation of Bub1 (Qian et al., 2017) (arrows
23 and 24, Figure 1). It is important to stress, however, that
the influence of the PP1-Knl1 complex on these sites has not
been specifically tested, and furthermore, there is also debate
about whether PP2A-B56 antagonizes Cdc20 phosphorylation by
binding to BubR1 (Craney et al., 2016; Jia et al., 2016) or directly
to the APC/C (Lee et al., 2017). Therefore, it will be important in
future to carefully evaluate the relative contribution of different
phosphatase subcomplexes on the various phosphorylation sites
that are critical for SAC signaling, including the key catalytic sites
in the C-terminus of Mad1 (Faesen et al., 2017; Ji et al., 2017,
2018).

Another important issue to resolve in future, is whether
kinetochore phosphatase activity can be directly regulated
at the KMN network. In fission yeast, PP1 and PP2A-
B56 are globally inhibited during mitosis, but reactivated
sequentially upon mitotic exit (Grallert et al., 2015). These
phosphatase complexes clearly need activity to silence the SAC
prior to mitotic exit, therefore, it would be interesting to
test whether localized reactivation may occur earlier at the
kinetochore. Clustering of PP1 and PP2A-B56 molecules on
Knl1 could potentially stimulate this reactivation by enhancing
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trans-dephosphorylation of inhibitory phosphorylation sites
(Grallert et al., 2015). At least one protein that is thought
to regulate PP2A-B56 activity at kinetochores is Bod1. Bod1
localizes to Ndc80 and is able to inhibit BubR1-bound PP2A-B56
(Porter et al., 2013; Schleicher et al., 2017) (arrow 25, Figure 1).
PP1-Knl1 activity may also be modulated by various accessory
proteins (Posch et al., 2010; Eiteneuer et al., 2014; Duan et al.,
2016), however, this regulation is omitted from Figure 1, because
it is thought to occur in the cytoplasm and not at kinetochores.
It will be important in future to determine whether these, or
other inhibitory pathways, are shut down following chromosome
biorientation to enhance kinetochore phosphatase activity and
promote SAC silencing.

A final important issue regarding SAC silencing concerns
its regulation by kinetochore-microtubule attachment status.
As mentioned previously, once stable kinetochore-microtubule
attachments have formed, localized SAC signaling must be
rapidly extinguished. There are at least three mechanisms that
contribute to this rapid silencing. Firstly, microtubule attachment
inhibits Mps1 activity, either by displacing the kinase from
kinetochores, as demonstrated in human cells (Hiruma et al.,
2015; Ji et al., 2015), or by spatially separating Mps1 from its key
SAC substrates, as demonstrated in budding yeast (Aravamudhan
et al., 2015) (inhibitory arrow 26 to Mps1 in Figure 1).
Secondly, if these attachments generate tension, then Aurora B is
inhibited at the kinetochore, which enhances PP1-Knl1 activity to
antagonize the SAC signal (arrows 7 and 10, Figure 1). This could
explain why Aurora B activity is needed to prevent the premature
removal of SAC proteins from kinetochores (Gurden et al., 2016).
Finally, the attached microtubules provide a highway onto which
dynein motors can travel to transport key SAC proteins away
from kinetochores toward the spindle poles (not depicted on
Figure 1) (Howell et al., 2001; Wojcik et al., 2001; Mische et al.,
2008; Sivaram et al., 2009). Therefore, the effects of microtubules
combine to shut down the upstream kinase input, switch on the
antagonizing phosphatases, and strip the remaining SAC signal
away. This essentially leads to a responsive SAC signal that can
shut off at kinetochores within seconds following microtubule
attachment.

THE ROLE OF CDK1 IN REGULATING
KINETOCHORE-MICROTUBULE
ATTACHMENTS AND THE SAC

The scheme in Figure 1 incorporates all the main kinases and
phosphatases that act at the KMN network with the exception
of just one: Cdk1. The reason for this omission is that Cdk1
has been linked to every single node in the network, which
would lead to a very complicated picture if incorporate into the
same arrow-style schematic. Instead, having discussed the core
network, I will now overlay Cdk1 regulation on top of this by the
addition of phosphate symbols to the various components (see
Figure 2A; a green phosphate symbol indicates a direct activating
input from Cdk1, whereas a red phosphate indicates a direct
inhibitory input). This figure should be referenced in conjunction
with the text below, where each of these regulatory inputs will

be briefly explained. The text will also contain additional indirect
regulation that is relevant for KMN regulation, but it not depicted
in Figure 2 because it does not occur locally at the KMNnetwork.

Cdk1 phosphorylates the APC/C to enhance its affinity for
Cdc20, thereby increasing APC/CCdc20 activity (Shteinberg et al.,
1999; Kramer et al., 2000; Rudner and Murray, 2000; Kraft et al.,
2003; Fujimitsu et al., 2016; Qiao et al., 2016; Zhang et al., 2016;
Figure 2A). To prevent immediate mitotic exit, however, Cdk1
then initiates a series of events that collaborate to antagonize
APC/CCdc20 by two general mechanisms:

(1) Stimulation of MCC production (see Figure 2A). Cdk1
elevates Mps1 activity by direct phosphorylation on Ser283.
This residue is located outside of the catalytic domain,
but when phosphorylated, is able to amplify Mps1 activity
without affecting its kinetochore recruitment (Morin et al.,
2012). Cdk1 also helps Mps1 to initiate SAC signaling in
multiple ways: It phosphorylates Bub1 (on Ser459) to prime
further phosphorylation by Mps1 on Thr461 (arrow 17),
which together help to promote Mad1 interaction and MCC
formation (Chen, 2004; Ji et al., 2017; Qian et al., 2017;
Zhang Q. et al., 2017). In addition, Cdk1 phosphorylates
Bub1 (on Thr609) and BubR1 (on Thr620) to create docking
sites for the polo-box domains (PBDs) of Plk1 (Qi et al.,
2006; Elowe et al., 2007; Wong and Fang, 2007). As discussed
earlier, this helps to enhance SAC signaling by allowing
Plk1 to co-operate with Mps1 to phosphorylate the Knl1-
MELT motifs (Espeut et al., 2015; Von Schubert et al.,
2015; Ikeda and Tanaka, 2017) (arrow 19). Finally, there
are also at least two other ways that Cdk1 can influence
Plk1 activity at kinetochores: (1) Cdk1 primes USP16 for
phosphorylation and activation by Plk1, which establishes
a positive feedback loop that helps to maintain Plk1 on
kinetochores by antagonizing its CUL3–KLHL22-mediated
ubiquitylation and removal (Beck et al., 2013; Zhuo et al.,
2015), (2) Cdk1 phosphorylates the MYPT1-PP1 complex
to enhance Plk1 interaction and decrease Plk1 activity
(Yamashiro et al., 2008; Dumitru et al., 2017). Although
these connections can both impact on kinetochore-localized
Plk1 activity, they are not currently annotated on Figure 2A

because it is still unclear whether this regulation occurs
locally at the KMN network. These are important issues to
resolve in future.

(2) Direct Inhibition of Cdc20 (see Figure 2A). Cdk1
phosphorylates Cdc20 to negatively regulate its ability
to bind and activate the APC/C (Yudkovsky et al., 2000;
Labit et al., 2012; Hein and Nilsson, 2016). In addition,
Cdk1 activity directly and indirectly recruits Plk1 and
Bub1 to kinetochores, as discussed above, and these kinases
cooperate to phosphorylate additional sites in the N-
terminus of Cdc20 to inhibit its activity (Tang et al., 2004; Jia
et al., 2016) (arrows 20 and 21).

As well as stimulating both of these inhibitory pathways, Cdk1
also antagonizes the phosphatase complex that is eventually
needed to reverse these pathways and activate the APC/C:
PP1-KNL1. As discussed earlier, PP1-Knl1 dephosphorylates the
Knl1-MELT motifs, and perhaps other key SAC substrates, to
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FIGURE 2 | A schematic to depict how Cdk1 regulates the KMN network to control mitotic exit. (A) Colored phosphate symbols indicate either positive (green) or

negative (red) regulation from Cdk1. (B) An arrow-style schematic to depict how Cdk1 promotes (green arrows) and inhibits (red arrows) mitotic exit.

extinguish MCC production. In addition, it has also been shown
to reverse inhibitory Cdk1 phosphorylation on Cdc20 to allow
activation of the APC/C upon mitotic exit in C. elegans (Kim
et al., 2017) (arrow 27 from PP1 to APC/CCdc20 in Figure 2A).
Together, this explains why PP1-KNL1 must be inhibited at
unattached kinetochores to prevent premature APC/C activation.
This inhibition is promoted by Cdk1, both directly and indirectly,
because Cdk1 can directly phosphorylate and inhibit the catalytic
subunit of PP1 (Dohadwala et al., 1994; Yamano et al., 1994;
Kwon et al., 1997; Wu et al., 2009; Grallert et al., 2015), and
it can also activate Aurora B to inhibit PP1-KNL1 assembly at
kinetochores.

Cdk1 can activate Aurora B in a variety of ways, but most
of these converge to help the clustering of CPC molecules at
centromeres, which in turn, helps Aurora B to auto-activate in
trans (Bishop and Schumacher, 2002; Honda et al., 2003; Yasui
et al., 2004; Sessa et al., 2005; Kelly et al., 2007; Wang et al.,
2011; Zaytsev et al., 2016). Cdk1 directly phosphorylates borealin
(or survivin in fission yeast) to promote binding to Shugoshin 1
(Sgo1). This recruits the CPC to Bub1-phosphorylated Histone
H2A tails and cohesin rings at the centromere (Kawashima et al.,
2010; Tsukahara et al., 2010). Cdk1 additionally phosphorylates
T346 on Sgo1 to enhance its binding to cohesin rings (Liu
et al., 2013), and in human somatic cells, it helps to enrich

this cohesin at the centromere by promoting its loss from
chromosome arms (Dreier et al., 2011; Liu et al., 2013; Nishiyama
et al., 2013). Another pathway that is important for centromeric
CPC recruitment is the Haspin-mediated phosphorylation of
Histone H3 tails (H3-pT3), which stimulates their interaction
with survivin (Kelly et al., 2007; Wang et al., 2010; Yamagishi
et al., 2010; Jeyaprakash et al., 2011; Niedzialkowska et al.,
2012). Cdk1 phosphorylates Haspin to prime the binding of
its activator Plk1, thereby enhancing H3-T3 phosphorylation
(Ghenoiu et al., 2013; Zhou et al., 2014). At the same time, Cdk1
inhibits the H3-T3 phosphatase, PP1-RepoMan, to prevent H3-
T3 dephosphorylation (Vagnarelli et al., 2011; Qian et al., 2015).
Collectively, these direct and indirect effects of Cdk1 serve to
localize and activate the CPC at centromeres.

In addition to regulating centromere recruitment, Cdk1
also phosphorylates INCENP on at least two residues that are
functionally important. It phosphorylates Thr59, which prevents
premature localisation of the CPC to the spindle midzone and
must be dephosphorylated to properly switch off the SAC at
anaphase (Goto et al., 2006; Hümmer and Mayer, 2009; Vázquez-
Novelle and Petronczki, 2010). Cdk1 also phosphorylates Thr388
in INCENP, which creates a docking site for Plk1 (Goto et al.,
2006). This docking site is likely to contribute to cross-talk
between Aurora B and Plk1 (Combes et al., 2017), although it is
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currently unclear whether this affects their respective activities
at the KMN network. Interestingly, Plk1 and Aurora B have
been proposed to cooperate in a positive feedback loop that
enhances their respective activities at the kinetochore (O’connor
et al., 2015), therefore, perhaps INCENP phosphorylation could
be relevant in this context. Finally, Cdk1 may also help to
protect deactivation of Aurora B since it phosphorylates and
activates the acetyltransferase TIP60, which can acetylate Aurora
B and protect its activation loop from dephosphorylation by
PP2A (Mo et al., 2016). TIP60 phosphorylation occurs at the
kinetochore and is needed for proper chromosome segregation,
but this regulation is currently omitted from Figure 2 because
it is unclear whether it helps to maintain Aurora B activity at
the KMN network. The balance between PP2A and Aurora B is
clearly critical for microtubule attachment and SAC regulation,
therefore this is an important issue to resolve in future.

In summary, Cdk1 activates the APC/C but then initiates
a whole series of events that converge to inhibit the APC/C
and prevent mitotic exit (see Figure 2B). In one important
final twist, Cdk1 attempts to override this APC/C inhibition
and induce mitotic exit by stimulating at least two other
pathways at the kinetochore: Cdk1 phosphorylates BubR1 (on
Ser670) and Ska3 (on Thr358 and Thr360) to recruit PP2A-
B56 and the Ska complex to kinetochores (Huang et al., 2008;
Suijkerbuijk et al., 2012; Kruse et al., 2013; Zhang Q. et al.,
2017). Importantly, the ability of these two pathways to promote
mitotic exit is enhanced by the formation of end-on microtubule
attachments (green arrows in Figure 2B). Therefore, Cdk1
jointly stimulates both mitotic arrest and mitotic exit, but it
hands the control over to microtubules, which can determine
whether kinase or phosphatase activities predominate at the
kinetochore (as discussed in detail later). Part of this balance
may also be controlled by Bod1, which binds to NDC80 and
is phosphorylated by Cdk1 to inhibit PP2A-B56 (Porter et al.,
2013; Schleicher et al., 2017; Figure 2A). It will be interesting
to determine whether microtubule attachment or tension can
modulate Bod1 localisation or phosphorylation.

THE IMPLICATIONS OF CROSS-TALK AT
THE KMN NETWORK

Inhibition of any one of the enzymes depicted in Figure 2A will
produce knock-on effects for all the others. This has inevitable
consequences for both kinetochore-microtubule attachments
and the SAC, and therefore, instead of viewing these enzymes
in isolation, it is probably safer, and more accurate, to view
them as part of a single network that can co-regulate two key
mitotic processes. In this respect, it is critical to understand the
implications of all this cross-talk. One only needs to trace some of
the arrows in Figure 2A, to see that this network is rich in various
forms of feedback and feedforward regulation, and yet very little
is currently known about what this could mean for microtubule
attachments and the SAC.

I would now like to focus on each enzyme individually
to discuss some of these issues. In particular, I will discuss
how coactivation of kinases and phosphatases may help to

produce dynamic signals that can quickly respond to changes
in microtubule occupancy. I will also highlight how the
multiple connections within this network inevitably complicates
interpretations about the direct effects of each particular enzyme.
This may have contributed to some controversies within the
field, and therefore after highlighting these issues, I will finish by
discussing some general experimental approaches that may help
to resolve some of the questions that remain. Before I focus in
on each of the enzymes, however, it is first important to stress
that microtubules themselves can also be a general source of
unwanted cross-talk.

INDIRECT EFFECTS OF MICROTUBULE
ATTACHMENTS ON THE SAC

As discussed previously, kinetochore-microtubule attachments
shut down the SAC signal in many different ways (Etemad
and Kops, 2016). Therefore, experiments designed to probe
the SAC directly should be interpreted extremely cautiously if
microtubules are present that could indirectly impact on SAC
strength. In fact, as pointed out previously by others (Khodjakov
and Rieder, 2009), in many instances it is best to avoid this
situation by using microtubule depolymerizing agents, such as
nocodazole, to ensure that kinetochores remain in an unattached
state throughout the assay. One common reason for preserving
microtubules is to achieve a state of submaximal SAC strength.
For example, the use of taxol to stabilize microtubules or
Eg5 inhibitors to induce monopolar spindles, produces fewer
unattached kinetochores to signal to the SAC in comparison
to nocodazole (Collin et al., 2013). The result is that SAC
strength is reduced, and defects within the SAC signaling network
can produce more penetrant phenotypes. However, if these
defects also affect kinetochore-microtubule stability then this will
inevitably produce indirect effects on the SAC. Furthermore,
as Figure 1 demonstrates, all of the validated SAC regulators
can impinge on kinetochore-microtubule attachments either
directly or indirectly. Therefore, to avoid this cross-talk from
confounding interpretations about the SAC, a useful alternative
approach is to combine nocodazole with a low dose of an Mps1
inhibitor to sensitize the SAC whilst still keeping all kinetochores
free from microtubule attachments. This type of experiment was
crucial for characterizing the role of Aurora B in the SAC.

Aurora B
Aurora B had long been suspected to activate the SAC directly,
primarily because Aurora B inhibition weakened the SAC in the
nocodazole (Kallio et al., 2002; Ditchfield et al., 2003; Hauf et al.,
2003; Petersen and Hagan, 2003; Vader et al., 2007; Vanoosthuyse
and Hardwick, 2009). This was controversial, however, since
others had suggested that residual microtubules at the chosen
nocodazole concentrations may still silence the SAC indirectly
(Yang et al., 2009). Furthermore, even if Aurora B did signal
directly to the SAC, then it was unclear at what level Aurora B
exerted its control. These issues were resolved using sensitized
assays employing a high dose of nocodazole combined with
partial Mps1 inhibition or Ndc80 depletion. These experiments
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FIGURE 3 | Models focussed on each enzyme at the KMN network (A–I) to depict the different types of direct and indirect regulation.

demonstrated that Aurora B acts at the apex of SAC signaling to
establish Mps1 activity at kinetochores (Santaguida et al., 2011;
Saurin et al., 2011).

This is presumed to be via the direct recruitment of Mps1 to
kinetochores because Aurora B inhibition in nocodazole reduces
kinetochore Mps1 and weakens the SAC, and artificial tethering
of Mps1 to Mis12 can rescue these SAC defects (Jelluma et al.,
2010; Santaguida et al., 2011; Saurin et al., 2011; Nijenhuis et al.,
2013). However, an arrow between Aurora B andMps1 is omitted
from Figure 1 because there is currently no direct mechanistic
evidence to support this link. In fact, herein lies an important
note of caution: if Aurora B inhibits phosphatase complexes

that antagonize Mps1 (PP1-Knl1 and PP1-Ska; arrows 10 and
3 in Figure 1), then this “double negative” input could well
explain the “positive” effect of Aurora B on the SAC (Figure 3A).
Or to put this another way, Aurora B inhibition could simply
enhance kinetochore phosphatase activity to antagonize Mps1
and silence the SAC. The fact that tetheringMps1 to kinetochores
overrides the effect of Aurora B inhibition does not preclude
this hypothesis, because high levels of kinetochore-Mps1 could
simply counterbalance high phosphatase activity to preserve the
SAC. In fact, If Aurora B acts exclusively via PP1, then it may
be easier to rationalize why Aurora B inhibition in nocodazole
is so well tolerated. Otherwise, if Aurora B inhibition increases
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SAC silencing and decreasesMps1 activity, it is difficult to explain
why it does not also rapidly extinguish the SAC in the absence
of microtubules. To resolve these issues in future, it will be
important to clarify exactly how kinetochore Mps1 recruitment
is regulated and to determine whether the input from Aurora
B is direct or indirect (via PP1, for example; Figure 3A). It will
also be important to develop direct reporters of Mps1 activity
because simply using Mps1 kinetochore levels as a surrogate for
its activity could be misleading, especially since Mps1 activity
negatively regulates its own kinetochore accumulation (Hewitt
et al., 2010; Jelluma et al., 2010; Santaguida et al., 2010; Von
Schubert et al., 2015).

Mps1
In addition to activating the SAC, Mps1 also regulates
kinetochore-microtubule attachments because knockdown or
inhibition of Mps1 prevents the correction of maloriented sister
chromatids. Exactly how this occurs, however, has been a matter
of considerable debate, with evidence that Mps1 works both
dependently and independently of Aurora B (Maure et al.,
2007; Jelluma et al., 2008; Kwiatkowski et al., 2010; Maciejowski
et al., 2010; Santaguida et al., 2010; Sliedrecht et al., 2010). At
least some of the Aurora B-dependent action can be explained
by the kinetochore recruitment of Bub1, which enhances the
centromeric localisation of Aurora B via Sgo1 (Hindriksen et al.,
2017; Figure 3B). In agreement with this, tethering of Aurora
B to centromeres is sufficient to partially rescue chromosome
alignment following Mps1 inhibition (Van DerWaal et al., 2012).
In contrast, the Aurora B-independent effects may be explained
by direct phosphorylation of the Ska complex, which regulates
its ability to track dynamic microtubule ends (Maciejowski et al.,
2017).

Mps1 and Aurora B activities are counteracted at the outer
kinetochore by PP2A-B56 (Foley et al., 2011; Maciejowski
et al., 2017). Importantly, both of these kinases also help
to elevate kinetochore PP2A-B56 levels: Mps1 enhances
PP2A-B56 recruitment (via the Bub complex) and Aurora
B inhibits its removal (via PP1-Knl1; Figure 1). Therefore,
Aurora B and Mps1 phosphorylate substrates to remove
kinetochore-microtubule attachments, and at the same
time, they recruit a phosphatase that attempts to stabilize
these attachments (Figure 3C). This type of “paradoxical
regulation,” also called incoherent feedforward regulation
(Hart and Alon, 2013), induces cycles of phosphorylation and
dephosphorylation on individual molecules, which in turn,
can enhance substrate responsiveness (i.e., the speed by which
these substrates can change phosphorylation state; see Gelens
and Saurin, 2018). Therefore, the continual phosphorylation
and dephosphorylation of kinetochore targets may help to
generate a dynamic kinetochore-microtubule interface that
can rapidly respond to changes in microtubule occupancy.
The phospho-RVSF and phospho-MELT are two examples of
dynamic kinetochore substrates needed for SAC responsiveness
(Nijenhuis et al., 2014), and it will be interesting to test whether
phosphorylation sites that regulate microtubule attachment,
such as those on Ndc80, are similarly dynamic.

If balanced phosphorylation and dephosphorylation helps
to keep the microtubule interface dynamic, then it will
be important to understand how this balance changes over
time following the establishment of kinetochore-microtubule
attachments and tension. Here, subtle differences in timing
could have important physiological consequences. For example,
although Mps1 activity falls rapidly following microtubule
attachment (Aravamudhan et al., 2015; Hiruma et al., 2015;
Ji et al., 2015), PP2A-B56 will persist at kinetochores until
its recruitment sites are dephosphorylated, which may provide
the time window needed for PP2A-B56 to reverse Mps1
signals. If one considers how the same kinase-phosphatase
balance changes over time in other contexts, it may help to
solve some current controversies. For example, if Mps1 is re-
recruited to attached kinetochores, via Mis12, then microtubule
attachments become rapidly destabilized (Maciejowski et al.,
2017). However, if Mps1 is maintained at the same location
from the start of mitosis then these attachments can apparently
form normally (Jelluma et al., 2010). This may, as previously
suggested (Maciejowski et al., 2017), relate to differences in
kinetochore Mps1 levels, or alternatively, it may relate to
differences in PP2A-B56 localization. For example, following
constitutive Mis12-Mps1 expression, PP2A-B56 is expected to be
maintained at kinetochores during metaphase to counterbalance
Mps1 activity, perhaps explaining why these attachments can
still become stabilized. However, a time-lag in PP2A-B56
localization following Mps1 re-recruitment may cause these
bipolar attachments to become rapidly destabilized before PP2A
is present to counterbalance Mps1 activity.

A similar delay in PP2A recruitment occurs upon mitotic
entry because BubR1 is excluded from the nucleus in prophase,
which in this case, allows MPS1 to rapidly establish the
SAC before a phosphatase is recruited to dampen MPS1
signaling in prometaphase (Nijenhuis et al., 2014). This
biphasic response has been proposed to function as an
attachment-independent biochemical timer that establishes the
SAC in prometaphase by temporarily enhancing Bub1-Mad1
interaction, before RZZ-Mad1 interaction is able to take over
and sustain the SAC in a microtubule-dependent manner
(Qian et al., 2017). It is important to point out, however,
that PP2A only supresses KNL1-MELT phosphorylation during
a prolonged prometaphase arrest (to approximately 30% of
maximal levels; see Nijenhuis et al., 2014). This is likely to
reflect rapid phosphorylation-dephosphorylation of individual
molecules, which may result in supressed MCC production,
or, as hypothesized recently (Gelens and Saurin, 2018), could
even help to enhance SAC signaling by promoting the rapid
binding and release of MCC components to and from the
kinetochore.

Bub1
Bub1 is a critical scaffold for the SAC, because it recruits BubR1,
Mad1/Mad2 and Cdc20 to Knl1 to help generate the MCC
(Figure 1). Although its direct catalytic activity appears largely
dispensable for SAC signaling (Baron et al., 2016), it does still
co-recruit Plk1 which can inhibit Cdc20 (Jia et al., 2016) and
collaborate with Mps1 to phosphorylate the Knl1-MELT motifs
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(Espeut et al., 2015; Von Schubert et al., 2015; Ikeda and Tanaka,
2017). The Bub complex is also a key integrator of kinetochore-
microtubule attachment signals: Bub1 elevates Aurora B activity
by recruiting the CPC to centromeres (Hindriksen et al., 2017),
but at the same time, BubR1 scaffolds PP2A-B56 at kinetochores
to antagonize Aurora B activity (Suijkerbuijk et al., 2012; Kruse
et al., 2013; Xu et al., 2013; Figures 3D). As discussed above, this
type of paradoxical regulation may help to maintain dynamic
phosphorylation of the kinetochore-microtubule interface. In
this context, the Bub complex is a potentially vulnerable node
in the KMN network because altering this kinase-phosphatase
balance could alter phosphorylation dynamics and give rise
to the type of division errors that are typical seen in tumors
with chromosomal instability. This may explain why modulating
the Bub1/BubR1 ratio at kinetochores affects kinetochore-
microtubule dynamics and tumorigenesis (Lampson and Kapoor,
2005; Jeganathan et al., 2007; Bohers et al., 2008; Baker et al., 2009,
2013; Suijkerbuijk et al., 2010; Ricke and Van Deursen, 2011;
Ricke et al., 2011). This is a hypothesis that is discussed in detail
elsewhere (Cordeiro et al., 2018).

Plk1
As discussed above, Plk1 and Mps1 cooperate to phosphorylate
the MELT motifs on KNL1 and activate the SAC (Espeut et al.,
2015; Von Schubert et al., 2015; Ikeda and Tanaka, 2017).
Considering the substrate specificities of Plk1 and Mps1 are
largely overlapping (Nakajima et al., 2003; Dou et al., 2011;
Santamaria et al., 2011; Oppermann et al., 2012; Hennrich et al.,
2013), it will be important to determine whether Plk1 can
similarly phosphorylate other key Mps1 sites on Knl1 (Vleugel
et al., 2015), Bub1 (London and Biggins, 2014a; Moyle et al.,
2014; Mora-Santos et al., 2016; Ji et al., 2017; Qian et al., 2017;
Zhang Q. et al., 2017) and Mad1 (Faesen et al., 2017; Ji et al.,
2017, 2018). The fact that Plk1 functionally substitutes for Mps1
in C. elegans, which lack Mps1 altogether, implies that Plk1 may
support more than simply Knl1-MELT phosphorylation (Espeut
et al., 2015). Furthermore, it is currently unknown whether Mps1
can similarly substitute for Plk1 at the KMN network, and in
particular, whether it can phosphorylate the BubR1-KARDmotif
and the inhibitory Plk1 site on Cdc20 (Elowe et al., 2007; Jia et al.,
2016). Finally, if these kinases are truly cooperative, then it is also
important to consider how Plk1 is rapidly inhibited following
kinetochore-microtubule attachment. The interaction between
Ndc80 and microtubules abruptly switches off kinetochore Mps1
activity to silence the SAC (Aravamudhan et al., 2015; Hiruma
et al., 2015; Ji et al., 2015), but it is not clear why Plk1,
which is localized all along Knl1 (via interaction with the Bub
complex), cannot continue to phosphorylate the MELTs and
sustain SAC signaling at this time. Perhaps the Plk1 docking
sites on Bub1/BubR1 are other critical targets of PP1-Knl1 and/or
PP2A-B56?

As well as supporting the SAC, Plk1 also helps to
stabilize initial kinetochore-microtubule attachments during
prometaphase (Liu et al., 2012). This may be an indirect effect of
Aurora B inhibition, because as stated above, Plk1 enhances the
interaction between PP2A-B56 and BubR1. Alternatively, Plk1
has been proposed to work independently of Aurora B in this

regard (Liu et al., 2012; Figure 3E). Plk1 can affect kinetochore-
microtubule stability inmany different ways (Li et al., 2010; Bader
et al., 2011; Hood et al., 2012; Maia et al., 2012; Kakeno et al.,
2014; Shao et al., 2015), from a variety of different kinetochore
subcomplexes (Nishino et al., 2006; Elowe et al., 2007; Amin et al.,
2014; Kim et al., 2014; Dumitru et al., 2017; Ehlen et al., 2018).
Therefore, these multiple different inputs from Plk1 may help to
resolve the puzzling observations that Plk1 inhibition can either
destabilize (Sumara et al., 2004; Lénárt et al., 2007) or stabilize
(Foley et al., 2011) kinetochore-microtubule attachments under
different conditions.

Cdk1
Cdk1 can positively or negatively regulate all of the enzymes
present on the KMN network (Figure 2A). Interestingly, there is
a pattern to this regulation when viewed in relation to the APC/C.
Cdk1 activates APCCdc20 at the start of mitosis, but then initiates
a series of events that cooperate to inhibit APC/CCdc20 and
prevent mitotic exit. Specifically, Cdk1 inhibits Cdc20 directly,
promotes MCC formation, activates Aurora B to destabilize
kinetochore-microtubule attachments, and inhibits the SAC
phosphatase PP1, both directly, and indirectly via Aurora B (all
red arrows from Cdk1 in Figure 2B). These multiple regulatory
inputs from Cdk1 most likely help to ensure that the SAC
cannot be reactivated once Cyclin B is degraded and chromosome
segregation has been initiated (Vázquez-Novelle et al., 2010,
2014; Rattani et al., 2014). They could also help to regulate
the SAC locally at kinetochores during mitosis, because Cyclin
B/Cdk1 has been observed to localize specifically to unattached
kinetochores (Chen et al., 2008). Removal of Cyclin B from
kinetochores upon microtubule attachment could potentially
reduce local Cdk1 activity to silence the SAC signal and/or inhibit
kinetochore Aurora B. It will be interesting to test if any of the
Cdk1 phosphorylation sites at the KMN network are sensitive
to microtubule attachment status (Figure 2A). It also important
to note that Cyclin A/Cdk1 can preferentially phosphorylate a
subset of Cdk1 substrates to regulate kinetochore-microtubule
turnover (Kabeche and Compton, 2013; Dumitru et al., 2017).
Cyclin A is degraded early during prometaphase (Den Elzen and
Pines, 2001), which implies that the balance of phosphorylation
on Cdk1 substrate at the KMN network may change dynamically
as mitosis progresses.

Although a key role of Cdk1 is to arrest the mitotic state,
there are at least two Cdk1 substrates at the KMN network that
promote mitotic exit instead: Cdk1 phosphorylates BubR1 and
Ska3 to recruit PP2A-B56 and the Ska complex to kinetochores
(Huang et al., 2008; Suijkerbuijk et al., 2012; Kruse et al., 2013;
Xu et al., 2013; Zhang Q. et al., 2017). Both of these pathways
function to stabilize microtubule attachments and shut down
the SAC (green arrows from Cdk1 in Figure 2B). Therefore,
as illustrated in Figure 3F, Cdk1 promotes both mitotic arrest
(red arrows), and mitotic exit (green arrows), but allows the
output to be decided by the level of kinetochore-microtubule
attachment/tension, which can inhibit the kinases and activate
PP1 at the kinetochore. It is unclear how Aurora B activity is
modulated by tension, but any model of tension-sensing would
also need to integrate the regulation of PP2A-B56, PP1-Knl1 and
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PP1-Ska1. It is not immediately obvious how these phosphatases
will behave in time following microtubule attachment or tension,
because they are co-regulated by multiple attachment sensitive
kinases (Cdk1, Plk1, and Aurora B), and crucially, they also
cross-regulate each other.

Kinetochore Phosphatases
As discussed previously, the cross-regulation between PP1-
Knl1 and PP2A-B56 at the KMN network complicates the
interpretations about exactly which phosphatase regulates the
SAC and kinetochore-microtubules attachments directly. The
problem stems from the fact that PP2A-B56 enhances PP1-
Knl1 accumulation (by inhibiting Aurora B), and therefore
mutations that abolish kinetochore PP2A-B56 also reduce PP1-
Knl1 (Nijenhuis et al., 2014; Figure 3G). To uncouple the relative
contribution of each phosphatase it is important to compare
this situation to one in which PP1-Knl1 is abolished directly:
because this actually enhances kinetochore PP2A-B56 (due to
the negative regulation of both Knl1-MELT and BubR1-KARD
phosphorylation by PP1-Knl1) (Figure 3G). If both mutants
have the same phenotypic effect, as they do for Knl1-MELT
phosphorylation, then it is likely that Knl1-PP1 is directly
responsible. However, to prove this definitively, it is important
to show that the effects of PP2A-B56 inhibition are recovered
if PP1-Knl1 is rescued at the kinetochore. It will be important
to determine how Knl1-MELT phosphorylation behaves under
these conditions.

When characterizing phosphatase inputs at the KMN network
it is advisable to perform specific mutations that inhibit local
phosphatase recruitment without affecting total phosphatase
levels. This minimizes the indirect effects and may also produce
more penetrant phenotypes, in comparison to siRNA-mediated
depletion, for example. This may explain why Knl1-MELT
dephosphorylation was strongly affected by targeting Knl1-PP1
directly, but not by depleting PP1 catalytic subunits (Espert
et al., 2014; Nijenhuis et al., 2014). Another important SAC
substrate, Bub1-pSer461, was recently shown to be elevated
by BubR1 mutations that reduce kinetochore PP2A-B56, but
unaffected by depletion of PP1 catalytic subunits (Qian et al.,
2017). These data should be interpreted cautiously until this
site is assessed following Knl1 mutations that abolish PP1-Knl1
directly. If Bub1-pSer461 is a specific substrate for PP2A-B56,
then phosphorylation should be unaffected, or even decreased,
under these conditions. Mps1 phosphorylates many other targets
on the KMN network to activate the SAC and it will be important
in future to carefully dissect which phosphatase complex(es)
reverse these phosphorylations.

One other key functional difference between PP1-KNL1
and PP2A-B56 relates to their ability to regulate kinetochore-
microtubule attachments. As discussed previously, removing
kinetochore PP2A-B56 prevents the formation of initial
kinetochore-microtubule attachments due to elevated Aurora
B activity (Foley et al., 2011; Suijkerbuijk et al., 2012; Kruse
et al., 2013; Xu et al., 2013). This does not appear to be the
case when PPI-Knl1 is removed (Liu et al., 2010; Shrestha
et al., 2017), which suggests that PP2A-B56 is the primary
phosphatase responsible for antagonizing Aurora B prior to

the establishment of tension in human cells. However, these
data may still be consistent with a role for both PP1-Knl1
and PP2A-B56 in antagonizing Aurora B, since the negative
effects of PP1-Knl1 mutation could simply be masked by a
compensatory increase in kinetochore PP2A-B56 (as a result of
phosphatase cross-talk; see Figure 3H). In agreement with this
hypothesis, rescuing PP1-Knl1 following PP2A-B56 depletion is
sufficient to reduce Aurora B activity and improve chromosome
alignment (Nijenhuis et al., 2014). It will be important to quantify
kinetochore Aurora B substrates directly under these different
conditions.

A final issue regarding phosphatase specificity involves the
PP1-Ska1 complex and how it functions to silence the SAC.
Specifically interfering the PP1-Ska, by deleting the Ska1 C-
terminal region, elevates Knl1-MELT phosphorylation and Bub1
recruitment in nocodazole (Sivakumar et al., 2016). However,
the impact on the activity of Mps1 itself was not determined,
and therefore PP1-Ska could either inhibit Mps1 activity,
dephosphorylate the Knl1-MELT motifs, or target both Mps1
and Knl1 (Figure 3I). The Ska complex binds directly to the
Ndc80 complex, although it is currently unclear whether this
is mediated by the Ndc80 tail region, CH domain, or the
coiled-coil regions of Ndc80 and Nuf2 (Zhang et al., 2012,
2018; Cheerambathur et al., 2017; Janczyk et al., 2017; Helgeson
et al., 2018). In fact, the presence of multiple discrete binding
interfaces, has prompted others to speculate that Ska may be
present in different subcomplexes bound to Ndc80 (Zhang
et al., 2018). Irrespective of whether these subcomplexes exist,
it is likely that the PP1-Ska complex is well positioned to
regulate Mps1 activity or localization, since Mps1 binds to the
CH domains in Ndc80/Nuf2 (Nijenhuis et al., 2013; Hiruma
et al., 2015; Ji et al., 2015). The Ska complex accumulates
at a time when Mps1 activity needs to be silenced (i.e.,
following end-on kinetochore microtubule attachment), and
PP1 is responsible for dephosphorylating the activation loop
of Mps1 in drosophila (Moura et al., 2017). Considering all
of these points, it will be interesting to test whether PP1-
Ska1 contributes to rapid Mps1 inhibition following microtubule
attachment in human cells. If it does, then it may also explain
why Aurora B inhibition, which enhances Ska accumulation at
kinetochores (Chan et al., 2012; Sivakumar and Gorbsky, 2017),
also inhibits Mps1 localisation and activity (Jelluma et al., 2010;
Santaguida et al., 2011; Saurin et al., 2011; Nijenhuis et al.,
2013).

EXPERIMENTAL APPROACHES TO
UNDERSTAND SIGNALING SPECIFICITY
AT THE OUTER KINETOCHORE

To understand signaling specificity at the KMN network, it
is important to be certain of the direct substrates for each
particular enzyme. These can be identified in vitro using purified
components, however, these results should also be confirmed
within the context of the KMN network since specificity in vivo is
determined by many additional factors, such as relative protein
levels and substrate access/availability. For example, although
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Plk1 and Mps1 may have similar substrate specificities in vitro,
from their exact locations on the KMN network they may have
restricted access to only a subset of these substrates. This access
will be defined by the relative geometry of the KMN network
and the extent of kinase inactivation following release from
its primary docking site(s). Does Mps1 need to be docked on
Ndc80 to phosphorylate substrates or can it be released to form a
gradient of activity around Ndc80? If it can be released, then what
deactivates Mps1 and does Ndc80 binding promote clustering
and reactivation (Kang et al., 2007; Mattison et al., 2007; Hewitt
et al., 2010)? If it must be docked to be active, for example to
relieve autoinhibition (Combes et al., 2018), then do all Ndc80
molecules have similar access to substrates? Ndc80 recruitment
to the KMN network is dependent on two separate branches,
controlled by Cenp-T and Cenp-C (Musacchio and Desai, 2017),
and even in the same Cenp-T branch, some Ndc80 complexes
bind within the KMN network, whereas others tether directly
to Cenp-T (Nishino et al., 2013; Huis in’T Veld et al., 2016).
Perhaps this means that Mps1 activity toward substrates on
Knl1 may not be homogenous across the KMN network, or
alternatively, and as suggested previously by others (Samejima
et al., 2015), perhaps Mps1 only binds to a subset of Ndc80
molecules?

The question of in vivo specificity is particularly important
with respect to the phosphatases. PP1 and PP2A have broadly
overlapping substrate specificities in vitro (Ingebritsen and
Cohen, 1983; Cohen, 1989), and yet they localize to a very similar
molecular space on the KMNnetwork, but still manage to control
distinct substrates and processes (Nijenhuis et al., 2014). It is
unclear whether this is due to subtle catalytic preferences, relative
geometries, or both, but switching the position of PP1 and PP2A
at the kinetochore may help to address this issue. It should also
be noted that specificity can also occur between phosphatase
complexes within the same subclass. PP2A-B56, for example,
exists as at least five different isoforms encoded by separate genes
(Sommer et al., 2015). The LxxIxE interaction interface that binds
to BubR1 is completely conserved in all B56 isoforms (Wang J.
et al., 2016), however, only a subset of these isoforms actually
accumulate at the outer kinetochore (Nijenhuis et al., 2014).
It is unclear why certain B56 isoforms bind preferentially to
kinetochores, but this is an important issue to resolve, because
it may reveal additional layers of PP2A-B56 regulation.

To experimentally address signaling specificity at the
kinetochore, the ultimate goal should be to reconstitute
kinetochores and use purified enzymes. Setting up such as
system may seem like a mammoth task, but there has been
some remarkable recent progress both in reconstituting the
kinetochore in vitro from purified components and in isolating
functional kinetochores from yeast (Akiyoshi and Biggins,
2012; Pesenti et al., 2016; Weir et al., 2016; Hinshaw and
Harrison, 2018). The most straightforward approach, however,
is to attempt to characterize the regulation in cells by using
small molecule inhibitors or genetic manipulations to alter
kinase or phosphatase activity. However, in this case, as
discussed extensively above, care should be taken to rule out the
inevitable indirect effects. I would therefore now like to finish
by discussing some general experimental approaches that can

be used to dissociate the direct from indirect effects of kinase or
phosphatase inhibition in vivo.

INDIRECT EFFECTS BETWEEN KINASE
AND PHOSPHATASE

If kinase inhibition causes a target protein to become
dephosphorylated, then this could be due to a decrease in the rate
of phosphorylation, an increase in the rate of dephosphorylation,
or both. A very simple way to discriminate between these two
possibilities, is to first inhibit the kinase until the substrate
becomes dephosphorylated and then subsequently inhibit the
phosphatase (for example, with broad-spectrum PP1/PP2A
inhibitors). If rapid re-phosphorylation is observed under these
conditions, then this would imply that activity of the inhibited
kinase is not required for this phosphorylation (see Figure 4A).
The implication, therefore, is that kinase inhibition reduced
phosphorylation by enhancing the rate of dephosphorylation.
Similarly, if a specific phosphatase is inhibited and substrate
phosphorylation increases, this could be either due to reduced
dephosphorylation, enhanced phosphorylation, or both. In this
case, if the respective kinase is known, then combined inhibition
of this kinase can also be used to distinguish between these two
possibilities (see Figure 4B).

Experiments such as these may help to determine whether
PP1-Ska1 dephosphorylates the Knl1-MELTs directly or
indirectly (via Mps1 inhibition), and whether Aurora B regulates
Mps1 directly or indirectly (via PP1-Knl1 or PP1-Ska inhibition).
When performing these experiments, it is important to measure
the rates of (de)phosphorylation and to consider the fact that
pharmacological inhibition is never absolute. Finally, when
the indirect effects are known, it is possible to perform more
elaborate experiments to determine their relative importance:
for example, the downstream effects of Aurora B inhibition
can be quantified in the context of Knl1 mutations that prevent
activation of PP1-Knl1.

INDIRECT EFFECTS BETWEEN KINASES

If kinase inhibition reduces target protein phosphorylation
without increasing phosphatase activity, then this “direct” effect
could still be mediated by another kinase. Often this can be ruled
out by examining the kinase consensus motif and using in vitro
kinase assays, however, there are still situations when it is difficult
to distinguish between two kinases using this approach alone.
For example, as discussed extensively above, Mps1 and Plk1 both
phosphorylate the KMN network and have overlapping substrate
specificities in vitro. Inhibiting these enzymes individually or
in combination is one simple way to probe their relative
contributions (Von Schubert et al., 2015; Ikeda and Tanaka,
2017). However, it is important to also consider that Mps1
indirectly controls Plk1 kinetochore levels by regulating Bub1
recruitment (Figure 1, arrow 15). Therefore, to validate whether
the downstream effects of Mps1 inhibition are direct, it will
be important to verify that substrate phosphorylation is not
recovered if Plk1 activity is artificially rescued at kinetochores.
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FIGURE 4 | Generic approaches that can be used to dissociate the direct and indirect effects of kinase (A) or phosphatase (B) inhibition in vivo.

INDIRECT EFFECTS BETWEEN
PHOSPHATASES

In general, determining specificity is more challenging for
the phosphatases than it is for kinases, due to their relative
weak substrate sequence preferences. That is not to say that
there are no specificity determinants: PP2A-B55, for example,
prefers to dephosphorylate phospho-threonine residues within
motifs that are flanked by polybasic residues (Mccloy et al.,
2015; Cundell et al., 2016; Godfrey et al., 2017; Hein et al.,
2017). However, it has not been possible to define clear
consensus motifs, at least for PP1 and PP2A, that would
help to characterize their specific substrates in vivo. Therefore,
care must be taken when implicating a phosphatase directly
in substrate dephosphorylation. Even if removal of a specific
phosphatase subcomplex prevents dephosphorylation without
affecting kinase activity, this could still be mediated indirectly via
a secondary phosphatase; as proposed previously for PP2A-B56
on KNL1-MELT phosphorylation (Nijenhuis et al., 2014). Once
the molecular coupling between these phosphatases is known,
however, then mutations can be used to rescue the downstream
phosphatase and confirm whether the effects are direct or
indirect. In this respect, double mutants to inhibit kinetochore
PP2A-B56 whilst rescuing PP1-Knl1 could definitively test which
phosphatase complex is crucial for SAC silencing.

CONCLUDING REMARKS

This review highlights how both kinetochore-microtubule
attachments and the SAC are coregulated at the KMN network.
It is important to stress that both of these processes can also be
regulated from other areas of the kinetochore as well. This is
exemplified by the outermost “fibrous corona” in human cells,

which is an expanded region that forms around kinetochores
during prometaphase to aid the capture of microtubules
(Cassimeris et al., 1990; Thrower et al., 1996; Hoffman et al., 2001;
Magidson et al., 2015;Wynne and Funabiki, 2015). Integral to the
structure of the corona is the Rod/Zwilch/ZW10 (RZZ) complex,
which forms oligomers that drive rapid corona expansion (Gama
et al., 2017; Mosalaganti et al., 2017; Gassmann et al., 2018;
Rodriguez-Rodriguez et al., 2018; Sacristan et al., 2018). The
RZZ complex also helps to engage the SAC and many different
SAC proteins localize to the expanded corona (Basto et al., 2000;
Buffin et al., 2005; Kops et al., 2005; Silió et al., 2015; Wynne
and Funabiki, 2015; Gassmann et al., 2018; Rodriguez-Rodriguez
et al., 2018; Sacristan et al., 2018). In fact, the ability of the
corona to support SAC signalingmay help to explain the puzzling
recent observations that Bub1 is dispensable for the SAC in
human cells (Currie et al., 2018; Raaijmakers et al., 2018). It will
be important to understand how the corona collaborates with
the KMN network to regulate chromosome segregation, and in
particular, how the enzymes at the KMN network may drive
corona assembly and disassembly. Very recent work has begun
to shed light on this interplay (Rodriguez-Rodriguez et al., 2018;
Sacristan et al., 2018).

A critical feature of KMN regulation, that may be important
for corona regulation too, is the interplay between kinases
and phosphatases. Whilst it is very easy to adopt a kinase
centric view of signaling, the danger is that this could lead to
important regulatory inputs being missed or misinterpreted. A
good example is the widespread use of FRET reporters tomonitor
“kinase” activity (Morris, 2013), which in truth, only ever readout
the net effect of kinases and phosphatases that act on those
reporters. If a specific FRET reporter detects changes in activity,
then the frequent conclusion is that this reflects reciprocal
changes in upstream kinase activity. However, unless this can be
explained molecularly, and preferably rescued by reversing those

Frontiers in Cell and Developmental Biology | www.frontiersin.org 15 June 2018 | Volume 6 | Article 62

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Saurin Kinase and Phosphatase Cross-Talk at the Kinetochore

molecular changes, then the reporter could equally be measuring
changes in phosphatase activity. A good case in point is the
Aurora B FRET reporter, which detects reduced activity at the
outer kinetochore following biorientation and tension (Liu et al.,
2009). Many theories have been put forward to explain tension-
sensing, including inter/intra-kinetochore distance changes and
structural changes within the kinetochore itself, but most of these
models focus on the ability of tension to restrict Aurora B from
accessing its outer kinetochore substrates. However, as pointed
out recently by others (Lampson and Grishchuk, 2017), tension
may also impact directly on local phosphatase activity (Vallardi
et al., 2017). In fact, it may be difficult to discriminate between
these two possibilities because Aurora B exhibits bistable activity
in the presence of a phosphatase (Zaytsev et al., 2016); therefore,
phosphatase activation may switch-off Aurora B activity. This
bistable behavior could allow a steep gradient of Aurora B
activity to form around kinetochores (Zaytsev et al., 2016),
and alterations to kinase and/or phosphatase activities could
potentially modulate this gradient to allow tension-sensing
(Gelens et al., 2018). It will be important to characterize which
phosphatases can deactivate Aurora B at the kinetochore, and
how their activities may change upon kinetochore-microtubule
attachment and tension.

The discussion about Aurora B nicely illustrates one
important final point: the regulatory processes at the kinetochore
could never be fully explained by considering either kinase or

phosphatase inputs in isolation. These antagonistic enzymes
work together in many different ways to define a signaling
response (Gelens et al., 2018). At the KMN network, they work
together within a large network that includes multiple different
enzymes, which are interconnected in a way that can produce
complex biological outputs. Although reductionist biology has
provided much of this regulatory framework, these key biological
outputs are only ever likely to be truly explained by shifting
toward more holistic approaches that can make sense out of
such complexity. Hopefully, by collating information from a wide
variety of labs into a single model of KMN network regulation,
this article may help progress toward this ultimate goal.
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