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Abstract

We have investigated the differentiation of paraxial mesoderm from mouse embryonic stem 

cells utilizing a Tbx6-EYFP/Brachyury (T)-Ckerry dual reporter system. Differentiation from the 

mouse ESC state directly into mesoderm via Wnt pathway activation was low, but augmented 

by treatment with AGN193109, a pan-retinoic acid receptor inverse agonist. After five days of 

differentiation, T+ cells increased from 12.2% to 18.8%, Tbx6+ cells increased from 5.8% to 

12.7%, and T+/Tbx6+ cells increased from 2.4% to 14.1%. The synergism of AGN193109 with 

Wnt3a/CHIR99021 was further substantiated by the increased expression of paraxial mesoderm 

gene markers Tbx6, Msgnl, Meoxl, and Hoxbl. Separate to inverse agonist treatment, when mouse 

ESCs were indirectly differentiated into mesoderm via a transient epiblast step the efficiency of 

paraxial mesoderm formation markedly increased. Tbx6+ cells represented 65–75% of the total 

cell population after just 3 days of differentiation and the expression of paraxial mesoderm marker 

genes Tbx6 and Msgn increased over 100-fold and 300-fold, respectively. Further evaluation of 

AGN193109 treatment on the indirect differentiation protocol suggested that RARs have two 

distinct roles. First, AGN193109 treatment at the epiblast step and mesoderm step promoted 

paraxial mesoderm formation over other mesoderm and endoderm lineage types. Second, 

continued treatment during mesoderm formation revealed its ability to repress the maturation 

of presomitic mesoderm into somitic paraxial mesoderm. Thus, the continuous treatment of 

AGN193109 during epiblast and mesoderm differentiation steps yielded a culture where —90% 

of the cells were Tbx6+. The surprisingly early effect of inverse agonist treatment at the epiblast 

step of differentiation led us to further examine the effect of AGN193109 treatment during an 

extended epiblast differentiation protocol. Interestingly, while inverse agonist treatment had no 

impact on the conversion of ESCs into epiblast cells based on the expression of Rexl, Fgf5, 
and pluripotency marker genes Oct4, Nanog, and Sox2, after three days of differentiation in the 

presence of AGN193109 caudal epiblast and early paraxial mesoderm marker genes, T, Cyp26al, 
Fgf8, Tbx6 and Msgn were all highly up-regulated. Collectively, our studies reveal an earlier than 
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appreciated role for RARs in epiblast cells and the modulation of their function via inverse agonist 

treatment can promote their differentiation into the paraxial mesoderm lineage.
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1. Introduction

The differentiation of pluripotent stem cells can be used as a valuable approach to study 

development, disease and obtain therapeutic progenitor cells. Our interest in skeletal biology 

has motivated us to learn how to differentiate embryonic stem cells (ESCs) into paraxial 

mesoderm. The paraxial mesoderm is a highly desirable cell population to generate because 

it is the precursor that gives rise to all of the cartilage, bone, skeletal muscle, and tendons 

that comprise the axial skeleton.

An increasing body of work has provided crucial insight into the mechanisms that instruct 

paraxial mesoderm formation. Two transcription factors, T-box 6 (Tbx6) and Mesogenin 
(Msgn) are pivotal regulators in the transition of caudal epiblast cells into unsegmented 

paraxial mesoderm, which is also known as presomitic mesoderm. Targeted loss of Tbx6 in 

mice resulted in the formation of ectopic neural tubes at the expense of paraxial mesoderm 

formation (Chapman and Papaioannou, 1998). Tbx6 represses Sox2 expression to direct 

caudal epiblast cells into the paraxial mesoderm lineage (Nowotschin et al., 2012; Takemoto 

et al., 2011). Msgn orchestrates the differentiation and migration of progenitor cells exiting 

the tailbud which form the presomitic mesoderm, and is therefore critical for balancing 

paraxial mesoderm specification and maintenance of the caudal progenitor population 

(Chalamalasetty et al., 2014; Fior et al., 2012). Together, Tbx6 and Msgn control the 

differentiation and maturation of paraxial mesoderm required for proper embryo elongation.

Wnt and FGF signaling pathways have essential roles in the lineage specification and 

outgrowth of axial progenitor cells. Targeted loss of Wnt3a (Yoshikawa et al., 1997) and 

Lef1/Tcf1 double mutants (Galceran et al., 1999) resulted in a phenotype similar to loss 

of Tbx6 in that broader contribution of epiblast cells into the neural ectoderm fate at the 

cost of forming paraxial mesoderm. With that in mind, there is an overwhelming amount 

of genetic and biochemical data showing that canonical Wnt signaling plays a major role 

in mesoderm formation. Gene targeting studies in mice have shown how several members 

of the Wnt pathway are required for mesoderm formation including, Wnt3, β- Catenin, 
and LRP5/LRP6 double mutants (Huelsken et al., 2000; Kelly, 2004; Liu et al., 1999). 

During ESC differentiation, Wnt3a and GSK3β antagonists are commonly used to induce 

mesoderm formation with higher levels of canonical Wnt activity promoting the formation 

of paraxial mesoderm (Craft et al., 2013; Gadue et al., 2006; Lindsley, 2006; Tanaka et 

al., 2009; Umeda et al., 2012). FGF signaling is indispensable during embryogenesis, as 

knockouts of Fgf4, Fgf8, Fgfr1, or Fgfr2 are all early embryonic lethal (Arman et al., 1998; 

Deng et al., 1994; Feldman et al., 1995; Sun et al., 1999), and dominant negative mutants 

display disruption of gastrulation cell movements, lack of mesoderm specification, and 
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severe caudal truncation (Amaya et al., 1991; Fletcher and Harland, 2008). FGF signaling 

in epiblast cells promotes migration through the primitive streak to initiate mesoderm 

formation and patterning, and a high FGF concentration persists in the tailbud to maintain 

the pluripotency and proliferation of cells contributing to the posterior paraxial mesoderm 

(Boulet and Capecchi, 2012; Burdsal et al., 1998; Ciruna and Rossant, 2001). Subsequent 

to presomitic mesoderm formation, a cyclical process of maturation occurs that involves 

periodic segmentation to form paired somites. Two important transcription factors Mesp2 
and Ripply2 are critical in forming the segmental border at the anterior-most region of 

the presomitic mesoderm thereby controlling the size and organization of each somite 

(Takahashi et al., 2010; Zhao et al., 2015). Functioning as negative regulators, Mesp2 
and Ripply2 establish the anterior boundary of Tbx6, and therefore mark the extent of 

the presomitic mesoderm domain. A negative feedback loop exists in the PSM wherein 

Tbx6, along with Notch signaling, induces Mesp2 expression which in turn induces Ripply2 
expression (Sasaki et al., 2011; Yasuhiko et al., 2008). Mesp2 and Ripply2 cause Tbx6 

degradation, while Ripply2 also downregulates Mesp2 expression to complete somite 

patterning (Moreno et al., 2008; Wanglar et al., 2014).

The maturation of paraxial mesoderm is also highly regulated by Retinoic Acid (RA) 

signaling. At the caudal end of the developing embryo, Cyp26a1, a gene that encodes for 

an enzyme which breaks down retinoic acid, is expressed thereby specifying a region absent 

of RA signaling (Fujii, 1997). Targeted loss of Cyp26a1 results in severe caudal truncation, 

which mimics defects caused by teratogenic levels of RA (Abu-Abed et al., 2001; Sakai et 

al., 2001). Examination of Wnt3a and Fgf8 expression in Cyp26a1 mutants, genes normally 

expressed at the caudal end and important for driving axial outgrowth were down- regulated. 

However, as the anterior most region of presomitic mesoderm distances itself from the 

caudal end where Cyp26a1 is expressed, levels of RA signaling increase in conjunction with 

the formation of somites and Meox1 expression (Haselbeck et al., 1999; Mankoo et al., 

2003). Aldh1a2, a gene that encodes for an enzyme responsible for RA synthesis is highly 

expressed in the somites and is necessary for proper somite development (Rhinn and Dolle, 

2012). Interestingly, of the three Retinoic Acid Receptors (RARα,β,γ), RARγ and RARβ 
are expressed in distinct zones that correspond with the caudal tail and trunk region, zones 

retaining low and high retinoic acid signaling, respectively.

In this study, we have undertaken efforts to direct mouse ESCs into paraxial mesoderm. Our 

work has led us to become very interested in the role of RARs in this process. Here we 

present evidence that inverse agonism of RARs via treatment of AGN193109, a pan-RAR 

inverse agonist in epiblast cells and nascent mesoderm promotes their differentiation into 

paraxial mesoderm.

2. Materials and methods

2.1. Cell culture

Mouse ESCs were maintained on 0.1% gelatin coated tissue culture dishes (Thermo 

Scientific) and grown in serum-free maintenance media containing a 1:1 mixture of 

DMEM/F12 and Neurobasal medium (Life Technologies), N2 and B27 supplements, 

0.05% BSA, 100U/ml penicillin, 100μg/ml streptomycin, 1.5 × 10−4 M monothioglycerol, 
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3μΜ CHIR99021 (Stemgent), 1μΜ PD0325901 (Cayman Chemical), and 10 ng/ml LIF 

(Millipore) (Nagy et al., 2003). For differentiation, mouse ESCs were seeded on tissue 

culture dishes coated with Geltrex (Gibco) and grown for a minimum of 24 h in maintenance 

media. For differentiation, cells were grown in a 3:1 mixture of IMDM and Ham’s 

F12 (Life Technologies) N2, B27 without vitamin A, 0.05% BSA, 100U/ml penicillin, 

100μg/ml streptomycin, 1.5 × 10−4 M monothioglycerol, and 0.5 mM ascorbic acid. For 

mesoderm differentiation, 50 ng/ml Wnt3a (PeproTech), 3uM CHIR99021 (Stemgent), 

1μΜ AGN193109 (Santa Cruz Biotechnology), 10 ng/ml FGF2 and 100 ng/ml Noggin 

(PeproTech) were added in different combinations. Epiblast induction was carried out 

in differentiation media containing 10 ng/ml FGF2 and 10 ng/ml Activin A (R&D 

Systems), with or without 1μΜ AGN193109 for the indicated durations. Note: While initial 

experiments used both Wnt3a and CHIR99021, it was determined that the potency of this 

combination was negligible to that of CHIR99021 alone. Therefore, subsequent experiments 

utilized CHIR99021 without the addition of Wnt3a.

2.2. Generation of fluorescent reporter ESC lines

For the creation of Tbx6-EYFP/T-Cherry dual reporter mouse ESCs, a BAC clone 

CTD-2379F21 (Children’s Hospital Oakland Research Institute) containing the Brachyury 
gene was engineered with a Cherry fluorescent reporter gene using bacterial recombination 

strategies as previously described(Gong et al., 2002). In brief, a homology arm was 

PCR amplified from the BAC clone using Pfx DNA polymerase (Life Technologies) 

with primers 5’-CTCTGCGGCCGCACTGAATTTCGGTCC CCAGAGA-3’ (sense), 5’

CTCTGGATCCGAAGCCCAGACTCGCTACC TGA-3’ (antisense). The DNA fragment 

was cloned into the Not1- BamHl site of pLD53.SC2-Cherry and Rec A was used to 

integrate the reporter into the BAC clone. The BAC clone was then retrofitted with 

puromycin resistance through Cre/LoxP recombination by co-electro- porating pCTP, which 

expresses Cre recombinase and pUni, which contains an EF1α-puromycin resistance gene 

and a LoxP site into CTD- 2379F21 competent bacteria. Purified BAC was transfected 

into Tbx6- H2B-EYFP ESCs (generously provided by Sonja Nowotschin and Katerina 

Hadjantonakis (van den Brink et al., 2014)) using Lipofectamine 2000 (Life Technologies) 

and clones were enriched by puromycin selection and screened for the transgene by PCR 

genotyping using 5’-CTCTGCGGCCGCACTGAATTTCGGTCCCCAGAGA-3’ (sense) and 

5’-GCACCTTGAAGCGCATGAACTCCTTGATGA-3 (antisense). Reporter expression was 

observed in individual clones by in vitro differentiation to select for optimal expressing cell 

lines.

2.3. FACS sorting and analyses

ESCs were washed twice with cold PBS then digested using Accutase (StemCell 

Technologies) and centrifuged at 300g for 5 min. Cells were then resuspended in FACS 

staining buffer (PBS, 0.5% BSA, 2 mM EDTA, pH 7.2) and sorted for Tbx6-EYFP and 

T-Cherry reporter expression. FACS sorting was carried out using a FacsAria II.

For FACS analyses, cells were harvested in the same fashion as sorting, but were analyzed 

on a Becton-Dickinson LSRII flow cytometer. FACS sorting and analyses were carried out at 

the UCHC Flow Cytometry Core.
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2.4. RNA purification and quantitative RT-PCR

RNA purification was carried out using the NucleoSpin RNA kit (Macherey-Nagel) 

according to manufacturer’s recommendations, including a genomic DNA digestion step. 

cDNA was prepared from 500 ng of RNA/sample using the ProtoScript II Reverse 

Transcriptase (New England BioLabs). QPCR was carried out using SybrGreen PCR 

Master Mix (BioRad) in an ABI 7900HT (Applied Biosystems). PCR primer sequences 

for gene expression analyses were designed using qPrimer Depot (Cui et al., 2007) (http://

mouseprimerdepot.nci.nih.gov/), a database of optimized primers for RefSeq genes (Table 

1).

2.5. Microscopy and imaging

Cells in culture were imaged using a Zeiss Observer Z.l inverted microscope. Fluorescence 

was detected using the following filter sets (Chroma Technology): HQ 500/20, HQ535/30, 

Q5151p, for EYFP, and HQ577/20×, HQ640/40m, Q5951p for Cherry fluorescent protein. 

Images were captured using an Axiocam MRc digital camera and Zen software (Zeiss).

2.6. Statistical analyses

Quantitative realtime PCR data are presented as mean ± standard error of the mean 

(SEM). Differential gene expression between groups was statistically analyzed with a t-test 

(CFX Manager Software 3.1; Bio- Rad Laboratories, Munich, Germany). Differences were 

considered statistically significant at P < .05 (*).

3. Results

3.1. Examination of paraxial mesoderm induction in a dual reporter mouse ESC line

To investigate the process of paraxial mesoderm formation from mouse ESCs, we obtained 

a T-box 6-H2B-EYFP (Tbx6-EYFP, green) knock-in ESC reporter line(van den Brink 

et al., 2014) and introduced a Brachyury-Cherry BAC reporter (T-Cherry, red) into 

this cell line to generate dual reporter T-Cherry/Tbx6-EYFP ESCs (Fig. 1A). During 

embryogenesis, Brachyury is transiently, but broadly expressed across many different 

mesoderm subtypes(Wilkinson et al., 1990), while Tbx6 is more selectively expressed in 

early forming paraxial mesoderm cells (Chapman et al., 1996). To verify reporter line 

functionality, mesoderm formation was induced by activating Wnt signaling as previously 

reported (Craft et al., 2013; Gadue et al., 2006; Lindsley, 2006; Tanaka et al., 2009; Umeda 

et al., 2012). For differentiation, mouse ESCs were seeded at low density and allowed to 

attach and grow for two days. After two days, canonical Wnt signaling was activated via the 

addition of Wnt3a (50 ng/ml) and/or CHIR99021 (3uM) over the next four days (days 2–6, 

Fig. 1). As anticipated, Wnt pathway activation increased the expression of both reporters 

over the four-day treatment period. Interestingly, the location and organization of cells 

expressing T and Tbx6 reporters were noticeably different (Fig. 1, C-E). Strong T-Cherry 

reporter expression appeared at the center of the colony and over time, this group of cells 

increased three dimensionally in size as a spherical mass. In contrast, the majority of Tbx6+ 

cells were present around the periphery as a flatter cellular monolayer. At earlier stages of 
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differentiation, weak T-Cherry reporter expression could also be detected in the Tbx6+ cell 

population (Fig. 1, C1-C3).

To confirm the fidelity of reporter expression, cultures were FACS sorted for Tbx6+ and T+ 

cells and endogenous gene expression for these respective reporters were examined (Fig. 1, 

D and E). T was ~33 fold higher in the T-Cherry population compared to Tbx6-EYFP cells. 

In contrast, Tbx6 was nearly ~30 fold higher in the Tbx6-EYFP population compared to 

T-Cherry cells. Given our interest in paraxial mesoderm, we also examined the expression of 

Mesenchyme Homeobox 1 (Meoxl), Hoxbl, and Mesogenin (Msgn1) and found that all three 

gene markers were highly enriched in the Tbx6+ cell population (Fig. 1F). Thus, the gene 

expression analyses on sorted T and Tbx6 cell populations supported the fidelity of these 

reporter genes.

3.2. Inverse agonism of retinoic acid receptors augments mesoderm induction

A large body of work has demonstrated the importance of repressing retinoic acid signaling 

for proper tail bud elongation (Abu-Abed et al., 2001; Fujii, 1997; Griffith and Wiley, 1991; 

Sakai et al., 2001; Shum et al., 1999). Additionally, repression of BMP signaling has also 

been shown to promote the formation of paraxial mesoderm over lateral plate mesoderm 

(Murtaugh et al., 1999; Tanaka et al., 2009). Therefore, we decided to test AGN193109, 

a pan-RAR inverse agonist and Noggin, a BMP inhibitor, for their ability to promote 

paraxial mesoderm formation in the presence and absence of Wnt3a/CHIR99021 treatment. 

Gross evaluation of Tbx6 reporter expression (Fig. 2 A-H, green) in living cultures only 2 

days after treatment revealed a noticeable benefit when AGN193109 (lμM) was combined 

with Wnt3a/CHIR99021 (Fig. 2, compare G and H to A-F). In contrast, there was no 

apparent benefit to Noggin (100 ng/ml) treatment. To more quantitatively assess Tbx6 and 

T reporter expression, cultures were harvested and analyzed by FACS analyses three days 

after treatment. Consistent with our observations, FACS analyses showed that AGN193109 

significantly augmented the ability of Wnt3a/CHIR99021 to stimulate mesoderm formation 

(Fig. 2. compare G’ and H’ to A’-F’). Relative to Wnt3a/ CHIR99021 alone, the addition 

of AGN193109 not only increased the T+ (12.2% to 18.8%) and Tbx6+ (5.8% to 12.7%) 

cell populations, but also increased the T+/Tbx6+ (2.4% to 14.1%) cell population. However, 

inverse agonism of RARs alone only had a marginal impact on mesoderm induction (Fig. 

2C’)- FACS analyses also showed that Noggin treated cultures had no benefit with regard to 

promoting the early formation of paraxial mesoderm (Fig. 2, compare B’ to F’).

The synergism of AGN193109 with Wnt3a/CHIR99021 treatment was also evaluated by 

gene expression analyses (Fig. 21). For these studies, we examined the expression of 

paraxial mesoderm gene markers Tbx6, Msgn1, Meox1, and Hoxb1. Consistent with the 

assessment of Tbx6 reporter expression in culture and by FACS analyses, the combined 

treatment of AGN193109 with Wnt3a/CHIR99021 substantially augmented the expression 

of all four paraxial mesoderm gene markers relative to control and individual treatments. 

However, the combined versus individual treatment of AGN193109 with Wnt3a/CHIR99021 

did not increase T expression, which is not restricted to paraxial mesoderm (data not shown).
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3.3. Epiblast state enables more efficient differentiation into paraxial mesoderm

While Wnt activation in conjunction with RAR inverse agonism did have a combinatorial 

benefit to promoting the formation of paraxial mesoderm, the overall efficiency of 

differentiating mouse ESCs directly into mesoderm cells was rather modest. Further, visual 

aspects of the differentiation process suggested to us that perhaps the mouse stem cell state 

was not the ideal “cell state” from which to derive mesoderm. First, adding Wnt3a and 

CHIR99021 earlier than day 2 did not result in faster differentiation (data not shown and 

Fig. 3), suggesting drifting away from the stem cell state may be required for mesoderm 

formation. Second, even with the delayed addition of Wnt agonists at Day 2 of culture, 

the response of mouse ESCs colonies was still quite variable. Some attached colonies 

formed spherical mounds with no reporter expression, while other colonies formed T+ 

spherical mounds (Figs. 1,2). We also noted that mouse ESC colonies that stayed flatter 

favored the formation of cells expressing the Tbx6 reporter. This latter detail suggested that 

first converting mouse ESCs into epiblast-like cells, which unlike mouse ESCs grow in 

monolayer, could be more conducive to forming paraxial mesoderm.

To test this idea, we compared mouse ESCs directly differentiated into mesoderm to mouse 

ESCs first differentiated into epiblast-like cells by treating with FGF2 and Activin A 

prior to switching to mesoderm conditions (Fig. 3A). Surprisingly, these studies revealed 

that just a single day of differentiation towards the epiblast state followed by mesoderm 

induction resulted in a dramatic enhancement in the formation of Tbx6+ cells (Fig. 3). 

Imaging of Tbx6 reporter gene expression two days after mesoderm induction revealed how 

transitioning into the epiblast state noticeably increased the abundance of Tbx6 + cells (Fig. 

3B, compare 2i or FC to FA). More quantitative metrics by FACS revealed that with one day 

of epiblast treatment, the percentage of Tbx6+ cells increased to 65–75% (Fig. 3C). Gene 

expression analyses showed paraxial mesoderm marker genes Tbx6 and Msgn were highly 

expressed in mesoderm following epiblast differentiation. In contrast, mouse embryonic 

stem cells that were transitioned into mesoderm for two or three days had much lower levels 

of Tbx6 and Msgn, and retained expression of Sox2, suggesting many cells in the culture 

did not undergo mesoderm differentiation. Consistent with this thinking, FACS analyses and 

imaging showed a prevalence of cells expressing neither the T nor Tbx6 reporters following 

direct differentiation from mESCs into mesoderm.

3.4. RAR inverse agonist treatment suggests two distinct roles exist in regulating early 
paraxial mesoderm formation

With the inclusion of an epiblast differentiation step, we decided to revisit the benefit 

of treating cells with the RAR inverse agonist AGN193109, which promoted mesoderm 

differentiation (Fig. 2). However, with the addition of an epiblast differentiation step, we 

also wanted to determine which stage of differentiation; epiblast, mesoderm, or both, would 

inverse agonist treatment be more beneficial. Therefore, we compared the differentiation 

of mouse ESCs treated with AGN193109 at the epiblast step (E*), mesoderm step (M*), 

or both (E*M*) to ESCs differentiated in the absence of the inverse agonist (EM) (Fig. 

4A, diagram). Visual examination of cultures showed modest increases in the extent of 

Tbx6 reporter expression, with continuous RAR inverse agonist treatment (E*M*) having 

the brightest level of reporter expression (Fig. 4B). FACS analyses substantiated these 
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observations showing the intensity of Tbx6 reporter expression was considerably higher in 

E*M* treated cultures compared to EM cultures. Further, FACS analyses also showed that 

the continuous RAR inverse agonist treatment increased the yield of Tbx6+ cells to 90%, 

compared to 65–75% without treatment.

Gene expression analyses of paraxial gene markers also suggested that RAR inverse agonist 

treatment had distinct stage-dependent effects on paraxial mesoderm formation. While the 

examination of early gene markers such as Tbx6, Msgn, and Fgf8 showed minimal changes 

in gene expression, gene markers associated with the transition of presomitic to somitic 

mesoderm Mesp2, Ripply2, and Meox1 showed remarkable changes with inverse agonist 

treatment. Treatment at the epiblast stage (E*) resulted in the highest increase in Meox1 
expression at the mesoderm stage. However, continuous RAR inverse agonist treatment 

(E*M*) had lower levels of Meoxl expression compared to E*, with Mesp2 and Ripply2 
being highly expressed.

In contrast to detecting stable or increasing expression of paraxial mesoderm marker genes, 

the expression of lateral plate mesoderm, intermediate mesoderm, and endoderm marker 

genes were either not detected or down-regulated (Fig. 4E). Lateral plate mesoderm marker 

genes Tal1 and Kdr were undetectable. Intermediate mesoderm marker gene Osr1 was 

undetectable, while Lhx1 (Fig. 4E) was down-regulated almost 3-fold by inverse agonist 

treatment just at the epiblast step (E*) and 4-fold with continuous inverse agonist treatment 

(E*M*). Genes also important for endoderm specification Eomes and Mbxl1 were down- 

regulated 4- and 5-fold, respectively by treatment with the inverse agonist at just the epiblast 

step (E*).

Taken together, this data suggests that inverse agonism of RARs at the epiblast stage 

promotes the future transition of epiblast cells towards the presomitic mesoderm lineage 

over other embryonic lineages, but continued treatment at the mesoderm step represses 

further maturation into somitic mesoderm (Fig. 4F). It is well established that retinoic acid 

signaling is involved in the maturation of presomitic unsegmented mesoderm into somitic 

segmented mesoderm, consistent with the lack of robust Meox1 expression with continued 

treatment (Fig. 4D). Further, this likely explains why the highest expression levels and 

percentage of cells with Tbx6 reporter activity were present in the E*M* treated cultures as 

it is known that Tbx6 expression decreases during paraxial mesoderm maturation(Janesick et 

al., 2017).

3.5. Inverse agonism of RARs directs epiblast cells towards the paraxial mesoderm fate

With evidence that treatment with AGN193109 at the epiblast step of differentiation can 

influence the future differentiation of epiblast cells into paraxial mesoderm, we decided to 

examine the effect of RAR inverse agonist treatment on gene expression during epiblast 

differentiation. However, in contrast to the prior experiment where epiblast differentiation 

lasted just a single day, we decided to carry out epiblast differentiation for three days in the 

presence and absence of inverse agonist treatment (Fig. 5). The conversion from the stem 

cell state to the epiblast state was detected by the rapid down regulation of the inner cell 

mass marker gene Rex1 (Fig. 5A) and the dramatic increase in the epiblast marker gene Fgf5 
(Fig. 5B). The expression of pluripotency marker gene Oct4 remained unchanged throughout 
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the three-day period, while Nanog expression abruptly dropped, but then gradually increased 

(Fig. 5C,D). The pluripotency marker gene Sox2 gradually decreased over the three-day 

differentiation period with slightly lower expression levels with inverse agonist treatment. 

Collectively, the examination of these gene markers did not reveal any dramatic changes in 

gene expression in the addition of AGN193109 treatment.

However, examination of caudal epiblast genes Cyp26a1, T, and Fgf8 and early markers of 

paraxial mesoderm Msgn and Tbx6 did reveal that inverse agonist treatment was somehow 

promoting meaningful changes in epiblast gene expression (Fig. 5F-J). By day three of 

epiblast differentiation in the presence of inverse agonist treatment, Cyp26a1and T were 

6-fold higher (Fig. 5F,G), Fgf8 was 3-fold higher (Fig. 5H), and Msgn and Tbx6 were 

45- and 9-fold higher, respectively, compared to epiblast conditions alone (Fig. 5I,J). This 

delayed yet pronounced increase in a subset of caudal epiblast marker genes that are largely 

responsible for driving axial growth suggests that inverse agonism of RARs in epiblast cells 

can promote their direction of differentiation towards the paraxial mesoderm cell lineage.

4. Discussion

In this study, we showed that the differentiation of paraxial mesoderm directly from the 

mouse ESC “naïve” state is considerably less efficient than differentiation from the epiblast 

state. This work also showed how the use of AGN193109, a pan-RAR inverse agonist, 

when added at the epiblast and mesoderm steps of differentiation promoted the formation 

of paraxial mesoderm over other mesoderm and endoderm cell lineages. Further, continued 

treatment of AGN193109 during mesoderm differentiation repressed the maturation of pre- 

somitic mesoderm into somitic mesoderm. This two-step, three-day differentiation protocol 

resulted in an extremely high yield of Tbx6+ paraxial mesoderm cells (90%) from mouse 

ESCs. Taken together, this work introduces a novel and efficient approach to generate 

paraxial mesoderm from mouse ESCs and suggests a very early retinoic acid independent 

role exists for RARs in epiblast cells and early mesoderm progenitor cells that promotes 

their differentiation into the paraxial mesoderm lineage.

4.1. Epiblast state is a better staging ground for generating paraxial mesoderm

While our studies and work by others (Jackson et al., 2010; Lindsley, 2006; Tanaka et 

al., 2009; Thomson et al., 2011) have shown that mesoderm differentiation directly from 

the mouse ESC naive state is possible, we also demonstrate how paraxial mesoderm 

formation initiated after an epiblast transition works with greater efficiency. We speculate 

that the likely reason for this relates to the conflicting roles of p-Catenin as a factor that 

promotes both stem cell pluripotency and mesoderm differentiation (Cunningham et al., 

2016; Hoffman et al.,2013; Kim et al., 2013; Lindsley, 2006; Wray et al., 2011; Zhang et 

al., 2013). CHIR99021, the GSK3 inhibitor that results in β-Catenin stabilization is one 

of two sternness molecules in 2i stem cell maintenance media, but also is a widely used 

molecule for mesoderm differentiation (Buehr et al., 2008; Gouti et al., 2014; Thomson et 

al., 2011; Ying et al., 2008). Indeed, at the DNA level, β-Catenin has been shown to occupy 

regulatory regions on both sternness and mesoderm inducing genes in mouse ESCs (Zhang 

et al., 2013). Further, in naïve cells β-Catenin represses TCF3 function to maintain the naïve 
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state, while TCF3 is important for the transition from naïve to the primed epiblast state 

(Hoffman et al., 2013; Wray et al., 2011).

With this in mind, we and others (Jackson et al., 2010; Thomson et al., 2011) have 

noted that mouse ESCs do not immediately respond to mesoderm inducing factors, as 

the removal of pluripotency conditions for up to 48 h is often necessary to ensure a 

higher percentage of cells exit the stem cell state and effectively respond to mesoderm 

inducing factors. In contrast, we show that naïve mouse ESCs can rapidly and uniformly 

respond to epiblast differentiation conditions, indicating that FGF and Activin signaling 

pathways do not provide conflicting cues that would promote the naïve state, but in fact 

counter naïve sternness regulators to allow uniform differentiation into the epiblast state. 

While pluripotency genes are still expressed at the epiblast state, how they are regulated 

has markedly changed and is independent of p-catenin regulation (Chen et al., 2008; 

Greber et al., 2010; Hoffman et al., 2013; Tesar et al., 2007). Thus, the stabilization of 

p-catenin via treatment of CHIR99021 following epiblast conversion no longer provides 

conflicting signals to promote sternness and mesoderm, thereby allow efficient mesoderm 

differentiation to be initiated.

4.2. Inverse agonism of RARs steers epiblast cells towards a caudal fate

In this study we show how the addition of an RAR inverse agonist, AGN193109, promoted 

the expression of caudal epiblast marker genes as well as early paraxial mesoderm marker 

genes (Fig. 4). However, the mechanism(s) behind this effect remain unclear. Work by others 

has shown that when inverse agonists bind to RARs, a change in protein structure occurs 

that stabilizes the association of RARs with transcriptional co-repressors NCoR and SMRT 

(Bourguet et al., 2010; Bourguet et al., 2000; Freedman, 1999; Germain et al., 2009; Glass 

and Rosenfeld, 2000). In contrast, when RA binds to RARs they generally associate with 

transcriptional co-activators NCoA. With that in mind, in vivo studies have shown that 

RARs are expressed in the epiblast, which is devoid of RA signaling based on RARE-LacZ 

reporter characterization (Uehara et al., 2009). Thus, it is likely that RARs function in the 

epiblast in a RA independent manner, but their exact role in the epiblast remains unclear. 

The work presented here suggests that RARs may function in the absence of RA to promote 

caudal epiblast formation and paraxial mesoderm formation.

It is generally accepted that treatment with RAR inverse agonists is thought to mimic the 

unliganded conformation and function of RARs; as in the absence of RA, RARs have been 

shown to associate with corepressors NcoA and SMRT (Bourguet et al., 2000; Freedman, 

1999; Glass and Rosenfeld, 2000; Weston et al., 2003). Therefore, it is conceivable 

that differentiation performed in the absence of vitamin A, the precursor to RA, should 

mimic the effects of inverse agonist treatment. In support of this thinking, mouse ESCs 

deficient of Aldhla2, which encodes for an enzyme necessary for the synthesis of RA, 

showed substantial up-regulation of early paraxial mesoderm gene markers Tbx6 and 

Msgn (Gouti et al., 2017). However, we performed our differentiation studies in vitamin 

A deficient media and the addition of inverse agonist still had noticeable benefits to paraxial 

mesoderm formation. In fact, the up-regulation of Tbx6 and Msgn during prolonged epiblast 

differentiation appeared to be highly dependent on the addition of AGN193109 (Fig. 5). 
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With that said, mouse ESCs are commonly maintained in serum free media containing 

vitamin A, and retinol derivatives stored inside cells (Metzler and Sandell, 2016)may persist 

over the initial days of differentiation, which may impact early cell fate decisions. Also, 

work by others suggests vitamin A is a valuable component to the sternness and growth of 

mouse ESCs. RA-independent and possibly RA-dependent roles for vitamin A are important 

for maintaining rates of mouse ESC proliferation and pluripotency (Chen et al., 2007; 

Chen and Khillan, 2010; Chen and Khillan, 2008; Khillan, 2014; Tagliaferri et al., 2016; 

Yang et al., 2015). Therefore, maintaining mouse ESCs in the absence of vitamin A is not 

likely a viable option, but could interfere with efficiency of subsequent differentiation steps 

as our studies possibly suggest. Thus, the application of RAR inverse agonists to rapidly 

outcompete any effects from low levels of RA to promote paraxial mesoderm differentiation 

is a simple solution.

4.3. RAR inverse agonism represses paraxial mesoderm maturation

While RAR inverse agonism at the epiblast step of differentiation promoted paraxial 

mesoderm induction, our studies also indicated that continuous treatment during the 

mesoderm differentiation step delayed further maturation. Continuous inverse agonist 

treatment resulted in reduced Meox1 expression, while at the same time generated the 

highest percentage of Tbx6+ cells (90%). Consistent with our outcomes, past embryonic 

studies have shown that severe axial truncation occurs when excessive levels of retinoic 

acid signaling occurs (Griffith and Wiley, 1991). Excessive levels of RA overcome the 

threshold of Cyp26al degradation and bind RAR0γ resulting in truncation (Lohnes et al., 

1993). In contrast to RA treatment and similar to our outcomes, in vivo studies in Xenopus 

have shown that the addition of pan-RAR and RARγ specific inverse agonists delayed 

the maturation of unsegmented paraxial mesoderm to maintain a caudal progenitor pool 

(Janesick et al., 2014). While the benefit of continuous inverse agonist treatment at the 

mesoderm step could be argued, we believe it is likely that delaying paraxial mesoderm 

maturation during embryonic stem cell differentiation will maintain better synchrony among 

cells in culture, which will provide a more uniform cellular response for subsequent 

differentiation steps.

In these studies, we highlight the benefit of epiblast differentiation and RAR inverse 

agonism as an approach to increase paraxial mesoderm formation from mouse ESCs. By 

enhancing the guidance of ESCs into paraxial mesoderm, downstream efforts to generate 

different skeletal cell types will be improved.
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Fig. 1. 
Paraxial mesoderm induction in a Tbx6 and Brachyury dual reporter mouse ESC model. (A) 

DNA maps of reporter genes and mesoderm differentiation strategy. Tbx6-H2B-EYFP was 

targeted into the endogenous gene locus as previously described [1]. The Brachyury-Cherry 
reporter was introduced into ESCs as a BAC transgene. Established stem cells were plated 

for differentiation and allowed to adjust to the base differentiation media for two days, 

followed by four days of differentiation with mesoderm inducing factors. (B-E) Imaging of 

Tbx6 (green) and Brachyury (red) reporter expression during ESC differentiation in réponse 

to Wnt3a and CHIR99021 from days 2 to 6. (C1-C3) Imaging of reporter expression at 

higher magnification on day 4 suggests that Tbx6+ and Brachyury+ cells are largely distinct 

populations. (F) Gene expression analyses on sorted cell populations confirms the fidelity of 

reporter expression with endogenous gene expression and enrichment of paraxial mesoderm 

genes in the Tbx6+ population. Data shown as mean ± SEM (n = 3, *p < .05, where * 

denotes the comparison of T+ to Tbx6+). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. 
Inverse agonism of RARs augments mesoderm induction. (A-H) Representative images 

of reporter expression under separate and combined treatment conditions for Wnt3a/

CHIR99021, AGN193109, and Noggin after 2 days of treatment (day 4 of differentiation). 

(A’-H’) FACS analyses of Tbx6 and Brachyury reporter expressing cells after 3 days 

of treatment (day 5 of differentiation) under the same treatment combinations as shown 

in (A). RAR inhibition resulted in substantial increases in the percentage of Tbx6+, T+, 

and Tbx6+/T+ cells. Gates were set based on undifferentiated control stem cells. (I) Gene 

expression analyses on day 5 for paraxial mesoderm gene markers Tbx6, Msgn1, Meox1, 
and Hoxb1 using indicated combinations of Wnt3a/CHIR99021, AGN193109, and Noggin. 

Dramatic up- regulation of all paraxial gene markers was observed when AGN193109 was 

added with Wnt3a/CHIR99021 with or without Noggin relative to their respective individual 

treatments. Data shown as mean ± SEM (n = 3, *p < .05, **p < .05, where * and ** 

denotes the comparison of treatments between Wnt3a, CHIR99021 to Wnt3a, CHIR99021 

with AGN193109).
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Fig. 3. 
Conversion of mouse ESCs to epiblast state enhances paraxial mesoderm differentiation. 

(A) Schematic depiction of differentiation conditons. Note day 1 conditions for comparing 

delayed (2i), direct (FC), and epiblast (FA) transitions into mesoderm. (B) Representative 

images of reporter expression on day 3 of differentiation showing robust Tbx6 reporter 

expression and spreading of T+ cells following epiblast (FA) transition. T+ cells remained 

clustered following direct mesoderm induction (FC), with limited Tbx6 reporter expression. 

The persistence of numerous mounded, reporter-negative colonies occurred with the 2i and 

FC transitions (white arrows), which were absent from epiblast-transitioned cultures. (C) 

Day 3 FACS analysis shows epiblast transition (FA) followed by two days of mesoderm 

differentiation generated considerably more Tbx6+ cells compared to just two (2i) or three 

(FC) days of mesoderm differentiation, with control stem cells shown for comparison. (D) 

Day 3 gene expression indicated elevated levels of early mesoderm genes T, Wnt3a, and 

Fgf8 and substantial increases in the paraxial markers Tbx6 and Msgn with FA transition 

compared to 2i or FC, which also retained expression Sox2. Data shown as mean ± SEM (n 

= 3, *p < .05, where * denotes the comparison of FA treatment to both 2i and FC).
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Fig. 4. 
Distinct roles of RAR inverse agonist treatment in regulating paraxial mesoderm formation 

and maturation. (A) Schematic of differentiation conditions modifying the strategy of 

epiblast transition into mesoderm from Fig. 3. to assess the stage-dependent effects of 

AGN193109 treatment as indicated with asterisks (*). (B) Representative images of reporter 

expression on day 3 of differentiation showing continuous RAR inverse agonist treatment 

(E*M*) having the brightest level of reporter expression, confirmed by FACS analysis in 

(C) comparing E*M* cultures to EM and stem cell control cultures. (D) Gene expression 

comparing levels of early gene markers Tbx6, Msgn, and FGF8 showed minimal changes 

between treatments. However, markers indicating a transition to somitic mesoderm, Meox1, 
Mesp2, and Ripply2, were remarkably higher with inverse agonist treatment, especially with 

treatment during epiblast stage. This benefit was also evidenced by the down- regulation 

of non-paraxial markers Eomes, Mixl1, and Lhx1 in (E). (F) Model of paraxial mesoderm 

lineage differentiation following epiblast transition and the stage- dependent effects of 

AGN193109 treatment. Data shown as mean ± SI’.M (n = 3, ‘/) < .05, < .05, ***p < .05 

where * denotes the comparison of E* to EM, ** denotes the comparison between M* to 

EM, and *** denotes the comparison of E*M* to EM).
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Fig. 5. 
Treatment of epiblast cells with RAR inverse agonist favors a paraxial mesoderm fate. Gene 

expression analyses over three days of epiblast differentiation with (FA + AGN) or without 

(FA) inverse agonist treatment compared to stem cell (2i) control. (A,B) Rapid loss of Rexl 
expression and dramatic increase of Fgf5 expression confirms transition from stem cell to 

epiblast. (C-D) Oct4 expression remained unchanged, while a sharp drop and then gradual 

increase in Nanog expression, and a steady decrease in Sox2 expression occurred in FA 

and FA + AGN conditions alike. (F-H) Caudal epiblast genes Cyp26al, T, and Fgf8 were 

strongly increased over three days of epiblast differentiation, while including AGN193109 

treatment showed even greater enhancement of expression levels. (I,J) Inverse agonist 

treatment also led to substantial increases in paraxial mesoderm markers Msgn and Tbx6 
by day 3 of epiblast differentiation not seen in the FA treatment, suggesting AGN193109 
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promotes epiblast differentiation into the paraxial mesoderm lineage. Data shown as mean 

± SEM (n = 3, *p < .05, where * denotes the day 3 comparison between FA to FA with 

AGN193109).
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Table 1.

QPCR primers.

Gene symbol Sense (forward) Antisense (reverse) Species

Gapdh 5’-CGTCCCGTAGACAAAATGGT-3’ 5’TTGATGGCAACAATCTCCAC3’ Mouse

Tbx6 5’-TGACAGCCTACCAGAACCCT-3’ 5’-CCCGAAGTTTCCTCTTCACA-3’ Mouse

Msgn1 5’-AACCTGGGTGAGACCTTCCT-3’ 5’-TCCGCATCCTGAGTTTCTCT-3’ Mouse

Hoxb1 5’-TTCGACTGGATGAAGGTCAA-3’ 5’-GGTGAAGTTTGTGCGGAGAC-3’ Mouse

Meox1 5’-GCCAATGAGACGGAGAAGAA-3’ 5’-TTGGTGAAGGCTGTCCTCTC-3’ Mouse

Sox2 5’-ACAAGAGAATTGGGAGGGGT-3’ 5’-AAGCGTTAATTTGGATGGGA-3’ Mouse

T 5’GTCTAGCCTCGGAGTGCCT3’ 5’-CCATTGCTCACAGACCAGAG-3’ Mouse

Fgf8 5’-GCTCATTGTGGAGACCGATA-3’ 5’-AATACGCAGTCCTTGCCTTT-3’ Mouse

Wnt3a 5’-ACTACGTGGAGATCATGCCC-3’ 5’-GGTGGCTTTGTCCAGAACAG-3’ Mouse

Mesp2 5’-TGGACACAATCCACTGAACC-3’ 5’-GGCTGTAGTCTCTGGCATGA-3’ Mouse

Ripply2 5’-ATGGATACCACCGAGAGCGCCGAGA-3’ 5’-GGTACCCGGGCTGCGCGGAC-3’ Mouse

Mixl1 5’CGACAGACCATGTACCCAGA3’ 5’-CCTTGAGGATAAGGGCTGAA-3’ Mouse

Eomes 5’GGCCTACCAAAACACGGATA3’ 5’-GACCTCCAGGGACAATCTGA-3’ Mouse

Lhx1 5’TGTAAATGCAACCTGACCGA-3’ 5’-AACCAGATCGCTTGGAGAGA-3‘ Mouse

FgfS 5’GCTGTGTCTCAGGGGATTGT-3’ 5’-ACAGTCATCCGTAAATTTGGC-3’ Mouse

Nanog 5’-AAGTACCTCAGCCTCCAGCA-3’ 5’-GTGCTGAGCCCTTCTGAATC-3’ Mouse

Oct4 5’-AGAGGGAACCTCCTCTGAGC-3’ 5’-TTCTAGCTCCTTCTGCAGGG-3’ Mouse

Cyp26a1 5’-GCAGGAAATACGGCTTCATC-3’ 5’-ATCACCTTCTTTCGCTGCTT-3’ Mouse

Rex1 5’TGAAAGTGAGATTAGCCCCGAG3’ 5’-GTCCCATCCCCTTCAATAGCAC-3’ Mouse
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