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D1 receptor-expressing neurons in ventral tegmental area
alleviate mouse anxiety-like behaviors via glutamatergic
projection to lateral septum
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Dopamine (DA) acts as a key regulator in controlling emotion, and dysfunction of DA signal has been implicated in the
pathophysiology of some psychiatric disorders, including anxiety. Ventral tegmental area (VTA) is one of main regions with DA-
producing neurons. VTA DAergic projections in mesolimbic brain regions play a crucial role in regulating anxiety-like behaviors,
however, the function of DA signal within VTA in regulating emotion remains unclear. Here, we observe that pharmacological
activation/inhibition of VTA D1 receptors will alleviate/aggravate mouse anxiety-like behaviors, and knockdown of VTA D1 receptor
expression also exerts anxiogenic effect. With fluorescence in situ hybridization and electrophysiological recording, we find that D1
receptors are functionally expressed in VTA neurons. Silencing/activating VTA D1 neurons bidirectionally modulate mouse anxiety-
like behaviors. Furthermore, knocking down D1 receptors in VTA DA and glutamate neurons elevates anxiety-like state, but in GABA
neurons has the opposite effect. In addition, we identify the glutamatergic projection from VTA D1 neurons to lateral septum is
mainly responsible for the anxiolytic effect induced by activating VTA D1 neurons. Thus, our study not only characterizes the
functional expression of D1 receptors in VTA neurons, but also uncovers the pivotal role of DA signal within VTA in mediating
anxiety-like behaviors.
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INTRODUCTION
Anxiety disorders are the most common psychiatric diseases, and
the prevalence of anxiety disorders is increasing, especially during
the COVID-19 pandemic [1]. Deciphering the neural mechanisms
underlying anxiety-like behaviors will benefit the treatment of
anxiety disorders [2]. Dopamine (DA) is one of the key regulators
in mediating emotion. Ventral tegmental area (VTA) is the origin of
mesocorticolimbic DA system. Impairment of VTA DA neurons
is associated with the development of a persistent, generalized
anxiety-like phenotype [3], and direct activation of VTA DA
neurons may also trigger anxiety-like behaviors [4]. These
seemingly inconsistent findings might be attributable to multiple
downstream targets of VTA DA signal. Previous studies have
shown that DA released from VTA DA neurons targets multiple
mesocorticolimbic brain regions to regulate emotion, including
medial prefrontal cortex (mPFC) [5–9], nucleus accumbens (NAc)
[7, 8, 10], and amygdala [11, 12]. In addition to releasing DA in
mesocorticolimbic regions, VTA DA neurons are also capable to
release DA locally within VTA [13, 14], but the involvement of VTA
local DA signal in regulating anxiety-like behaviors remains to be
identified.
DA regulates neuronal activity to orchestrate brain functions by

binding to DA receptors. DA Drd1 (D1) receptor and Drd2 (D2)
receptor are two major DA receptors expressed in brain. D1
receptor couples to Gαs to activate adenylyl cyclase (AC) and

increase cyclic AMP levels, while D2 receptor inhibits AC and
calcium channels by coupling to Gi/o. D2 receptor is the main
target for most antipsychotic drugs [15–17]. It is well-known that
D2 receptor variants are associated with co-morbid depression
and anxiety [18, 19], and dysfunction of D2 receptors in the
anterior cingulate cortex and NAc will aggravate anxiety-like
behaviors [20, 21]. D1 receptors are associated with cognitive
function [22, 23]. D1 receptor in the VTA downstream regions is
also found to be involved in regulating depression and anxiety-
like behaviors. Activating mPFC D1 receptor-expressing pyramidal
neurons produces rapid and long-lasting antidepressant and
anxiolytic responses [24]. Stimulation of D1 receptors in dentate
gyrus enhances the antidepressant effect of fluoxetine and
improves depression-like behaviors [25]. VTA DA signal targets
the interpeduncular nucleus to alleviate anxiety-like behaviors via
activating D1 receptors [26].
In addition to the downstream brain regions of DA neurons, the

expression and possible functions of DA receptors, especially D2
receptors within VTA have been investigated [27–29]. D2
receptors are expressed in the soma, dendrites and axon terminals
of VTA DA neurons [30]. The expression of D2 receptors in VTA
neurons plays an important role in coordinating locomotion and
incentive motivation of psychostimulants [29, 31]. A recent study
showed that VTA D2 receptors are the potential target for
corticosterone-induced anxiety-like behaviors [32]. In addition to
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D2 receptors, previous studies also investigated the functional
roles of D1 receptors in VTA, and implicated that blocking D1
receptors impaired excitatory and inhibitory synaptic plasticity
[33, 34], and decreased cocaine-induced reward [35] and chemical
stimulation-induced anti-nociception [36, 37]. These studies
inferred that D1 receptors were expressed in the axonal terminals
projecting to VTA neurons. However, the expression of D1
receptors in VTA neurons is still unclear [38–40], and the functional
significance of VTA D1 receptors in emotion regulation has not yet
been investigated.
To address this gap, we have performed a series of experiments

to interrogate the functional expression of D1 receptors in VTA
neurons and define the pivotal role of VTA local DA signal in
mediating anxiety-like behaviors. We observed that activating/
inhibiting VTA D1 receptors will bidirectionally change mouse
anxiety level. Utilizing fluorescence in situ hybridization (FISH),
combined with transgenic mouse lines and electrophysiological
recording, we established the expression of D1 receptors in VTA
neurons. We then explored the role and neural circuits of D1
receptor expression in VTA neurons in regulating anxiety-like
behaviors with a combination of optogenetics, chemogenetics,
pharmacological tools, and RNA interference. Our results uncover
the significance of DA signal within VTA in mediating anxiety-like
behaviors.

MATERIALS AND METHODS
Mice
Mice were handled following the protocols approved by the Fudan
University Animal Care and Use Committee. Six to ten weeks old male and
female animals were used in this study. Following mouse lines were used:
C57BL/6, D1-Cre (034258-UCD, MMRRC), DAT-Cre (#006660, Jackson
Laboratory), Vglut2-Cre (#016963, Jackson Laboratory), and Vgat-Cre
(#017535, Jackson Laboratory) mice. Genotyping were conducted follow-
ing standard procedures on the Jackson Lab or MMRRC websites.

Short-hairpin RNA and virus preparation
DA Drd1 receptor short-hairpin RNA sequence (5′AAGAGCATATGCC
ACTTTGTATT3′) was chosen according to previous published works
[41, 42]. Sequences encoding shRNA were inserted into rAAV-U6-CMV-
EGFP-pA or rAAV-CMV-DIO-(EGFP-U6) -WPRE-hGH-pA vectors. Adeno-
associated virus 9 (AAV9) expressing Drd1 RNAi (5.0 × 1012 vector
genomes/mL and 5.07 × 1012 vector genomes/mL for non-Cre and Cre-
dependent viruses) or control RNAi (5.7 × 1012 vector genomes/mL and
5.66 × 1012 vector genomes/mL for non-Cre and Cre-dependent control
viruses) were packaged by BrainVTA Technology Co, Ltd (Wuhan, China).
The efficiency of the Drd1 siRNA construct was tested after behaviors with
qRT-PCR analysis using the tissue samples collected from VTA.

In vivo stereotaxic intracranial injection
Mice aged 4–7 weeks were anesthetized with 1–2% isoflurane, and placed
in a stereotaxic apparatus (E07370-005, RWD). Recombinant AAVs were
delivered into brain regions by a microsyringe pump controller (NanoJect
III, Drummond Scientific Company). Animals recovered for at least three
weeks after surgery.

Optical fiber and cannula implantation
For in vivo photostimulation experiments, an optical fiber (200 μm, 0.37
NA, Newdoon) was implanted into the related brain region. For local drug
microinjection, mice were implanted with a stainless-steel guide cannula
(26-gauge) above VTA or LS. At least 1 week after surgery, mice were used
for behavioral tests. Brains were sectioned to verify fiber or cannula
location after behavioral tests. Mice with incorrect implantation locations
were excluded from analyses. Detailed information were summarized in
Supplementary Table 1.

Acute slice preparation and electrophysiological recording
Acute brain slices were prepared from mice as previously described
[43–45]. Neurons were visualized in slices using an IR/DIC microscopy.
Recordings were made using 700B amplifier, data were digitized at

10 kHz and filtered at 4 kHz and collected using pCLAMP software
(Molecular Devices).

Tissue processing, immunohistochemistry, and imaging
Animals were anesthetized with isoflurane, and perfused with 4%
paraformaldehyde (PFA). Sliced tissues were chosen and pretreated in
0.2% Triton-X100 for 1 h at room temperature (RT), then blocked with
0.05% Triton-X100, 10% bovine serum albumin (BSA) in PBS for 1 h at RT
and rinsed in PBS. Tissues were transferred into primary antibody solution
for 24 h at 4 °C. After incubating with secondary antibody solution, slices
were mounted onto glass slides, and imaged with an Olympus VS120 slide
scanning microscope.

Quantitative fluorescence single molecule in situ
hybridization (smFISH)
smFISH was conducted following previously published procedures [43, 44].
Following probes were used in this study: Slc17a6 (Vglut2, C1, 318171),
Slc32a1 (Vgat, C1, 319191), Drd1a (C2, 406491), Th (Tyrosine hydroxylase,
C3, 317621), EYFP (C3, 312131). Probe omission negative controls were
carried out for every reaction.

mRNA quantification
Tissues were homogenized and total RNA was isolated using Trizol reagent
(TianGen, China) according to the manufacturer’s instruction and kept at
−80 °C before use. Murine β-actin was used as a reference to normalize the
targeted gene expression levels.

Behavior assays. Behavioral tests were conducted between 1:00–9:00 pm.
Mice were habituated in behavior room for at least 1 h before beginning
the experimental testing. If not specifically stated, behavioral tests were
performed with light off. Behavioral apparatuses were cleaned and wiped
with 70% ethanol to remove odor clues left by the previous subject
between trials. Mouse trajectories were detected with Toxtrac software
(https://toxtrac.sourceforge.io), then analyzed with self-written MATLAB
scripts.

Statistical analyses. In our study, no statistical method was used to pre-
determine sample sizes, and the sample sizes were determined based on
previous studies conducted in the same field. Normality was assessed by
the Shapiro-Wilk test. For normal distributions, homoscedasticity was
assessed by F-test using GraphPad Prism. For homogeneous variances,
two-tailed t-test and paired/unpaired t-test were used for single
and paired comparisons, and one-way ANOVA followed by post hoc
Tukey’s test was used for multiple comparisons. When variances were
not homogeneous, a t-test with Welch’s correction was used. For data
that were not normally distributed, Wilcoxon signed rank test, Mann-
Whitney test or Wilcoxon matched-pairs signed rank test was used for
single and paired comparisons, and Friedman test followed by post hoc
Dunn’s test was used for multiple comparisons. Detailed statistical
information and p value for every data set were summarized in
Supplementary Table 2.
More details on experimental procedures can be found in the

Supplementary Information.

RESULTS
Manipulating VTA D1 receptors bidirectionally regulates
mouse anxiety-like behaviors
With a cannula unilaterally implanted into the VTA of male and
female mice, we explored the effect of activating/inhibiting D1
receptors on mouse anxiety-like behaviors via microinjecting D1
receptor agonist (A68930)/antagonist (SCH23390) (Fig. 1A). Mouse
anxiety-like behaviors were evaluated with open-field test and
elevated plus maze (EPM) test [2]. Activating D1 receptors had no
effect on mouse locomotion, but increased the time spent at
center region in open-field test in both male and female (Fig. 1B,
D, E). Consistent with open-field test, D1 agonist increased
the time spent at open arms in EPM test (Fig. 1B, F), but did not
change the frequency entering open arms (Supplementary
Fig. 1A). On the contrary, inhibiting VTA D1 receptors induced
anxiety-like behaviors, as indicated by decreased time exploring
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center region in open-field test and open arms in EPM test
(Fig. 1C, G–I). However, manipulating VTA D1 receptors had no
significant effect on social motivation and social exploration
(Supplementary Fig. 1A, B). These results suggest that activating/
inhibiting VTA D1 receptors bidirectionally regulate mouse
anxiety-like behaviors.

We then evaluated the effect of reducing D1 receptor expression
in VTA neurons on anxiety-like behaviors. D1 receptors were
knocked down by using RNA interference (RNAi) [41, 42]. The
efficiency of RNAi in reducing VTA Drd1 expression was validated by
quantitative PCR, and VTA Drd1 mRNA was reduced to be about
70% (71.71 ± 7.5%), but Drd2 and ThmRNA levels were not changed
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(Fig. 1J–K). In open-field test, reducing D1 receptor increased mouse
locomotor speed and decreased the time spent at center region in
both male and female (Fig. 1L–N; Supplementary Fig. 1C). In EPM
test, the duration spent at open arms was significantly decreased
after lowering D1 receptors (Fig. 1L, O; Supplementary Fig. 1C).
Reducing VTA D1 receptor had no effect on social exploration
(Supplementary Fig. 1D–E). Therefore, VTA D1 receptor is involved
in relieving anxiety-like behaviors.

D1 receptors are functionally expressed in VTA neurons
Since D1 receptor expression in VTA neurons remains unclear, we
explored the expression of D1 receptors in VTA with quantitative
fluorescence in situ hybridization (FISH). Different from the
extensive expression of Drd2 in VTA DA neurons [29], Drd1 mRNA
was sparely expressed (Supplementary Fig. 2A). In addition to DA
neurons, VTA also contains GABA and glutamate neurons [46]. The
co-localization of Drd1 with Slc32a1 (Vgat), Slc17a6 (Vglut2), and Th
(Tyrosine hydroxylase) were analyzed (Fig. 2A, B). The composition
of Drd1+ neurons in VTA includes ~48.8% Th+, ~24.4% Vgat+, and
~43.1% Vglut2+ neurons. VTA DA neurons are capable to co-
release glutamate and GABA [46–48], so we further analyzed the
co-localization of Drd1+, Th+ neurons with glutamate and GABA
neurons, and found that ~68.1% of Drd1+, Th+ neurons are
Vglut2+, but very few are Vgat+ (~8.7%) (Fig. 2B). Meanwhile,
compared with a high proportion of VTA DA neurons expressing
Drd2, ~20% of Th+ neurons co-localize with Drd1 probes (24.0 ±
5.8%, 5761 Th+ neurons from 5 mice), ~20% of Vglut2+ neurons
express Drd1 mRNA (20.34 ± 3.1%, 1036 Vglut2+ neurons from 2
mice), and only ~10% of Vgat+ neurons express Drd1mRNA (10.33
± 0.2%, 2193 Vgat+ neurons from 2 mice). Drd1 expression in VTA
DA neurons is sex invariant, with 21.8 ± 7.9% and 27.2 ± 11.5%
VTA Th+ neurons co-localize with Drd1 for male and female mice
(3 male and 2 female).
With the D1-Cre mouse line [49], we confirmed the expression

of D1 receptors in VTA neurons. To assess the fidelity of D1-Cre
mouse line, AAV9-DIO-eYFP viruses were injected into VTA to label
Cre-positive neurons (Fig. 2C). We observed that Drd1 was present
in ~75% of eYFP+ neurons (267 Drd1+/357 eYFP VTA neurons
from 2 mice, Fig. 2C, D). ~39.7% (739/1862 eYFP+ neurons from 2
mice) eYFP labeled neurons were colocalized with TH+ neurons
(Supplementary Fig. 2B), in line with the FISH results (Fig. 2B). We
then explored the effect of activating D1 receptors on VTA
neurons. With intraperitoneal injection of A68930 (5 mg/kg), ~40%
eYFP+ neurons in VTA were activated, immunolabeled via cFos
staining, but very few (~4.5%) after saline injection (Fig. 2E). Using
in vitro patch-clamp technique, 1 μM A68930 application sig-
nificantly increased the activity of VTA eYFP+ neurons (Fig. 2F, G).
We also investigated whether endogenous VTA DA release was

sufficient to activate D1 receptors in VTA neurons. A small volume
of AAV9-DIO-ChR2-mCherry viruses were injected into the VTA of
DAT-Cre mice to infect DA neurons (Fig. 2H). As mentioned, VTA
DA neurons co-release GABA and glutamate [46–48], and local DA

release can activate D2 receptors, so cocktail drugs were used to
block GABA(A), GABA(B), AMPA, NMDA, and D2 receptors during
the experiment. Blue light pulses (10-ms long, 100 pulses) at 5 Hz,
10 Hz, and 20 Hz reliably excited VTA mCherry-positive neurons
(Supplementary Fig. 2C). Firing rates of some VTA mCherry-
negative neurons, recorded in cell-attached voltage-clamp mode,
were increased when the light stimulation was given, especially at
10 and 20 Hz (Fig. 2I, J). Light-responsive neurons were defined as
those exhibiting at least a 15% change of firing rate relative to
baseline during light stimulation. The proportion of VTA mCherry-
negative neurons excited by light stimulation was increased with
optical stimulation frequency, and about 25% (5/20 neurons from
7 mice), 35% (7/20 neurons), and 50% (10/20 neurons) neurons
were excited by optical stimulation at 5 Hz, 10 Hz, and 20 Hz,
respectively (Supplementary Fig. 2D). To confirm the involvement
of D1 receptors in light-induced firing rate increase, D1 receptor
antagonist SCH23390 was added into the perfusion solution, and
the degree of light-induced firing rate increase of VTA mCherry-
negative neurons was significantly blocked (Fig. 2K and Supple-
mentary Fig. 2E).

Activating/silencing VTA D1 neurons oppositely modulate
mouse anxiety-like behaviors
Both FISH and electrophysiological results provided compelling
evidence of that D1 receptors are functionally expressed in VTA
neurons (Fig. 2). Since manipulating VTA D1 receptors changed
mouse anxiety-like behaviors (Fig. 1), we explored the role of VTA
D1 neurons in regulating anxiety. AAV9-DIO-ChR2-mCherry viruses
were injected into VTA of D1-Cre mice to optically manipulate D1
neurons (Fig. 3A). VTA ChR2+ neurons reliably responded to the
10-ms long blue light pulses with frequency at 10 Hz and 20 Hz
(Fig. 3B). Time spent at center region in open-field test was
significantly increased when stimulating with 20 Hz, but not 1 Hz
or 10 Hz light pulses in both male and female (Fig. 3C, E;
Supplementary Fig. 3G, H). Optical activating VTA D1 neurons with
10 and 20 Hz, but not 1 Hz light pulses, increased mouse
locomotor speed (Fig. 3C, D; Supplementary Fig. 3G, H). Further
analyses showed that activating VTA D1 neurons only increased
the locomotor speed at surround region, but not at center region
(Fig. 3F). The ratio between center and surround locomotor
speeds was significantly reduced with optical stimulation at 20 Hz,
but not changed at 1 Hz or 10 Hz (Fig. 3F and Supplementary
Fig. 3E). The locomotion and time spent at center region in open-
field test did not change with light stimulation for mice with only
mCherry virus expression (Supplementary Fig. 3A–E).
We also validated the anxiolytic effect of activating VTA D1

neurons by EPM test. Activating VTA D1 neurons with 20 Hz light
stimulation did not change the frequency entering open arms, but
significantly increased the duration spent at open arms (Fig. 3G, H;
Supplementary Fig. 3F). Activating VTA D1 neurons induced
anxiolytic effect was consistent in both male and female
(Supplementary Fig. 3I). Similar as microinjection of D1 receptor

Fig. 1 Manipulating VTA D1 receptors bidirectionally regulates mouse anxiety-like behaviors. A Schematic illustration of pharmacological
experiment. D1 receptor agonist A68930, D1 receptor antagonist SCH23390, or saline (SAL) were unilaterally injected into the VTA. B Example
trajectories of mice with SAL (Left) and A68930 (Right) treatment in open-field test (Top) and EPM test (Bottom). Dashed boxes indicate the
center region. C Same as B, but for mice with SAL and SCH23390 microinjection. D Summary of mouse locomotor speed with microinjection
of SAL and A68930 into the VTA. n= 7 male mice and 6 female mice for SAL groups, and 9 male mice and 6 female mice for A68930 groups,
Unpaired t-test test. E and F Same as D, but for the time spent at the center region (E), and the time spent at the open arms in EPM test (F).
*p < 0.05, **p < 0.01, Mann–Whitney test for male open arm duration in EPM test, and Unpaired t-test for other comparisons. G–I Same as
D–F, but for microinjecting SAL and SCH23390 into the VTA. n= 11 male mice and 7 female mice for SAL groups, and 10 male mice and 8
female mice for SCH23390 groups in open-field test; n= 9 male mice and 7 female mice for SAL groups, and 9 male mice and 8 female mice
for SCH23390 groups in EPM test, *p < 0.05, **p < 0.01, Mann–Whitney test for locomotion in open-field test, and Unpaired t-test for other
comparisons. J An example image showing AAV9-U6-shRNA(Drd1)-EGFP virus expression in VTA. TH IF: red. K Relative VTA Drd1, Drd2, and Th
mRNA expression in control mice (n= 8) and RNAi mice (n= 8). **p < 0.01, Unpaired t-test. L Example trajectories in open-field test (Top) and
EPM test (Bottom) for one control (Con) mouse (Left) and one RNAi mouse (Right). M Locomotor speed of Con and RNAi mice. *p < 0.05,
Unpaired t-test, n= 9 and 11 male mice for control and RNAi mice, respectively. N and O Same as M, but for the time spent at the center
region in open-field test (N) and time spent at the open arms in EPM test (O).
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agonist, no effect on social exploration was observed when
activating VTA D1 neurons (Supplementary Fig. 3J–L).
We further utilized chemogenetic approach to corroborate the

role of VTA D1 neurons in regulating anxiety-like behaviors. AAV
viruses with hM3Dq-mCherry, hM4Di-mCherry, or mCherry were
expressed into VTA D1 neurons (Fig. 4A). Intraperitoneal injection of

clozapine-n-oxide (CNO, 2mg/kg) increased cFos expression in
hM3Dq-mCherry neurons, but not in hM4Di-mCherry neurons
(Fig. 4B and Supplementary Fig. 4A, B). In cell-attached recording,
5 μM CNO application increased and decreased the activities of VTA
D1 neurons expressing hM3Dq and hM4Di, respectively (Fig. 4B).
Consistent with optical activation, chemogenetic activation of VTA
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D1 neurons significantly increased the time spent at center region
in open-field test, and chemogenetic inhibition reduced time spent
at center region (Fig. 4C, E). Unexpectedly, both chemogenetic
activation and inhibition increased mouse locomotor speed (Fig. 4C,
D). Further analyses showed that chemogenetic activation and
inhibition both increased the locomotor speed at surround region,
while the center locomotor speed was only increased when
chemogenetic inhibiting D1 neurons (Supplementary Fig. 4C, D).
Consistent with optogenetic activating VTA D1 neurons, the ratio
between center and surround locomotor speeds was reduced when
chemogenetic activating D1 neurons, but not changed when
inhibiting D1 neurons (Fig. 4F). We speculate that though
activating/inhibiting VTA D1 neurons both increased locomotor
speed, locomotion increased by activating D1 neurons may
promote environment exploration related with less anxiety whereas
locomotion increase induced by inhibiting D1 neurons may be an
anxiety-like phenotype [50]. For the mice transduced with only
mCherry viruses, CNO had no effect on mouse behavior in open-
field test (Fig. 4C–E, Supplementary Fig. 4C, D). However,
chemogenetic manipulating VTA D1 neurons had no obvious effect
on open arm duration in EPM test (Supplementary Fig. 4E), which
may due to the repeated EPM tests for every mice [51]. Social
exploration was also not changed by chemogenetic manipulation
(Supplementary Fig. 4F).
To confirm the anxiety-like behavior change induced by

inhibiting VTA D1 neurons, we expressed tetanus toxin (TetTox)
into VTA D1 neurons (Fig. 4G), which will block synaptic
transmission and may have a similar effect as inhibiting neurons
[52]. Compared with the control mice, TetTox expression increased
mouse locomotor speed, decreased time spent at the center
region in open-field test, and had no effect on the center
locomotor speed/surround speed ratio (Fig. 4H–J, Supplementary
Fig. 4G, J). But mice with TetTox injection spent more time at open
arms in EPM test (Supplementary Fig. 4H, J), which may due to the
different effect of TetTox on DA release (see “Discussion”) [53–55].
TetTox expression had no effect on social interaction (Supple-
mentary Fig. 4I). Together, these results further corroborate that
manipulating VTA D1 neuronal activity will modulate mouse
anxiety-like behaviors.

Reducing D1 receptors in VTA DA and glutamate neurons
increases anxiety-like behaviors, and in GABA neurons
alleviates anxiety
Since VTA consists of DA, GABA, and glutamate neurons [46] and
D1 receptor mRNA has been detected in all of these types (Fig. 2),
we investigated the role of D1 receptor expression in different VTA
neurons in regulating anxiety-like behaviors. Firstly, the roles of
different neurons in anxiety-like behaviors were separately studied

with expressing ChR2 into VTA DA, GABA, or glutamate neurons,
and optical fiber was implanted into VTA (Fig. 5A and
Supplementary Fig. 5A). The 20 Hz optical stimulation same as
used to activate VTA D1 neurons was utilized [56–59]. Activating
DA neurons and GABA neurons oppositely changed mouse
locomotor activity, but activating glutamate neurons had no
effect (Fig. 5B and Supplementary Fig. 5B). Time spent at center
region was significantly increased when activating DA neurons
and glutamate neurons, but not GABA neurons (Fig. 5C). Though
activating DA and GABA neurons changed mouse locomotor
speed, the ratio between center and surround speeds was not
changed after activation (Fig. 5D). In EPM test, activating
glutamate neurons, but not DA or GABA neurons, significantly
increased the duration spent at open arms (Fig. 5E, F). Thus,
activating VTA glutamate neurons will consistently alleviate
mouse anxiety-like behaviors.
In order to study the involvement of D1 receptor expression in

VTA different neurons in regulating anxiety-like behaviors, Cre-
dependent RNAi viruses were delivered into the VTA of DAT-Cre,
Vgat-Cre, and Vglut2-Cre mice, respectively (Fig. 5G). Mouse
locomotor speed was significantly increased after reducing D1
receptor expression in VTA DA neurons, but not changed in GABA
or glutamate neurons (Fig. 5H, I). Lowering D1 receptors in VTA DA
neurons had no effect on the time spent at center region in open-
field test, but in GABA neurons increased the center staying time
and in glutamate neurons decreased the duration (Fig. 5J).
Reducing D1 receptor expression in DA neurons tended to
increase locomotor speed at both center and surround regions
(Supplementary Fig. 5C, D), but the ratio between center and
surround speeds decreased after lowering D1 receptors in GABA
neurons, but not in DA or glutamate neurons (Fig. 5K). In EPM test,
the duration spent at open arms was slightly reduced after
lowering D1 receptors in DA neurons and glutamate neurons, but
not in GABA neurons (Fig. 5L). The frequency entering open arms
and social related behaviors did not change after lowering D1
receptors (Supplementary Fig. 5E, F). Together, these results
suggest that lowering D1 receptors in DA and glutamate neurons
exerts anxiogenic effect, while reducing D1 receptor expression in
GABA neurons will be anxiolytic.

Glutamategric projection of VTA D1 neurons to lateral septum
alleviates mouse anxiety-like behaviors
VTA neurons project to many brain regions, including NAc, mPFC,
lateral septum (LS), basolateral amygdala (BLA), ventral hippo-
campus (vHipp) to regulate emotional behaviors [60–63]. With
AAV-DIO-eYFP injected into the VTA of D1-Cre mice, we observed
the distributions of D1 neuronal axons in mPFC, NAc, LS, BLA, and
vHipp (Fig. 6A and Supplementary Fig. 6A), which suggested that

Fig. 2 Functional expression of D1 receptors in VTA neurons. A Fluorescence in situ hybridization (FISH) images in VTA with Th, Vgat, and
Drd1 probes (Top), and with Th, Vglut2, and Drd1 probes (Bottom). Th (magenta), vesicular GABA transporter (Slc32a1/Vgat, cyan), vesicular
glutamate transporter 2 (Slc17a6/Vglut2, yellow) and Drd1 (white). The dashed circles indicate Drd1+ neurons, and magenta indicates Th+, cyan
indicates Vgat+, and white indicates both Th+ and Vglut2+. B Quantitative analyses of Th, Vgat, and Drd1 co-expression (Top, 994 Drd1+

neurons from 1 male and 1 female mice), and Th, Vglut2, and Drd1 co-expression (Bottom, 508 Drd1+ neurons from 1 male and 1 female mice).
C Left top: schematic of viral transduction strategy to express eYFP in VTA Cre+ neurons of D1-Cre mice. Left bottom: an example image
showing eYFP expression in VTA. TH IF: magenta. Right: a confocal image showing co-localization of eYFP+ neuron (GFP IF, blue) and Drd1
mRNA puncta (white). D Cumulative probability of Drd1+ puncta in VTA GFP neurons. Insert: quantification of the co-localization of GFP IF
positive neurons and Drd1 mRNA. n= 357 GFP+ neurons from 2 female mice. E Ratio of VTA eYFP+ neurons colocalized with cFos signal for
D1-Cre mice with saline (SAL) and A68930 intraperitoneal injection. ***p < 0.001, Unpaired t-test, n= 3 (2 female and 1 male) mice for the SAL
and A68930 injection, respectively. Inset images showing co-localization of eYFP+ neuron (Green) and cFos signal (white) for D1-Cre mice with
saline (SAL, left) or A68930 (right) injection. F Left: firing rate histogram (10 s bins) from a VTA eYFP labeled neuron with application of 1 μM
A68930. Right: example traces correspond to time points 1–3 as shown in the Left panel. G Firing rates (FR) of VTA eYFP+ neurons before and
during A68930 application. Inset: FR with A68930 application of VTA eYFP+ neurons relative to baseline. **p < 0.01, Wilcoxon signed rank test,
n= 8 neurons from 5 mice. H Expression of ChR2-mCherry in VTA DAT+ neurons. I FR histogram (1 s bins) from a VTA mCherry-negative
neuron with blue light stimulation at 5 Hz (Top), 10 Hz (Middle), and 20 Hz (Bottom). Blue bars indicate light stimulation. J Summary of light-
induced firing rate change of VTA mCherry-negative neurons. Wilcoxon signed rank test, *p < 0.05, n= 20 neurons from 7 (3 male and 4
female) mice. K FR change of VTA mCherry-negative neurons in response to light stimulation at 10 Hz before and during the application of D1
receptor antagonist (10 μM SCH23390). *p < 0.05, Paired t-test, n= 5 neurons from 5 (2 male and 3 female) mice.
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Fig. 3 Optogenetic activation of VTA D1 neurons relieves mouse anxiety-like behaviors. A Left: Schematic of viral transduction strategy to
express ChR2-mCherry in VTA D1 neurons. Right: an example image showing the ChR2-mCherry expression and the location of implanted
optical fiber. ChR2-mCherry: red; TH IF: cyan. B Cell-attached recording traces of a VTA ChR2-mCherry+ neuron in response to 10-ms-long
470 nm light pulses at 10 Hz (Top) and 20 Hz (Bottom). C Trajectories of one mouse in open-field test before (Top) and during light stimulation
(Bottom) with frequency at 1 Hz (Left), 10 Hz (Middle), and 20 Hz (Right). Dashed boxes indicate the center region. D Statistical results of
locomotor speed before, during, and after 5-min light stimulation with frequency at 1 Hz, 10 Hz, and 20 Hz, respectively. One-way ANOVA with
Tukey’s multiple comparisons post hoc test, n= 13 (9 male and 4 female) mice, **p < 0.01, ****p < 0.0001. E Same as D, but for time spent at the
center region. *p < 0.05, One-way ANOVA with Tukey’s multiple comparisons post hoc test. F Statistical results of the locomotor speed at the
center region (Left), locomotor speed at the surround region (middle), and ratio between locomotor speed at center and surround regions
before and during light stimulation with frequency at 20 Hz. n= 12 (8 male and 4 female) mice, *p < 0.05, ****p < 0.0001, Paired t-test for the
surround locomotion and Wilcoxon matched-pairs signed rank test for the ratio between center and surround speeds. G Trajectories of one
mouse in EPM test without (Left) and with (Right) light stimulation at 20 Hz. H Statistical results of times entering the open arms (Left) and the
duration staying at the open arms (Right) without and with light stimulation at 20 Hz, respectively. n= 13 mice, **p < 0.01, Paired t-test.
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Fig. 4 Chemogenetic manipulation of VTA D1 neurons and blocking synaptic transmission of VTA D1 neurons change mouse anxiety-
like behaviors. A Schematic of viral transduction strategy to specifically express hM3Dq-mCherry or hM4Di-mCherry in VTA D1 neurons.
B Left: intraperitoneal injection (2mg/kg) of CNO increased cFos expression (white) in VTA hM3Dq-mCherry-positive neurons. Right: bath
application of 5 μM CNO increased and decreased the firing rate of hM3Dq-mCherry (Top) and hM4Di-mCherry (Bottom) positive neurons,
respectively. C Left: trajectories of one mouse in open-field test with hM3Dq-mCherry expression in VTA D1 neurons with saline (Top) and
CNO (Bottom) intraperitoneal injection (2mg/kg). Middle and Right: same as (Left), but with hM4Di-mCherry and mCherry expression in
VTA D1 neurons. Dashed boxes indicate the center region. D Locomotor speed for mice with hM3Dq, hM4Di or mCherry expression in VTA
D1 neurons after saline (SAL) or CNO injection in open-field test. n= 10 (7 male and 3 female), 12 (7 male and 5 female), and 10 (5 male and
5 female) mice for hM3Dq (M3), hM4Di (M4), and mCherry (Con) groups. Paired t-test, **p < 0.01. E Same as D, but for the time spent at the
center region. Paired t-test, *p < 0.05. F The ratio between center speed and surround speed in open-field test for mice with hM3Dq, hM4Di,
and mCherry expression in VTA D1 neurons after saline (SAL) or CNO injection. Paired t-test, **p < 0.01. G Example image showing TetTox-
mCherry expression in VTA of one D1-Cre mouse. TetTox-mCherry: red; TH IF: cyan. H Locomotor speed of mice with mCherry (Con) and
TetTox-mCherry (TetTox) expression in VTA D1 neurons. Unpaired t-test, **p < 0.01, n= 14 (6 male and 8 female) and 16 (7 male and 9
female) mice for Con and TetTox groups, respectively. I and J Same as H but for the time spent at the center region (I), and the ratio
between center speed and surround speed in open-field test (J). Mann-Whitney test, *p < 0.05.
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VTA D1 neurons may target these brain regions to regulate
anxiety-like behaviors. To define the possible target(s) of VTA D1
neurons involved in regulating anxiety, ChR2-mCherry viruses
were expressed into D1 neurons and optical fiber was unilaterally
implanted into the mPFC, NAc, LS, BLA, or vHipp (Fig. 6B and

Supplementary Fig. 6B, C). For the mice with fiber implanted into
mPFC, NAc, BLA or vHipp, light stimulation at 20 Hz had no
significant effects on locomotor speed and time spent at center
region in open-field test, or time spent at open arms in EPM test
(Supplementary Fig. 6D–G). Surprisingly, activating D1 neuronal
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axons in LS increased locomotor speed and time spent at center
region in open-field test, and also decreased the ratio between
center and surround speeds (Fig. 6C, D). Meanwhile, light
stimulation in LS significantly increased the duration spent at
open arms in EPM test (Fig. 6E). These results suggest that LS is the
potential target of VTA D1 neurons to alleviate anxiety-like
behaviors.
We then investigated the effect of activating VTA D1 neurons on

LS neuronal activity. cFos expressions in VTA and LS were increased
with optically activating VTA D1 neurons (Fig. 6F). Synaptic
connection between VTA D1 neurons and LS neurons was further
examined, and postsynaptic currents in LS neurons were recorded
when optically activating VTA D1 neuronal axons (Fig. 6G). Light-
evoked postsynaptic current was observed in ~40% LS neurons
when membrane voltage was held at −70 mV (15/36 neurons from
7 mice), but no response was detected when held at 0mV (Fig. 6H).
Meanwhile, the light-evoked current was abolished by 5 μM NBQX
(Fig. 6H–I), which indicates that VTA D1 neurons activate LS neurons
via releasing glutamate. We then investigated the expression of
Drd1mRNA in VTA neurons which project to the LS with retrograde
tracing and FISH (Supplementary Fig. 7). RetroAAV2-mCherry
viruses were injected into the LS (Supplementary Fig. 7A), and the
colocalizations between mCherry signal, Drd1 mRNA, and Vglut2/
Vgat/Th signal were detected in VTA. About 24% (202 Drd1+/839
mCherry+ neurons from 3 mice) VTA neurons projecting to the LS
express Drd1 mRNA, and more than 90% (78 Vglut2+/83 Drd1+

neurons) VTA mCherry+/ Drd1+ neurons are Vglut2+, but few Vgat+

or Th+ (Supplementary Fig. 7B). Together, these results suggest that
VTA D1 neurons mainly release glutamate to excite LS neurons.
We further explored the involvement of LS-projecting VTA D1

neurons in regulating anxiety-like behaviors with pharmacological
methods (Fig. 6J). Since activation of VTA D1 neurons increased
the activity of LS neurons, we focused on the involvement of
glutamatergic receptors and D1 receptors in LS. After blocking LS
NMDA and AMPA receptors with AP5 and NBQX by cannula
microinjection, activating VTA D1 neurons still increased mouse
locomotor activity in open-field test, but had no significant effect
on the time spent at center region, the ratio between center and
surround speeds in open-field test (Baseline: 1.536 ± 0.323; Opto:
1.232 ± 0.151. n= 11 mice, p= 0.5771, Wilcoxon matched-pairs
signed rank test), and the time spent at open arms in EPM test
(Fig. 6K). On the contrary, after blocking LS D1 receptors with
SCH23390, optical activating VTA D1 neurons had no significant
effect on mouse locomotor speed in open-field test, but still
tended to increase the time spent at center region and the time
spent at open arms in EPM test (Fig. 6L). However, after blocking
glutamatergic receptors or D1 receptors in NAc or mPFC,
activating VTA D1 neurons can still have anxiolytic effects
(Supplementary Fig. 8). Taken together, these results suggest that

glutamatergic projection from VTA D1 neurons to the LS is
responsible for relieving anxiety-like behaviors.

DISCUSSION
In this study, we uncovered the significance of VTA local DA signal on
mouse anxiety level in both male and female. We demonstrate that
(1) Manipulating VTA D1 receptors bidirectionally regulate mouse
anxiety-like behaviors; (2) D1 receptors are functionally expressed in
VTA neurons, and activating/silencing VTA D1 neurons oppositely
modulate anxiety-like behaviors; (3) Glutamatergic projection of VTA
D1 neurons to LS, but not other limbic regions, alleviates anxiety-like
behavior. These results suggest the anxiolytic effect of D1 receptor
expression in VTA glutamate neurons.
Though previous study in rats did not observe obvious D1

immunoreactivity in the VTA [38], we verified the expression of D1
receptors in mouse VTA neurons using a combination of a
sensitive mRNA detection method - FISH, confocal imaging, D1-
Cre mouse line, and electrophysiological recording (Fig. 2).
Different from the abundant Drd2 mRNAs expression in VTA DA
neurons, sparse Drd1mRNA puncta were observed in VTA neurons
(Supplementary Fig. 2). Sparse transcription of G protein-coupled
receptors is not unusual and can provide sufficient receptors for
functional modulation [64]. Activating D1 receptors will up-
regulate neuronal excitability via several ways [65]. Our results
showed that both D1 agonist and endogenous DA release are
sufficient to activate D1 receptors expressed in VTA neurons,
elevating neuronal activity (Fig. 2). Optically activating VTA DA
neurons at 10 Hz and 20 Hz, but not 5 Hz, preferentially excited
VTA neurons, which is consistent with the relatively low affinity of
D1 receptors to DA and the preferentially sensitive of D1 receptors
to the phasic DA change [66].
DA release in several brain regions is reported to have anxiolytic

effect via D1 receptor-mediated signal pathway [6, 9, 10, 26].
However, similar as observed in our study, activating VTA DA
neurons has no significant effect on the anxiety-like behaviors or
even promotes some anxiety phenotypes [4, 26]. D2 receptors are
extensively expressed in the VTA DA neurons [31, 46], and local
VTA DA release will activate D2 receptors as negative feedback to
inhibit DA neurons [30]. In VTA, somatodendritic dopamine release
is inferred to be involved in the corticosterone-induced anxiety-
like behaviors via D2 receptors [32]. Though we found that directly
bidirectional manipulation of VTA D1 receptors controls mouse
anxiety-like behavior, the inhibition effect of D2 receptors may
override the anxiolytic effect of activating D1 receptors via
endogenous DA release. In spite of sparse Drd1 expression in the
VTA, reducing VTA D1 receptors in VTA neurons elevates mouse
anxious state (Figs. 1 and 5). Together, D1 and D2 receptors, these
two complementary components expressed in VTA neurons,

Fig. 5 Lowering D1 receptor expression in VTA DA, GABA, and glutamate neurons differently changes mouse anxiety-like behaviors.
A Schematic of viral transduction strategy to express ChR2-mCherry in VTA DA, GABA, and glutamate neurons and optical fiber targeting the
VTA. B Statistical results of locomotor speed before, during, and after 5-min light activation of VTA DA, GABA, and glutamate neurons with
light stimulation frequency at 20 Hz. n= 8 (1 male and 7 female), 9 (6 male and 3 female), and 6 (3 male and 3 female) mice for DAT-Cre, Vgat-
Cre, and Vglut2-Cre groups, respectively. **p < 0.01, ***p < 0.001, One-way ANOVA with Tukey’s multiple comparisons post hoc test. C and
D Same as B, but for the time spent at the center region (C) and the ratio between speed at the center and surround regions (D) in open-field
test. *p < 0.05, **p < 0.01, Paired t-test. E Trajectories in EPM test with and without optically activating VTA DA, GABA and glutamate neurons.
Arrows indicate the open arm side. F Statistical results of duration spent at open arms in EPM test with and without optical stimulation to
activating VTA DA, GABA, and glutamate neurons. * p < 0.05, Paired t-test. G Example images showing AAV9-CMV-DIO-(EGFP-U6)-shRNA(Drd1)
virus expression in VTA of DAT-Cre (Top), Vgat-Cre (Middle) and Vglut2-Cre (Bottom) mice. H Trajectories in open-field test for control mice
(Left, Con) and the mice with lowering D1 receptors in VTA DA, GABA, and glutamate neurons (Right, RNAi), respectively. Dashed boxes
indicate the center region. I Locomotor speed of control (4 male and 5 female) and RNAi (5 male and 7 female) DAT-Cre mice, control (9 male)
and RNAi (9 male) Vgat-Cre mice, and control (4 male and 3 female) and RNAi (5 male and 3 female) Vglut2-Cre mice. **p < 0.01, Unpaired
t-test. J, K Same as I, but for the time spent at the center region (J) and the ratio between center locomotor speed and surround locomotor
speed in open-field test (K). *p < 0.05, **p < 0.01, Unpaired t-test. L Duration spent at open arms in EPM test for control and RNAi in different
types of VTA neurons. *p < 0.05, Unpaired t-test.
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cooperate to control VTA neuronal excitability and balance the
emotional behavior.
In brain, VTA neurons have diverse neural circuitry projections

[67]. The well-studied downstream regions of VTA, such as mPFC,
NAc, and vHipp, play vital roles in balancing emotional behaviors,
and stimulating D1 neurons or D1 receptors in these regions has

antidepressant and anxiolytic effects [6, 25, 68]. Our results show
that activating VTA D1 neuronal axons in mPFC, NAc, vHipp, and
amygdala has no effect on anxiety-like behaviors, but in LS
exhibits anxiolytic effect (Fig. 6 and Supplementary Fig. 6). LS
serves as an important relay center, which integrates cortical and
subcortical inputs to regulate cognitive and emotional behaviors
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[69–72]. The projection of VTA DA/glutamate neurons to LS has
been reported [61, 63], but the possible functions of this neural
circuit remain unclear. A recent study showed that VTA DA
neurons projecting to LS promoted mouse aggression via D2
receptor-mediated inhibition of LS neurons [73]. Here, we uncover
another role of VTA D1 neurons projecting to the LS in relieving
anxiety-like behaviors via glutamatergic mechanism. Though
activating LS type 2 CRF (CRFR2) neurons [69], oxytocin receptor
neurons [71], and glutamatergic projection from mPFC to the LS
increase anxiety-like behaviors [74], stimulation of the LS reduces
feelings of fear and anxiety [72, 75]. Together with our study, we
speculate that the diversity of LS neurons and their neural circuits
may induce the oppositely anxiolytic and anxiogenic effects,
and the target of VTA D1 neurons in LS remains to be further
investigated.
Several evidence in our study support that the expression of D1

receptors in VTA glutamate neurons plays the dominant role in
alleviating mouse anxiety-like behaviors. More than 40% Drd1+

neurons in VTA are Vglut2+, and ~20% VTA Vglut2+ neurons
express Drd1 mRNA (Fig. 2). Meanwhile, activating VTA glutamate
neurons, but not DA or GABA neurons, had an anxiolytic effect,
and reducing D1 receptor expression in VTA glutamate neurons
significantly elevated mouse anxious level (Fig. 5). More impor-
tantly, blocking glutamatergic synaptic transmission in LS, but not
in NAc or mPFC, occluded the effect of activating VTA D1 neurons
on mouse anxiety-like behaviors, and ~90% VTA Drd1+ neurons
projecting to the LS are Vglut2+ (Fig. 6 and Supplementary Fig. 6).
Similar as the VTA DA neurons, VTA glutamate neurons send axons
to many brain regions and are involved in regulating multiple
behaviors [46, 67]. VTA glutamate neurons are reported to
regulate reward/aversion via projecting to NAc and lateral
habenula [48, 58, 76–78], innate defensive behavior by receiving
inputs from lateral hypothalamus [56], and wakefulness through
projections to the NAc and the lateral hypothalamus [57]. A lot of
studies suggest that VTA neurons projecting to different down-
stream targets have different anatomical locations or organiza-
tions, neuronal properties, input and output circuit architectures,
and behavioral functions [60, 67, 79, 80]. Our study broadens the
functional role and neural circuitry connection of VTA glutamate
neurons in regulating emotional behaviors.
In this study, five different approaches were used to mutually

investigate the roles of VTA D1 receptors/neurons in regulating
anxiety-like behaviors. The anxiolytic effect of VTA D1 receptors/
neurons is consistent, but some discrepancies between approaches
were observed. Firstly, all the approaches, except for

pharmacological manipulation, increased locomotor activity. Similar
phenomena in locomotion as our study were also observed inmPFC
and NAc [6, 81, 82]. Pharmacological manipulation would target all
the D1 receptors expressed in neurons, non-neurons, and also
afferent axons [83, 84], which may induce the different effects on
locomotion from directly targeting neurons. Secondly, chemoge-
netic manipulation in open-field test, but not in EPM test, had
significant anxiolytic effect. Mice in chemogenetic manipulation
were used to run EPM test twice with the counter-balanced strategy,
and repeated EPM test may cover the difference observed in other
manipulation methods due to the familiar of EPM apparatus
environment [51]. Thirdly, the TetTox approach decreased the time
in open-field center but increased time in EPM open arms. TetTox is
widely used to block neurotransmitters release, including GABA
and glutamate, but DA release is resistant to the TetTox, which may
due to lack machinery in DA neurons for TetTox uptake [54, 55].
TetTox may even elevate DA level [55], and knocking down D1
receptors in VTA DA neurons had prominent effect on EPM open
arm durations, so TetTox may elevate brain DA to increase time in
EPM open arms.
In conclusion, we uncovered the functional expression of D1

receptors in VTA neurons, and found the roles of VTA D1 receptors
and D1 receptor expression neurons in regulating anxiety-like
behaviors and identified the possible downstream brain region
target. Activation of VTA D1 receptors obviously alleviates anxiety,
which might serve as a potential target for anxiety disorder
treatment.
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