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Abstract

Motivation: Environmental DNA (eDNA), as a rapidly expanding research field, stands to benefit from shared resour-
ces including sampling protocols, study designs, discovered sequences, and taxonomic assignments to sequences.
High-quality community shareable eDNA resources rely heavily on comprehensive metadata documentation that
captures the complex workflows covering field sampling, molecular biology lab work, and bioinformatic analyses.
There are limited sources that provide documentation of database development on comprehensive metadata for
eDNA and these workflows and no open-source software.

Results: We present medna-metadata, an open-source, modular system that aligns with Findable, Accessible,
Interoperable, and Reusable guiding principles that support scholarly data reuse and the database and application
development of a standardized metadata collection structure that encapsulates critical aspects of field data collec-
tion, wet lab processing, and bioinformatic analysis. Medna-metadata is showcased with metabarcoding data from
the Gulf of Maine (Polinski et al., 2019).

Availability and implementation: The source code of the medna-metadata web application is hosted on GitHub
(https://github.com/Maine-eDNA/medna-metadata). Medna-metadata is a docker-compose installable package.
Documentation can be found at https://medna-metadata.readthedocs.io/en/latest/?badge=latest. The application is
implemented in Python, PostgreSQL and PostGIS, RabbitMQ, and NGINX, with all major browsers supported. A
demo can be found at https://demo.metadata.maine-edna.org/.

Contact: melissa.kimble@maine.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Maine-eDNA is a state-wide research effort to determine the effi-
cacy of ecosystem monitoring through environmental DNA (eDNA,
https://umaine.edu/edna/). eDNA is DNA extracted from materials
collected from the environment (e.g. air, water, sediment), and is an
application domain that is increasingly applied to study the ecology
of aquatic and other environments (Harrison et al., 2019). Rapid
growth has, however, resulted in growing pains stemming from
poor data documentation practices (Nicholson et al., 2020). Maine-
eDNA endeavors to increase the ecological knowledge and

sustainable use of Maine’s coastal ecosystems through multi-
institutional collaboration. Maine-eDNA has hundreds of collabora-
tors simultaneously collecting material samples in the field, extract-
ing DNA from these samples, generating sequences through
metabarcoding and using bioinformatic pipelines for quality filtering
and taxonomic annotation of those sequences. At the onset of the
program, a critical requirement was to have user-based access to
results (annotated sequences) and metadata. This requirement led to
the modeling and development of a geospatial-enabled database
web application to support research efforts within the grant.
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A general goal, and requirement for federal funding and publication,
is to share and preserve genetic sequences by submission to an open ac-
cess database such as GenBank and the Short Read Archive (National
Science Foundation Biological Sciences Guidance on Data Management
Plans, https://www.nsf.gov/bio/pubs/BIODMP_Guidance.pdf; Wilkinson
et al., 2016). To submit to these databases, data must adhere to min-
imum required fields and structure prior to submission. Some commu-
nity standards pertinent to eDNA include: The Minimum Information
about a Genome Sequence (MIGS, Field et al., 2008) and Minimum
Information for the Publication of Quantitative Real-Time PCR
Experiments (MIQE, Bustin et al., 2009). These minimum standards
have branched into domain-specific checklists, such as minimum infor-
mation about any (x) sequence (MIxS, Yilmaz et al., 2011).
Metabarcoding results are sensitive to each step in their generation
(Bruce et al., 2021), and while MIGS and MIQE standards provide guid-
ance and structure, they are, as the name implies—a minimum. To in-
crease confidence that detected change of an ecological state is due to
actual change, rather than data artifacts, we found the need to supple-
ment these standards with additional metadata that addresses sources of
potential variation (Mathieu et al., 2020).

From an informal survey of data collection habits of researchers
project-wide, we found that recorded information was typically un-
structured. In the absence of structured data collection protocols
and a controlled vocabulary, we observed variation in terminology
and naming, including variation in the naming of the same collec-
tion sites over time. There was also a routine practice of repeat man-
ual modification of personalized documentation, which can increase
the potential for epistemic and linguistic sources of uncertainty
(Regan et al., 2002). Most importantly, these idiosyncrasies can lead
to incomparable datasets and limitations to reproducibility
(Andersson et al., 2020).

To maintain data integrity, enable meta-analyses, and provide ef-
ficient submission to open access databases, we needed to establish
better control over documentation procedures. Thus spawned our
efforts to develop a standardized data collection structure and vo-
cabulary to encapsulate critical aspects of field data collection to
wet lab processing to taxonomic annotation.

As noted by Wilkinson et al. (2016), publishing biodiversity data
is largely a process of making species occurrence data findable, ac-
cessible, interoperable, and reusable (FAIR). FAIR principles suggest
that all included metadata should have a globally unique and persist-
ent identifier, thus making it ‘findable’ in a standardized and ‘access-
ible’ format. Haendel et al. (2016) suggests that when making data
accessible, direct database endpoints are more valuable when inte-
grated with a well-structured and provisioned application program-
ming interface (API). In addition to accessibility principles, data
should adopt a formal, broadly acceptable language for knowledge
representation in an ‘interoperable’ manner and include well docu-
mented data versioning and vocabularies that follow FAIR princi-
ples. Data should be richly described with a plurality of accurate
and relevant attributes, meet domain-relevant community standards,
and include detailed provenance information making it ‘reusable’
(Wilkinson et al., 2016). Beyond the core principles of FAIR data, it
is also important that mechanisms exist to apply these principles
equally, making the data both human and machine-readable
(Rodr�ıguez-Iglesias et al., 2016). For eDNA data, reuse can be
achieved by addressing spatial, temporal, laboratory, taxonomic,
and other reporting inconsistencies and processes of standardization
(Andersson et al., 2020).

In a review of the literature and open-source repositories, we did
not find any detailed database development covering comprehensive
metadata from field data collection through wet lab processing to
bioinformatics. Developing end-to-end database coverage was vital
for the success of our project, and important for making sure our
database adopted the FAIR guiding principles that support scholarly
data reuse. We endeavored to provide a free and open-source data-
base web application and API to increase the transparency of meta-
data operations (Fig. 1).

The remainder of this paper describes our steps, rationale, and
components toward building reusable data through comprehensive
metadata documentation. We present the details of our database

development through an entity relationship diagram (ERD; full
schema in Supplementary Fig. S1) which documents the schema for
field data collection, wet lab processing, freezer inventory tracking,
and bioinformatics (Fig. 2).

2 System and methods

2.1 Database modeling and design
2.1.1 Field sites and sample labels

As part of the project, we have a growing and varying set of data
collection sites that are regularly resampled along with ad hoc or op-
portunity collection sites. Therefore, we needed the ability to tag
sites with unique and human readable identifiers (Fig. 3a and b).
The field site module (Fig. 4; Supplementary Table S2) represents
unique field sampling locations. To ensure consistent location desig-
nators for these sites, we developed a scheme for unique site IDs.
Since our deployment of the open-source database management sys-
tem PostgreSQL was set up with the geospatial extension PostGIS,
generating location-based aggregate summaries was significantly
simplified using unique site IDs.

Each site ID includes a watershed region code based on the
United States Geological Survey (USGS) Watershed Boundary
Dataset (WBD; published April 6, 2022) hydrologic unit code 8
(HUC8) (Simley and Carswell, 2009) and the Natural Earth marine
areas dataset version 5.0.0 (naturalearthdata.com) simplified with
the Douglas–Peucker algorithm at a tolerance of 100 meters
(Whyatt and Wade, 1988; Fig. 5).

This naming convention was adopted for consistency with the
U.S. Forest Service eDNAtlas database (Young et al., 2018). The
system-type code in a site ID refers to what system the field site repre-
sents, for example, whether the site is within a natural or human-
made impoundment (lake), a unidirectionally flowing freshwater
(stream/river), a tidal transition zone between river and ocean (estu-
ary), a fully marine site with little to no direct influence of river dis-
charge (coast), a generally open ocean with no visible coastline
(pelagic), from an aquarium (aquarium), or mock community
(mock). Our legacy watershed codes for Maine are two characters in
length (Fig. 3a and c), whereas the remaining >2500 watersheds and
marine water bodies are three characters in length (Fig. 3b and d).
The watersheds and system codes are documented respectively in the
Watershed and System tables and the EnvO Biome and Feature tables
were incorporated and associated with field sites to support MIxS
fields (broad-scale context and local context, Yilmaz et al., 2011).

These field site naming conventions were incorporated into our
Sample Labels module (Fig. 4; Supplementary Table S2), where a
label/barcode consists of the unique site ID, followed by the year the

Fig. 1. medna-metadata backend and frontend workflow spanning field sites, barco-

des (sample labels), field collection, wet lab processing and bioinformatics. Single

table (ST) application programming interface (API) endpoints are available for all

tables within medna-metadata. Included are multi-table (MT), or custom API end-

points that provide multi-table join summaries
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sample was collected, the type of material sampled (water, sedi-

ment), and a four-digit sequence (Fig. 3c and d).

2.1.2 Field collection

The field collection module (Fig. 6; Supplementary Table S5) incor-

porated wide ranging samples in both location and type. As such,
the collections generated diverse data including information on en-

vironmental factors at collection sites (Environmental Measurement
table), materials collected (Sample Material table), and the methods
and equipment used in collection (Collection and Sample tables).

General metadata included site ID, geographic location, date and
time of sample collection, and field crew to provide traceability of
samples and to adhere to the minimum standards of data collection

across genomic databases (Field Survey and Field Crew tables; Field
et al., 2008; Nicholson et al., 2020; Yilmaz et al., 2011). Capturing
environmental conditions is particularly important for downstream
ecosystem and taxa-specific analyses and we met or exceeded pub-
lished recommendations (Harrison et al., 2019; Nicholson et al.,
2020). Measured environmental conditions included: Water tem-
perature, salinity, pH, PAR1 (Photosynthetically Active Radiation
Channel 1: Up looking), PAR2 (Channel 2: Down looking), turbid-
ity, conductivity, dissolved oxygen, nitrate and nitrite, pheophytin,
and chlorophyll a. Some collection locations were sampled at mul-
tiple depths in which case, each depth was associated with a corre-
sponding set of environmental measurements and represented
through the Environmental Measurement table and its relationship
to the Field Survey table (Fig. 6).

Although the two primary sample types were water or sediment,
our schema was developed to support the addition of types through
polymorphic (or supertype/subtype hierarchy, Teorey et al., 2011)
relationships exemplified by the Field Collection table relationship
to the types Water Collection and Sediment Collection, and the

Fig. 2. Primary tables and associated modules (utility, field site, sample label, field col-

lection/survey, wet lab, freezer inventory, and bioinformatics) for medna-metadata. Full

schema spanning the seven modules is available in Supplementary Figure S1. Full de-

scription of fields within tables is available in Supplementary Tables S1–S7

Fig. 3. Site ID naming conventions: pRR_SCC where p is the fund, or project code,

RR (A, C) or RRR (B, D) is the watershed region code, S is the system type, and CC

is the two-digit sequence. Naming conventions for sample barcode labels (C, D):

pRR_SCC_YYm_CCCC where pRR_SCC is the Site ID, m is the sample material

code, and CCCC is the four-digit sequence

Fig. 4. Field site and sample label modules within the metadata schema. Full schema

available in Supplementary Figure S1. Sample label references the field site module

through the field site table. The field site table contains all unique site IDs, where

system, watershed, and EnvO tables are referenced to generate the human-readable

identifier. The sample barcode table contains all unique sample labels and are gener-

ated through Celery tasks and the sample label request table. Sample type and ma-

terial tables are referenced to generate the human-readable sample labels. Full

descriptions of fields for the Field Site and Sample Label modules are available in

Supplementary Table S2

Fig. 5. United States Geological Survey Watershed Boundary Dataset (publication

date April 6, 2022) merged with Natural Earth marine areas version 5.0.0 (natural-

earthdata.com) and simplified with the Douglas–Peucker algorithm at a tolerance of

100 meters in ArcGIS Pro v2.8.1
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Field Sample table relationship to types Filter Sample and Subcore

Sample (Fig. 6).
After collection, water was filtered using a mixed selection of fil-

ters. Filter characteristics (e.g. material type, pore size), volume fil-
tered, length and condition of storage prior to filtering all affect the

capture of DNA from environmental samples and the final yield of
DNA (Kumar et al., 2020). Sediment was collected via a variety of
coring methods (e.g. gravity, piston, wedge) and further subdivided

through a variety of methods (i.e. via scooping, use of syringe or slic-
ing) dependent on sediment type (Pawlowski et al., 2022).

Collection of eDNA from sediment cores is affected by water depth,
bottom substrate characteristics, equipment choice, and target or-
ganism (Pawlowski et al., 2022). We interpreted field collection to

include metadata up to filtration or sub-coring.

2.1.3 Wet lab processing

Field samples (filters or sub-cores) were extracted to produce test-
able solutions of eDNA. Within the wet lab processing module

(Fig. 7; Supplementary Table S4), extraction method, final solution
volume, whether DNA solution was derived from a true sample or
negative control, and DNA concentration were documented, as

these factors affect downstream results (Minamoto et al., 2021).
DNA was tested using metabarcoding (our primary next generation
sequencing method), quantitative PCR (qPCR), or droplet digital

PCR (ddPCR). ddPCR and qPCR use taxa-specific primers for
detecting specific DNA fragments within a sample, whereas meta-

barcoding uses generalized primers to sequence whole groups of
taxa within a sample at once.

Since extracted samples could be tested via any (or all) of these
methods, our wet lab module included metadata fields for all proc-
esses (Fig. 7). Primers target a specific gene region and produce an

amplicon within a known size range; these are important metadata
for identifying successful amplification of a target taxonomic group

(Bylemans et al., 2018; Collins et al., 2019). Metabarcoding includes
PCR steps, library preparation, QA/QC, quantification, normaliza-
tion, and pooling before sequencing can begin, all of which generate

metadata that must be recorded. Of particular interest are the
Primer Pair, needed for the bioinformatics pipeline, and the Index
Pair. Indexes in this context are identifying tags attached to

amplicons that are required to demultiplex samples after sequencing
and are entered into the Index Pair table (Illumina, 2019).

To generate FASTQ files, the libraries must be sequenced
(Fig. 1). The concentrations of library and standard, as well as li-
brary preparation kit details, were captured through the Run Prep
and Run Results tables (Fig. 7).

2.1.4 Bioinformatic analysis workflows

To support full transparency and traceability of analysis workflows
in each sample (Wilkinson et al., 2016), the bioinformatics module
(Fig. 8; Supplementary Table S5) was designed to cover the full
taxonomic scope, standard operating procedures (SOPs), reference
database, underlying scripts, environmental files (installed software
packages), and pipeline parameters. We capture fields that are
standard across genomic databases (Yilmaz et al., 2011), with care-
ful consideration given to identify and include non-standard fields
that could have potential impacts on annotated sequences.

As the number of bioinformatics tools and analysis methods in-
crease, so too does the importance of capturing complete workflow
steps. This is crucial, not only for comparison among samples but
also to determine what parameters could impact results. The lack of
consensus on best practices for processing amplicon sequence data
in current literature increases the necessity of documenting biases
that may arise from competing methods (O’Rourke et al., 2020).
Thus, the medna-metadata database sought to capture software in-
formation that could be applicable across any number of bioinfor-
matics pipelines through a link to an environment file that records
all software versions used. A standard process within a bioinformat-
ics analysis pipeline consists of evaluating the quality of the sequen-
ces within a FASTQ file, removing primers, filtering, trimming,
followed by denoising and dereplication, or clustering, before finally
performing taxonomic annotations (Fig. 1).

Fig. 6. Field Survey module within the metadata schema. Full schema available in

Supplementary Figure S1. The Field Survey module is related to the Field Site mod-

ule through the relationship between the Field Site and Field Survey tables, where

each survey is collecting materials at a Field Site. The relationship between Field

Survey and Field Site is not required (open circle), however, as ‘other’ sampling sites

can be used. A Field Survey may also have any number of related Field Crew,

Environmental Measurements, or Field Collections (crow foot connection). The

Environmental Measure Types table provides model-based choices of environmental

measurements and the Environmental Measurements table stores the values of these

measurements. Multiple projects can be associated with a single field survey due to

the many-to-many relationship between the Field Survey and Project tables (dual

crow foot connection). A Field Collection can be water or sediment, both of which

may be a true collection, a mock, or a positive or negative field control, and have

associated field samples that are either filters or sub-sediment/sub-core samples.

Field samples are uniquely identified through their human readable sample barcode,

shown by the relationship between the Field Sample and Sample Barcode table. The

Field Sample table is also further described by its relationship to the Sample

Material table. Full descriptions of fields for the Field Survey module are available

in Supplementary Table S3

Fig. 7. Wet Lab module within the metadata schema. Full schema available in

Supplementary Figure S1. The Wet Lab module is related to the Field Survey module

through the relationship between the Extraction and Field Sample tables.

Extractions and pooled libraries are uniquely identified through the Sample Barcode

table. qPCR and ddPCR metadata were documented in the PCR and PCR Replicate

tables and through the relationship of the PCR table to the Primer Pair table. The lo-

cation of wet lab preparation is documented through a table’s relationship to the

Process Location Table. Associated standard operating procedures are also docu-

mented through the relationship to the Standard Operating Procedure table. All

other metadata collected throughout the library preparation and sequencing steps

are documented in the NGS-specific tables: Library Prep, Index Removal Method,

Quantification Method, Amplification Method, Size Selection Method, and Index

Pair. Library preparation primers are selected through the Primer Pair table, and

proceeding NGS tables include Pooled Library, Run Prep, Run Result, and FASTQ

File. Full descriptions of fields for the Wet Lab module are available in

Supplementary Table S4
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Quality trimming can improve accuracy through assessment of
read quality and removal of sequences with low-confidence base
calls, or excessive ambiguous bases. Choosing strict trim values can
more effectively reduce erroneous reads and artifacts, but overly
conservative filtering can potentially remove too many reads, which
can impose a challenge to standardizing parameter values (Piper
et al., 2019). Due to the subjective nature of this step, trimming
parameters constitute an important meta-analysis parameter
(Quality Metadata table; Piper et al., 2019).

Denoising algorithms produce amplicon sequence variants
(ASVs, Callahan et al., 2017) through correction of single-
nucleotide differences and inference of ‘actual’ sequences from
sequencing noise (DADA2, Callahan et al., 2016). Clustering meth-
ods, the generation of operational taxonomic units (OTUs, Blaxter
et al., 2005) have a similar goal of sequence reduction, but do so by
using an arbitrary similarity threshold, typically 97%, whereas dere-
plication uses a threshold of 100%. Denoising algorithms are
designed to reduce sequence artifacts from random errors in PCR
amplification and sequencing using statistical models rather than ar-
bitrary similarity thresholds to define OTUs. Methods and parame-
ters used for deriving features (ASVs, OTUs, etc.) are captured
within the Denoise Cluster Method and Metadata tables.

Additional noise can be introduced from chimeric sequences that
result from incomplete primer extension during PCR. Although chi-
meric sequences tend to have a low number of copies, removal of
these artifact sequences is important because they could be a poten-
tial source of ‘false’ sequence reads (Schnell et al., 2015). The name,
software version, and parameters used for chimera removal are cap-
tured within the Denoise Cluster Metadata table.

After denoising or clustering, common annotation techniques,
such as Basic Local Alignment Search Tool (BLAST, Altschul et al.,
1990; BLASTþ, Camacho et al., 2009) or Multinomial Naı̈ve Bayes
(q2-feature-classifier, Bokulich et al., 2018), are recorded in the

Annotation Method table. Taxonomic annotation results, methods,
and reference database metadata enables tracking missing or un-
assigned taxa within a reference database, the detection of false pos-

itives, and increases the potential to detect overlooked species
(Coissac et al., 2012; Schenekar et al., 2020; Stoeckle et al., 2020;
Yilmaz et al., 2011).

Collection of taxonomic names and hierarchies during taxo-
nomic annotation is critical to understanding the biodiversity pre-
sent in samples (Pappalardo et al., 2021). As taxonomy and
phylogeny are in perpetual flux (Beiko, 2015; Zimmermann et al.,
2014), collecting all taxonomic annotations from major reference
databases, such as Silva (Yilmaz et al., 2014), PR2 (Guillou et al.,
2013), and Barcode of Life Data Systems Database (http://www.
barcodinglife.org, Ratnasingham and Hebert, 2007), are important

for standardization across samples. Medna-metadata captures in-
formation pertaining to all Linnaean taxonomy (e.g. species,
genus; Paterlini, 2007; Supplementary Table S5) and includes pro-
tist relevant groupings (i.e. supergroup and division) based on the

higher-level annotations within the PR2 database (Guillou et al.,
2013).

2.1.5 Freezer inventory tracking

As the number of samples and storage locations increased, the
ability to track the status and location of field samples, extrac-
tions, or libraries became essential to capture in the freezer inven-

tory module (Fig. 9; Supplementary Table S6). To slow
degradation of DNA in a sample, microbial community interac-
tions, or chemical reactions, samples were stored in �80�C freez-
ers (Kumar et al., 2020). Complimentary to sample tracking, was

capturing the temperature and duration of storage as they can af-
fect results obtained from samples (Bustin et al., 2009; Yilmaz
et al., 2011). Extractions and libraries contain solutions of DNA,
small portions, or aliquots of which were periodically taken from

the freezer for processing. To support on demand sample monitor-
ing, additional attributes such as volume and level of processing
were captured.

3 Implementation

3.1 Backend development
A critical consideration beyond database modeling and design was
deciding on an implementation platform. Given our project goals to

provide open-source and free products, we chose Django with
Django’s REST Framework for our backend development. These
libraries and frameworks are widely used for web application devel-

opment, as evidenced by their use among other open-source projects
on scientific data exchange and tracking (Anatskiy et al., 2019;
Androulakis et al., 2011).

A major system requirement was support for real-time data in-
gestion from multiple sources to a central location. Django’s REST
Framework enables relatively fast and secure development of an API
to enable this feature. The API is fully documented using Swagger/

OpenAPI 2.0 generated with the drf-yasg library. To support asyn-
chronous and distributed task management, we incorporated Celery
with the RabbitMQ message-broker.

3.2 API endpoints
All database tables were developed with an API endpoint. Custom
API views were developed with multi-table joins for viewing related

field survey information for filters (api/field_survey/survey_filters),
subcores (api/field_survey/survey_subcores), environmental meas-
urements (api/field_survey/survey_envs) and for MIxS sediment and
water (api/mixs/sediment or water).

Fig. 8. Bioinformatics module within the metadata schema. Full schema available in

Supplementary Figure S1. The Bioinformatics module is related to the Wet Lab

module through the relationship between the FASTQ File and Quality Metadata,

where quality trimming parameters are captured and include the minimum and

maximum read length, forward and reverse trim length, and sequence quality.

Parameters relating to both Amplicon Sequence Variants and Operational

Taxonomic Units generation methods are included within the Denoise Cluster

Metadata table. Sequences generated from denoising or clustering are listed in the

Feature Output table and the number of reads per sequencing run is represented in

the Feature Read table. The Annotation Metadata table covers information related

to the taxonomic annotation process and is related to the Taxonomic Annotation

table. The Taxonomic Annotation table retains the results of any annotation

method and enables the annotation of manually verified taxonomy. The Taxonomy

tables (simplified here for brevity) are a set of hierarchical tables that correspond to

the full taxonomic hierarchy (Domain, Kingdom, Supergroup, Phylum/Division,

Class, Order, Family, Genus, and Species) and represent curated species lists that

can be referenced to manually annotate verified taxonomy to a sequence through

their relationship to the Taxonomic Annotation table. The location of an analysis or

associated standard operating procedures are captured in relationships to the

Process Location and Standard Operating Procedure tables. The Wet Lab module is

further related to the Bioinformatics module through the relationship between the

Feature Read and Extraction tables, where the count of reads per sample are cap-

tured. Full descriptions of fields for the Bioinformatics module are available in

Supplementary Table S5
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3.3 Frontend development
Medna-metadata’s frontend was customized from open-source fron-
tend libraries django-material-dashboard and django-material-kit.
These open-source libraries included integration with widely used
frontend frameworks such as Bootstrap and Material Design. The
Chart.js library was also utilized for data visualization and Leaflet
for interactive web maps. Other common JavaScript libraries such
as Select2 were used to create conditional and searchable dropdown
menus.

3.4 API and frontend CRUD-permissions
Access to all database tables through the API and content in the
frontend is controlled through CRUD-based permissions (create,
read, update, delete), where a particular user may only perform
operations based on what permissions are granted to their account.
Authenticated users (or users with a login) do not automatically re-
ceive permissions and must be granted permissions by an adminis-
trator in the administrative site. Permissions can be set piecemeal, or
through pre-generated permission groups available from a custom
django-admin command with permissions for project admins (add,
update, and view for all tables), graduate students (add, update, and
view for a subset of tables), and interns (view and add for a subset
of tables).

The frontend of medna-metadata has publicly (read) accessible
content that includes background information on medna-metadata
and Maine-eDNA, as well as project-based summaries and map
views, publication lists, and a contact us page that are dynamically
populated from the database. Frontend authenticated users can view
standard operating procedures and API documentation. The fron-
tend dashboard provides chart summaries, tabular views of the data,
forms for adding and updating metadata for all available database
tables, and data download options. Authenticated users require spe-
cific CRUD-permissions to modify content within pages on the main
site or dashboard.

3.5 Controlled vocabulary
To enable aggregations and queries by a controlled vocabulary, we
incorporated enumerated and model-based choices. Model-based

choices are customizable through the administration site, whereas
enumerations are hardcoded choices that are unlikely to change.
Enumerations do not need to be created upon generation of the ap-
plication, but model-based choices need to be populated based on a
project’s needs. For example, process location may differ by project
and was added as a model-based choice, whereas library layout is a
controlled MIxS vocabulary that may not change often.
Customization of model-based choices is restricted to administrators
to limit duplication of existing choices and retain a clean and
concise list.

3.6 MIxS MIMARKS-SURVEY
One of the more challenging and important aspects of the applica-
tion was providing automatically MIxS formatted outputs for man-
datory (M), conditionally mandatory (C), and environmentally
dependent (E) MIMARKS-SURVEY fields. Within the dashboard,
medna-metadata provides tabular views of MIxS sediment and
water. The tabular view also enables the user to select and export
these views into a desired format, as well as download a particular
FASTQ file (Fig. 10).

3.7 Maine-eDNA deployment
While the main branch of medna-metadata is available for projects
deploying this application, use of the API with automated data in-
gestion from other applications will require additional customiza-
tion. The following describes how we customized our medna branch
for automatic data ingestion.

Because of the many sites sampled by the project, effective spa-
tial data management was a key concern. We employed a suite of
commercial GIS products from ESRI, which are widely used within
academic, federal, and state sectors. For field data collection we
used ESRI’s Survey123, a cross-platform data collection application
with a proprietary ESRI geodatabase as the backend. Use of
Survey123 eliminated a significant amount of development time that
would otherwise have been required to provide a cross-platform
application for field data collection.

A challenge, however, was extracting data from ESRI’s geodata-
base and loading it into medna-metadata as Survey123 records were
created or updated. We found Make (https://www.make.com/) to be
the most user-friendly integration with Survey123, but it did come
at a premium. Additional development was required within medna-
metadata to transform data from Survey123 into a normalized and
queryable format, since Survey123 schemas are automatically gener-
ated without normalization in mind. Our solution was to store field
data in Extract, Transform, and Load (ETL) tables prior to being
transformed with Django post-save signals and Celery tasks.

Another component to be cognizant of was where to store data-
files (e.g. FASTQ files, bioinformatics outputs). Within Maine-
eDNA, datafiles were automatically transferred to MyTardis
(Androulakis et al., 2011) and the Texas Advanced Computing
Center (TACC). The cloud storage service utilized for MyTardis

Fig. 9. Freezer Inventory module within the metadata schema. Full schema available

in Supplementary Figure S1. The Freezer Inventory module is related to samples

through the Sample Barcode table. Field samples, extractions, and pooled libraries

are identified by their relationship to the Sample Barcode table. Each level of the

Freezer Inventory module reflects the organization of a freezer that contains racks,

boxes, and sample tubes. Inventories are tracked through the Inventory Log table,

which captures new additions, permanent removals, check-outs, and returns.

Returned inventory logs are captured in the Inventory Return Metadata, which

stores the actions that were taken on the inventory while it was checked-out and if

aliquots were taken. The Return Action table provides model-based choices on

actions, such as extraction, PCR, library prep, pooled library, run prep, run result,

or none. Full descriptions of fields for the Freezer Inventory module are available in

Supplementary Table S6

Fig. 10. Tabular view of MIxS sediment (MIMARKS-SURVEY) mandatory (M),

conditionally mandatory (C), and environmentally dependent (E) fields, and down-

loaded CSV and FASTQ file
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was Wasabi S3 because there were no transfer limits, a set monthly
rate, and reliable and prompt service. While MyTardis provided se-
cure, login-based access to datafiles, there was an additional project-
wide request to provide access through Google Drive. Rclone was
instrumental in setting up regular synchronization between multiple
virtual machines and cloud storage services. Since the datafiles were
already in S3 storage via MyTardis, a combination of the django-
storages library and Celery tasks were used to extract and load exist-
ing datafile locations into medna-metadata.

4 Discussion

4.1 Case study examples
As the scale of high throughput data in life sciences increases, infor-
mation systems capable of managing heterogeneous data that sup-
port FAIR principles of scientific data management (Wilkinson
et al., 2016) are in high demand. Relational databases provide an
ideal framework for representing and utilizing large-scale genomic
datasets and are widely used for biological applications (Cuellar
et al., 2022; Di Marsico et al., 2022). In large interdisciplinary proj-
ects, such as Maine-eDNA, whose goal is to collect, manipulate,
store, and analyze copious amounts of information, design decisions
play an important role in how the data are handled on the user side.
Wang et al. (2019) found that while relational databases are effect-
ive at managing data, the underlying models required in-depth do-
main knowledge to develop robust schemas. The integration of
environmental samples for the exploration of biodiversity and distri-
bution can be achieved if metadata retrieved is formalized, curated,
and standardized.

Given the scope of medna-metadata, and the amount of data
captured in the underlying schema, we wanted to test the database
with an initial small use-case. The case study investigated biodiver-
sity in the New England Aquarium to evaluate eDNA detection
methods for vertebrates and invertebrates (Silverbrand, 2021),
through the capture of environmental measurements such as pH and
salinity. Wet lab processing and sequencing parameters were docu-
mented, raw sequence reads as FASTQ files were generated, and
protocol methods standard to Illumina sequencing were entered into
medna-metadata. Provenance of run sequence files are important to
capture because different approaches for processing raw sequences
can influence diversity estimates (Reitmeier et al., 2021). This study
represents a fully reproducible use-case that can be efficiently
retrieved and compared against other studies from environmental
sampling, sequencing protocols, and analysis methods. To further
demonstrate application of medna-metadata, we applied it to a pub-
lished eDNA metabarcoding dataset from the Stellwagen Bank
National Marine Sanctuary in the Gulf of Maine (Polinski et al.,
2019). These example data can be viewed from the demo deploy-
ment of medna-metadata (https://demo.metadata.maine-edna.org/
main/projects/detail/15/).

Linking all underlying metadata gives access to a plethora of
new information, which can be used as a driving factor to test new
hypotheses, otherwise not possible if data were unlinked and un-
shared, and oftentimes stronger results can be obtained by using
many of these data types together. The scope of the data contained
within medna-metadata enables interoperability among metabar-
coding studies, and because all information through the entire work-
flow is captured and stored, it can be used to test implications of
method selection on sampling, sequencing, and analyses.

4.2 Expanding scope
Field sites and sample labels are dependent on the availability of
watershed designators. For sites within USA, watershed designators
are provided through the United States Geological Survey (USGS)
Watershed Boundary Dataset (WBD, Simley and Carswell, 2009).
Expanding beyond the regions covered by the WBD would be de-
pendent on having international watershed designators, and if they
did not exist, then some other source of watershed designators
would need to be used.

While the initial goal of the application was to provide a project-
specific resource, the application could be reimplemented at a na-
tional scale upon need. For this application to be deployed national-
ly, adjustments would need to be made to the field site and sample
label naming conventions. Presently, the field sites and sample labels
sequentially increment. For the application to be deployed as a na-
tional repository, we anticipate that there are not enough digits
available for either field sites or sample labels. If there is a desire to
deploy this application nationally, then replacing the sequence with
a universally unique identifier (UUID) may be sufficient to support
this expansion.

Although application development focused on amplicon
sequencing, the metadata database schema was developed to be ex-
tendable to other cases such as shotgun sequencing. The system can
still track samples that could be characterized using other sequenc-
ing methods, but the medna-metadata application would need to be
modified to support sequencing workflows beyond metabarcoding.

4.3 Fair compatibility
Transparent and standardized data structures and analysis work-
flows are critical for supporting reproducibility. The ever-increasing
combinations of software, software versions, and data inputs, have
made reproducibility of a given field collection, wet lab procedure,
or bioinformatic analysis workflow difficult when detailed informa-
tion is unavailable. This is a significant concern as scientific inquiry
is based on reproducibility where others can reasonably reproduce
analysis results (Mesirov, 2010). Indeed, with the use of computers,
such reproduction should be made easier, not more difficult.

Reproducibility is a known problem within the field, and various
approaches have been suggested, many of which center around the
idea of building FAIR pipelines and pipeline management systems
(Barone et al., 2017; Reiter et al., 2021; Wratten et al., 2021). To
achieve FAIR standards, both data management and analysis work-
flow practices must be carefully documented and implemented. For
example, organization of analysis through an established set of pro-
grams, which are packaged in a version-specific and platform-
agnostic manner, fosters reproducibility.

Within our system, we conform to FAIR practices by providing
detailed provenance through documentation. For example, for a run,
we provide both the name of the pipeline used as well as the script it-
self, and include a list of the specific packages required. Also included
is information about when, where, and by whom a particular pipeline
was run. We include relevant details about the reference database
used in the taxonomic assignment pipeline. In this way, we have
ensured that our system is FAIR compatible, by having easily Findable
pipelines, which are Accessible by the coding scripts, Interoperable in
large part by the packaging of the pipelines themselves, combined by
providing a detailed list of programs used, as well as largely Reusable
by the strict framework in which those pipelines operate.

Acknowledgements

The authors thank collaborators from Maine-eDNA who provided post-

application development feedback and also thank Jennifer Polinski for pro-

viding additional support for access of the data represented in our demo

deployment.

Author contributions

Initial conception/database schema design: B.L.K., C.C., G.Y., K.B., L.M.J.,

M.K., S.A., and S.S. Paper contribution: B.L.K., C.C., G.Y., K.B., K.C.,

L.M.J., M.K., S.A., and S.S. Supplementary contribution: C.C., G.Y., K.B.,

L.M.J., M.K., and S.S. Backend and frontend software development: M.K.

Funding

This work was supported by the National Science Foundation [grant number

OIA-1849227 to Maine EPSCoR at the University of Maine].

Conflict of Interest: none declared.

medna-metadata: an open-source data management system for tracking environmental DNA samples and metadata 4595

https://demo.metadata.maine-edna.org/main/projects/detail/15/
https://demo.metadata.maine-edna.org/main/projects/detail/15/


Data availability

The source code of the medna-metadata web application is hosted on GitHub

(https://github.com/Maine-eDNA/medna-metadata) and licensed under the

GNU General Public License v3.0. Medna-metadata is a docker-compose

installable package. Documentation can be found at https://medna-metadata.

readthedocs.io/en/latest/?badge=latest. The application is implemented in

Python, PostgreSQL and PostGIS, RabbitMQ, and NGINX, with all major

browsers supported. A demo can be found at https://demo.metadata.maine-

edna.org/. The demonstration metabarcoding data were derived from a source

in the public domain, available in the NCBI Sequence Read Archive (SRA)

under BioProject accession number PRJNA517501 (BioSample accessions

SAMN10834666–SAMN10834683). Associated sequences, count tables, and

taxonomic annotations were derived from a source in the public domain,

available through Zenodo at https://zenodo.org/record/6536505#.YnqPn_

jMI2w. These data were originally published in Polinski et al., 2019. The geo-

spatial watershed boundary datasets were derived from a source in the public

domain, available through United States Geological Survey (USGS) The

National Map (publication date April 6, 2022) at https://prd-tnm.s3.amazo

naws.com/index.html?prefix=StagedProducts/Hydrography/WBD/National/

GDB/. The geospatial waterbody boundary datasets were derived from a

source in the public domain, available through Natural Earth marine areas

dataset version 5.0.0 at https://www.naturalearthdata.com/http//www.natu

ralearthdata.com/download/10m/physical/ne_10m_geography_marine_

polys.zip.
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