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Abstract: Low-grade chronic inflammation without obvious infection is defined as “inflammageing” and a key driver of skin ageing. 
Although the importance of modulating inflammageing for treating skin diseases and restoring cutaneous homeostasis is increasingly 
being recognized. However, the mechanisms underlying skin inflammageing, particularly those associated with natural treatments, 
have not been systematically elucidated. This review explores the signaling pathways associated with skin inflammageing, as well as 
the natural plants and compounds that directly or indirectly target these pathways. Nine signaling pathways and 60 plants/constituents 
related to skin anti-inflammageing are discussed, exploring plant mechanisms to mitigate skin inflammageing. Common natural plants 
with anti-inflammageing activity are detailed by active ingredients, mechanisms, therapeutic potential, and quantitative effects on skin 
inflammageing modulation. This review strengthens our understanding of these botanical ingredients as natural interventions against 
skin inflammageing and provides directions for future research. 
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Introduction
Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing, and is a marker of 
biological ageing, multimorbidity, and mortality risk.1 Inflammageing occurs in all organs of our body, and the skin is the 
most intuitive manifestation. Skin becomes increasingly inflamed with age, with abundant cell inflammation accelerating 
ageing of the skin, leading to wrinkles, sagging skin, and possibly cancer.2 Skin inflammageing is traditionally considered 
detrimental to human health because of its association with pro-inflammatory factor accumulation and various skin issues. 
However, from an evolutionary standpoint, inflammageing is increasingly seen as an adaptive or remodeling process.3 Thus, 
targeting the ageing immune system for immune rejuvenation could be a strategic approach to preserve skin homeostasis and 
enhance immune-inflammatory functions. Balancing pro-inflammageing and anti-inflammageing states is crucial to effec
tively address inflammatory skin ageing. As such, understanding the specific mechanisms of skin inflammageing will improve 
our ability to facilitate healthy skin ageing. External factors such as UV radiation, particulate matter (PM2.5), and seasonal 
changes all exacerbate inflammageing. Cellular senescence, inflammasome dysregulation, mitochondrial dysfunction, autop
hagy, ubiquitin-proteasome system impairment, and DNA damage responses also contribute to skin inflammageing.4 These 
processes are governed by several signaling pathways, including NF-κB/RIG-I, mTOR, TGF-β, AMPK–SIRTs, complement 
system, NLRP3, Notch, JAK–STAT, and MAPK pathways (Figure 1).5–11 However, the pathways that affect skin inflamma
geing have not yet been systematically summarized.

Botanicals such as quercetin, fisetin, and resveratrol exert anti-inflammatory and anti-ageing benefits.12,13 Botanical 
extract-based skincare is recommended by physicians to combat inflammageing.14 Thus, natural plant extracts or monomers 
that target inflammageing pathways show potential as effective preventive strategies.15 This comprehensive review explores 
research from the past 13 years available from PubMed and ScienceDirect to update our understanding of skin inflammageing 
pathways and identify significant medicinal plant extracts or monomers with potential anti-inflammageing effects on the skin. 
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Despite some plant chemical properties remaining uncharacterized, their pharmacological evaluation has supported the 
advancement of skincare products sourced from plants with clinically proven anti-inflammageing benefits.

Role of Signaling Pathways in Skin Inflammageing
The main features of senescent cells are manifested in the senescence-associated secretory phenotype (SASP). Skin inflamma
geing occurs when senescent cells accumulate in the skin and release SASP factors, including IL-(1β, −6, −8, −18), TNF-α and 
CRP; these cells include keratinocytes, fibroblasts, melanocytes, and immune cells4 (Figure 2). Typically, a less than two-fold 

Figure 1 Cellular signaling pathways involved in the regulation of skin inflammaging. Imbalances in skin-related inflammation leads to skin aging. 
Notes: Created in BioRender. Ren, Q. (2024) https://BioRender.com/p66l768.

Figure 2 Cells and molecules involved in skin inflammaging. In the process of skin inflammageing, keratinocytes, fibroblasts, melanocytes, and immune cells secrete SASP. 
SASP further causes aging of surrounding young cells, forming a vicious cycle. 
Notes: Created in BioRender. Ren, Q. (2024) https://BioRender.com/q47v111.
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increase in pro-inflammatory mediators is a positive response by the skin that maintains homeostatic stability, known as cold- 
inflammageing. However, continuous exposure to external stressors such as UV light and pollution can promote senescence and 
inflammatory phenotypes in skin.16 Furthermore, disruption of the skin’s homeostatic balance increases the formation of 
cytokines (two- to four-fold increase).17 This review involved an extensive literature search, followed by integration of the 
findings regarding the signaling pathways related to skin inflammageing, including NF-κB/RIG-I, mTOR, TGF-β, AMPK– 
SIRTs, Notch, complement system, NLRP3, JAK–STAT, and MAPK, to elucidate the mechanisms of inflammageing (Figure 3).

Role of the NF-κB/RIG-I Pathway
NF-κB activation, driven by ageing factors such as ROS, senescent cells, and DNA damage, leads to increased inflammatory 
cytokine production (TNF-α, IL-1β, IL-6, and IL-8), further amplifying inflammatory and age-related disturbances through 
classical pathway activation.18 The trans-activation motifs of NF-κB are key regulators associated with ageing across human 
tissues, and persistent NF-κB signaling activation fosters cellular senescence.19 SASP produced by senescent cells necessitates 
NF-κB signaling to impact adjacent youthful cells.20 RIG-I, a pattern recognition receptor in the skin, identifies viral pathogen- 
associated molecular patterns,21 and its blockade mitigates senescence-associated inflammation, extending cell growth.22 

RIG-I is upregulated in senescent cells via the ATM-IRF1 axis, which mediates IL-6 and IL-8 expression.23 Klotho, by 
interacting with RIG-I, inhibits induced IL-6 and IL-8 expression, acting as an anti-ageing agent by dampening RIG- 
I-mediated inflammation.24 Loss of the ageing-related protein Klotho triggers the NF-κB/RIG-I pathway, enhancing pro- 
inflammatory mediator production.25 Furthermore, RIG-I promotes keratinocyte proliferation and wound repair by inducing 
tissue inhibitor of metalloprotease-1 (TIMP-1) expression through NF-κB signaling pathway.23 NF-κB/RIG-1 activation 
driven by ageing factors therefore increases inflammatory cytokine production and affects skin ageing.15

Role of the mTOR Signaling Pathway
The mTOR regulates cell growth, metabolism, and nutrient signaling, with hyperactivation often linked to inflammation.26 

This pathway comprises two complexes: mTORC1 is vital for regulating cell growth and substrate phosphorylation to increase 
anabolism (eg, mRNA translation, and lipid synthesis) or inhibit catabolism (eg, autophagy); mTORC2 promotes cell survival 
and cytoskeletal organization via Akt activation, with both complexes contributing to inflammageing (Figure 3a).27 

Overexpression of the upstream mTOR modulators (eg, PI3Ks, Akt, TNF-α, Ras, Raf kinase, MEK, ERK1/2, and Rsk) 
escalates mTORC1 activity, positioning mTOR at the center of inflammageing processes.26 mTOR overactivation induces 
cellular senescence, whereas inhibition through rapamycin or genetic interventions halts senescence, attenuates SASP, and 
prolongs the lifespan of mice.28,29 Thus, inhibiting the PI3K/AKT/mTOR or RAS/ERK/mTOR pathways and restoring 
autophagy may decelerate skin cell senescence. Consequently, the mTOR signaling pathway, and especially its imbalances, 
affect skin inflammation and cell ageing. Therefore, maintaining balanced mTOR signaling is crucial for skin health.

Role of the TGF-β Signaling Pathway
TGF-β, a multifaceted cytokine, regulates cell growth, differentiation, apoptosis, and cellular homeostasis.30 TGF-β 
signaling is crucial for modulations to the skin inflammageing process. TGF-β1 is secreted in a latent form, activated 
when the LAP is cleaved by mediators such as matrix metalloproteinase (MMP)2/MMP9, ROS, and integrins.31 This 
pathway is divided into classical and non-classical routes. Non-classical signaling pathways include interactions with 
RAS, MAP3K7, Rho/Rock, and PI3K/AKT.32 Activation of TGF-β/Ras promotes cellular ageing, cell cycle arrest, and 
increased expression of pro-inflammatory cytokines and chemokines (IL-6, −1β, −8, −1α, and MCP).33 Thus, signaling 
through TGF-β/Ras and its downstream effectors exacerbates skin inflammageing. Moreover, Ras signaling may be 
involved in skin inflammageing in animals.34 TGF-β activates MAP3K7 (also known as TAK1) to stimulate the NF-κB 
pathway, thereby exacerbating skin inflammageing.35 TGF-β also stimulates the Rho/ROCK pathway to promote pro- 
inflammatory factor release. Furthermore, TGF-β activates PI3K/AKT to stimulate the mTOR pathway, thereby exacer
bating skin inflammageing. Thus, TGF-β non-classical pathway activation primarily affects other factors to subsequently 
aggravate skin inflammageing. Furthermore, as part of the SASP, TGF-β contributes to maintaining the senescent 
phenotype and age-related pathologies.30
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Figure 3 (a) The core regulatory pathways involved skin inflammaging (including NF-κB/RIG-I, mTOR, TGF-β, AMPK–SIRTs pathways). Created in BioRender. Ren, 
Q. (2024) https://BioRender.com/s82l596. (b) The other regulatory pathways of skin inflammaging (including complement system, NLRP3, Notch, JAK–STAT, and MAPK 
pathways). Created in BioRender. Ren, Q. (2024) https://BioRender.com/h71i391.
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The core function of classical TGF-β signaling in the skin is the induction of type I pre-collagen synthesis and 
connective tissue growth factor secretion.36 Classically, TGF-β initiates signaling by binding to TGF-βRI and TGF-βRII, 
leading to Smad2 and Smad3 phosphorylation.37 These phosphorylated Smads form a complex with Smad4, which then 
regulates gene expression in the nucleus through Smad binding elements ageing impacts TGF-β signaling, with decreased 
TGF-βRII expression in aged dermal fibroblasts disrupting the TGF-β pathway, thereby reducing collagen synthesis and 
increasing degradation, ultimately leading to skin thinning.32,36 TGF-β signaling impairment and TGF-β ligand upregu
lation results in cellular inflammation.30 Thus, classical TGF-β pathway activation promotes type I collagen production 
via the Smad pathway, thereby inhibiting skin inflammageing (Figure 3a). In summary, TGF-β is involved in skin 
inflammageing through classical and non-canonical pathways, and targeting the TGF-β signaling pathway could help 
modulate the inflammageing phenotype.

Role of the AMPK–SIRTs Pathway
AMPK is crucial for maintaining cellular energy homeostasis and sensing metabolic stress, it regulates inflammation, 
oxidative stress, autophagy, and other pathways.38 AMPK enzyme activity declines in aged skin39 and is lost in 
keratinocytes after acute injury or UVB exposure, which leads to the hyperproliferation and activation of mTOR 
signaling.40 Metformin, a diabetes medication and anti-ageing agent, utilizes AMPK to curb stress-induced cellular 
proliferation40 and modulates mitochondrial function, reducing age-related inflammation.41 AMPK can regulate the 
AMPK/SIRT1 and AMPK/mTOR pathways, which relieve neuropathic pain and inflammatory pain.42 Furthermore, 
Activation of AMPK enhances the biosynthesis and/or stability of NAD+. This augmentation in NAD+ concentration 
subsequently serves as a critical signal to induce the expression of Sirt1.43 Sirt1, in turn, deacetylates LKB-1, an AMPK 
activator, forming a positive feedback loop.44 In terms of functionality, activation of AMPK can suppress mTORC1 
through activating TSC1/2, and it also prompts Sirtuins to catalyze the deacetylation of FoxO proteins or autophagy- 
associated proteins, namely ATG5 and ATG7,45 resulting in an upregulation of PGC-1α expression which improves 
mitochondrial biogenesis, and cytoplasmic p53 inhibition, which facilitates autophagy.43 Sirtuins, comprising seven 
proteins (SIRT1–SIRT7), play a pivotal role in postponing cellular ageing and augmenting organismal lifespan through 
the regulation of various cellular mechanisms.46 Age-related metabolic inflammation depletes NAD+, which subse
quently reduces Sirt activity. The absence of Sirt1 diminishes mitochondrial biogenesis, while the depletion of mitochon
drial Sirt3 weakens mitochondrial antioxidant defenses and repair mechanisms. Additionally, a reduction in NAD+ levels 
can hinder the function of Sirt2 and elevate the activity of the NLRP3 inflammasome.47 Thus, inflammation may induce 
a positive feedback loop by altering the Sirtuin function, which promotes inflammageing. SIRT1 deacetylase-activated 
keratinocytes counteract the inflammatory response induced by LPS48 (Figure 3a). Thus, AMPK–SIRTs pathway 
activation could help resist inflammageing damage to the skin.

Role of Other Pathways
The mechanisms underlying skin inflammageing are intricate and involve activating NF-κB/RIG-I, mTOR, and TGF-β 
non-classical signaling pathways, which exacerbate inflammation and accelerate skin ageing. Conversely, AMPK–SIRTs 
and TGF-β classical signaling pathway activation could inhibit inflammageing damage. Several additional signaling 
pathways have been identified, including Notch, the complement system, and the NLRP3, JAK–STAT, and MAPK 
signaling pathways; however, relatively little evidence exists for their direct regulation of skin inflammageing and fewer 
modulators appear to act primarily via these pathways.

The process of epidermal differentiation and proliferation is orchestrated by Notch signaling.49 The Notch pathway 
may regulate various age-related skin diseases characterized by chronic inflammation.50 In healthy human skin, Notch 
receptors and ligands are abundantly expressed in epidermal keratinocytes. Notch signaling has the potential to 
eliminate senescent cells within the epidermis. Furthermore, a decline in JAG1 expression in the basal layer as 
a result of ageing may contribute to the accumulation of senescent cells due to weakened Notch signaling activity.51 

Therefore, enhanced JAG1/Notch signaling may help clear epidermal senescent cells and alleviate skin inflammation 
and ageing (Figure 3b).
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Keratinocytes express a variety of genes associated with inflammasomes, providing evidence for the notion that 
inflammasomes are involved in the process of skin inflammageing.8 NLRP3 is involved in pyroptosis. When NLRP3 is 
activated, the NLRP3 inflammasome assembles to form a complex, which then activates pro-Caspase-1 to form active 
cleaved Caspase-1 and induces the thermogenic executive protein GSDMD to form cytotoxic GSDMD-N. This is then 
recruited to the cell membrane to form thermogenic pores, promoting IL-1β and IL-18 expression.52 Skin inflammageing 
is accompanied by NLRP3 inflammasome activation. The depletion of NAD+ serves as a non-transcriptional initiating 
cue for the activation of NLRP3, facilitated by the clustering of mitochondria around the nucleus. Furthermore, the 
reduction of NAD+ levels associated with ageing can prompt the activation of the NLRP3 inflammasome in environ
ments abundant in ATP.53 Moreover, NLRP3 inflammasome inhibition improved the lifespan of the murine model for 
Hutchinson–Gilford Progeria,54 indicating that the NLRP3 pathway is pivotal for managing skin inflammageing, and that 
suppression of this pathway can effectively alleviate inflammageing symptoms (Figure 3b).

The skin’s complement system is activated via three pathways: lectin, classical, and alternative (Figure 3b).9 Keratinocytes 
produce complement proteins such as C3, Factor B, and C4, which are regulated and promoted by TNF-α, IL-1α, and IFN-γ.55 

Inhibiting the C5aR1 signaling cascade within the complement system leads to a decrease in skin microbial diversity and also 
dampens the expression of cytokines, pattern recognition receptors, and antimicrobial peptides, thereby compromising the 
skin’s defense against pathogenic microorganisms.56 With ageing, the skin’s complement system increases and activates, 
potentially contributing to the process of inflammageing.57 For example, UV light stimulates epidermal keratinocytes to 
produce C3 and completion factor B via the alternative pathway.58 An overactive complement system can damage the 
dermoepidermal junction, leading to the release of MMPs and ROS that degrade the extracellular matrix ECM.16 The 
complement system also affects melanocyte function and may be associated with age spot development.16 Complement 
activation-mediated inflammageing may contribute to enlarged facial pores, a prominent feature of ageing skin.59 

Understanding how the complement system drives skin inflammageing and ageing-related skin diseases could provide 
valuable insights for dermatologists and researchers related to the development of improved therapeutics.

The JAK–STAT signaling pathway has been implicated in the pathogenesis of inflammatory and autoimmune diseases 
of the skin, including vitiligo, psoriasis, and atopic dermatitis.10 JAKs are a family of four proteins, JAK1, JAK2, JAK3, 
and TYK2, that regulate inflammation by activating intracytoplasmic transcription factors called STAT.60 Inflammation 
triggered by the JAK–STAT signaling pathway inhibits epidermal stem cell function, leading to skin ageing.61

MAPK is a group of serine/threonine protein kinases comprising three families, ERK, JNK, and P38. Among them, 
ERK consists of ERK1/2 and ERK5, P38 MAPK consists of p38α, p38β, p38γ, and p38δ isoforms, and JNK consists of 
JNK1, JNK2, and JNK3 isoforms. The MAPK pathway has three levels of signaling: the MAPK, the MAPK kinase 
(MEK or MKK), and the kinase of the MAPK kinase (MEKK or MKKK). These three kinases can be sequentially 
activated.62 The MAPK pathway promotes the production of MMPs and inflammatory cytokines through the regulation 
of SASP, which leads to cellular senescence.11 TNF-α rapidly activates the p38 MAPK signaling pathway, causing the 
premature senescence of human skin fibroblasts.63

Regulatory Roles of Natural Plants in Skin Inflammageing
Scientific advances increasingly facilitate research into the superior efficacy of natural plants as modulators of skin 
inflammageing. This section underscores the potential of natural plants as adjunctive treatments to combat skin 
inflammageing by modulating inflammatory and ageing-related pathways. Tables 1–4 detail 60 plant extracts and 
monomers that influence skin health through the key identified signaling pathways. The aim is to correlate these natural 
extracts and monomers with observed anti-inflammatory and anti-ageing effects, providing insights into their specific 
actions on skin health.

Inhibitor of the NF-κB/RIG-I Pathway
Centella asiatica (L.) Urb. (CA) (Asian pennywort or Gotu kola) is widely used in Ayurvedic and traditional Chinese 
medicine. This plant contains alkaloids, flavonoids, phenols, tannins, and terpenoids, which exhibit anti-cancer, wound- 
healing, anti-bacterial, anti-diabetic, anti-inflammatory, and antioxidant effects.197 The CA phytosome inhibits NF-κB 
activities, halts IκBα degradation, and reduces p65 and p50 nuclear translocation.64 CA extract in lotion form protects 
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Table 1 Natural Plants That Regulate Skin Inflammageing via the NF-κB/RIG-I Pathway

No. Natural Plant/ 
Compound

Plant Sources/Main Compounds Mechanism of Action Model of Evaluation References

1 Centella asiatica extract Alkaloids, flavonoids, phenols, tannins, and 

terpenoids

NF-κB pathway; iNOS; COX-2; TNF-α; IL-1β, −1α; IgE; p65; p50; DNA Clinical trial; animal 

models and in vitro 
experiments

[64–67]

2 Pomegranate Anthocyanins, catechin, ellagic acid and gallic 

acids, and other polyphenolic compounds

NF-κB pathway; MMP-1, −3; Col1A1; Timp3 Clinical trial; animal 

models and in vitro 
experiments

[68–72]

3 Quercetin Various natural plants such as Sophora japonica 
L., Psidium guajava L.

NF-κB and Src/Syk/NF-κB pathways; MMP1, −2, −3, −9; COX-2; SOD1, 

−2; IL-1β, −6, −8, −17, −10; PKCδ; JAK2; GSH; CAT; MDA; TRAF3; α- 
MSH; TNF-α

Clinical trial; animal 

models and in vitro 
experiments

[12,73–75]

4 Quercetin 3-O-β- 

D-glucuronide

Wine, Hypericum hirsutum, Nelumbo nucifera, 
Oenothera biennis, and green beans

NF-κB pathways; AP-1; α-MSH; TNF-α; COX-2 Human keratinocytes 

and melanoma cells

[76]

5 EGCG Tea NF-κB/RIG-I pathway; AP-1; IL-1, −6, −8, −17; PCNA; MMP-1; 

collagenase mRNA; TRAF6; SOD; CAT; MDA; JAK2; STAT1; STAT3

Mouse model and 

in vitro experiments

[77–79]

6 Luteolin Leaves, stems, and branches of Reseda odorata 
L. and a variety of natural herbs, vegetables, 

and fruits

NF-κB pathways; NO; MDA; pro-inflammatory mediators (eg, IL-1β, IL-6, 
IL-8,-17,-22, TNF-α, and COX-2)

Clinical trial; mouse 
models and in vitro 

experiments

[80]

7 Carotenoids β-carotene, astaxanthin, lycopene, lutein, 
zeaxanthin, canthaxanthin, capsaicin, and 

astaxanthin

NF-κB, AKT/mTOR and Bcl-2 pathways Clinical trial; animal 
models and in vitro 

experiments

[81,82]

8 Pterostilbene Blueberries NF-κB pathway; ROS; COX-2; MMP-9; AQP-3 Mice model and 
HaCaTs

[83]

9 Myricetin Natural foods such as berries, vegetables, teas, 

wine, and herbs

NF-κB pathway; pro-inflammatory mediators (eg, IL-1β, IL-6, IL-13, IL-8 

and CCL17); MMP-9

Cell experiments [84]

10 Artemisinin Artemisia annua L. NF-κB pathway; IL-1β, −6; TNFα; TLR2; chemokines (CXCL10, CCL20, 

CCL2, and CXCL2); ROS; p16INK4a; SOD; β-catenin; apoptosis; 

proliferation

Mouse models and cell 

experiments

[85]

11 Sulforaphane Eg, broccoli, brussels sprouts, cabbage NF-κB pathway; COX-2; IL-6; TNF-α; IL-1β; AP-1; STAT1; MITF; ET-1; 

PGE2; TYRP1; tyrosinase

Mouse models and cell 

experiments

[86,87]

12 Lithospermum 
erythrorhizon 

(Gromwell) root extract

Shikonin NF-κB pathways; Nrf2/ARE; inhibiting glycation; TNF-α Cell experiments [88,89]

13 Kaempferia parviflora 
Wall. ex Baker extract

Polymethoxyflavones; methoxyflavones NF-κB pathway; IL-6, −8; COX-2; collagen and elastin fibers Mice models and cell 
experiments

[90]

14 Soy isoflavones Daidzein and genistein NF-κB pathway; COX-2; IL-6, −1α; antioxidant enzymes Clinical Trial; animal 

models and in vitro 
experiments

[91,201]
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Table 2 Natural Plants That Regulate Skin Inflammageing via the mTOR Signaling Pathway

No. Natural Plant/ 
Compound

Plant Sources/Main Compounds Mechanism of Action Model of 
Evaluation

References

15 Cordyceps Cordyceps sinensis; Cordyceps cicadae 

(Miq.)

ROS/PI3K/AKT/mTOR pathway; HAS2; MMP12 

collagen and elastin synthesis

Cell experiments [92–97]

16 Curcumin Curcuma longa L. mTOR pathway; IL-17, −6, −1β; TNF-α; IFN-γ; 

involucrin; filaggrin; PPAR-γ; TLR4-MD2; mRNA; 

involucrin; filaggrin

Clinical trial; animal 

models and in vitro 

experiments

[98–102]

17 Fisetin Found in fruits and vegetables, 

including strawberries, apples, and 

cucumbers.

PI3K/Akt/mTOR pathway; mTOR/IL-17A; IL-6β,-53; 

autophagy; MMPs; COX-2; Nrf2

Clinical trial; animal 

models and in vitro 

experiments

[103–109]

18 Anthocyanin Purple sweet potato, pomegranates, 

and grapes.

PI3K/AKT/mTOR, Ras/MEK/ERK/mTOR pathway; 4E- 

BP; MMP-9, −2

Mice models and cell 

experiments

[110–115]

19 Myrothamnus 

flabellifolia extract

Phenolic compounds mTOR pathway; Park2; Atg7; LC3B; NLRP3; ROS, 

NF-κB, IL-1β, IL-6, MMPs; caspase-1; HMGB1; RAGE; 

filaggrin; claudin-1

Clinical Trial; animal 

models and in vitro 

experiments

[116]

20 Novel 

phytopeptides

– mTOR pathway Vitro experiments [117]

21 Chrysanthemum 

boreale flowers 

extract

Handelin mTOR/AMPK pathway Cell experiments [118]

22 Latifolin Dalbergia odorifera T. mTOR pathway; Nrf2; SIRT1; IL-6; IL-8; RANTES; 

MDC; ICAM-1; p38; JNK

Cell experiments [119]

23 Stigmasterol Vegetable 

fats or oils from many plants

AKT/mTOR pathway; TNF-α, IL-1β,-6; iNOS; COX-2; 

caspase-3; JAK–STAT pathway

Mice models and cell 

experiments

[120]

24 Mangosteen α-, β-, γ-mangostins, isogarcinol, and 

gartanin

PI3K/Akt/mTOR pathway; MMP-1,-9; IL-23/Th17; 

TNF-α; IL-2,-10; IFN-γ
Mice models and cell 

experiments

[121–123]

25 Momordica 

charantia L. extract

Terpenoids, saponins, flavonoids, 

sterols, glycosides, phenols, etc.

PI3K/AKT/mTOR pathway Mice model [124]

26 Isatis tinctoria 

L. leaf extract

4-hydroxybenzoic acid, anthranilic 

acid, 

kynurenic acid, and linarin

mTOR/NF-κB/SASP, MAPK/NF-κB pathway; SA-β- 

GAL

Cell experiment [125]

27 Amaranthus 

cruentus L. seed oil

Palmitic acid; oleic acid; linoleic acid; 

stearic acid

AKT/mTOR pathway Cell experiment [126]

28 Mikania micrantha 

L. extract

Flavonoids FAK/Akt/mTOR pathway; MMP-2, −9 Animal models and 

in vitro experiments

[127]

29 Nypa fruticans 

Wurmb extract

Polyphenols and flavonoids PI3K/AKT/mTOR/CREB and MAPK signaling pathways Cell experiment [202]

Table 3 Natural Plants That Regulate Skin Inflammageing via the TGF-β Signaling Pathway

No. Natural Plant/ 
Compound

Plant Sources/Main Compounds Mechanism of Action Model of 
Evaluation

References

30 Prunus yeonesis Matsum. 
extract

Genistein, naringenin, sakuranetin, 
prunetin, and amygdalin

TGF-β1/Smad signaling pathway; MMP-1, −3; NO Clinical trial and 
cell experiments

[129–132]

31 Eucalyptus globulus 
L. extract

Phenolic compounds TGF-β/Smad pathway; MMPs; β-galactosidase; IL-6, 
NO and other pro-inflammatory mediators

Mice model and 
cell experiments

[128,133]

32 Ellagic acid Berries and pomegranates TGF-β/Smad pathway; IL-1β, −6; elastin; collagen; 
Col1A1; TERT; Timp3; MMP3

Mice model and 
cell experiments

[134–138]

33 Terminalia arjuna 
extract

Pentacyclic triterpenoids TGF-β signaling pathway; TEWL; IL-6, COX-2, 
inos and ODC

Clinical Trial and 
mice model

[139,140]

34 Portulaca oleracea 
L. extract

Oleracone C; portulacanone A; 
portulacanon D

TGF-β/Smad Pathway; MMP-1; type I. procollagen; 
IL-1β,-8; TNF-α; NF-κB pathway

Clinical Trial and 
cell experiments

[141,142]

35 Seaweed extract Fucosterol; low-molecular-weight 
fucoidan

TGF-β1/AP-1 signaling; MMPs; FGF-2; IL-1β,-6; 
p-c-Jun,-Fos; NF-κB; p38-MAPK; Erk1/2; JNK

Animal models 
and cell 

experiments

[143]

(Continued)
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DNA from UV-induced damage, reducing thymine photodimerization by over 28% and downregulating IL-1α 
expression.65 A moisturizing lotion containing CA stem cell extract significantly improved skin moisture and barrier 
function for up to 24 h.66 Moreover, oral supplementation with CA (Centellicum®) effectively ameliorated cutaneous 
stretch marks over a relatively short period.67 These results indicate that CA extract is a potent modulator of skin 
inflammageing.

Punica granatum L. (pomegranate) extract, derived from a deciduous tree in the Lythraceae family, is recognized for 
its anti-inflammatory and anti-senescence properties, primarily through NF-κB pathway inhibition.68 Rich in compounds 
such as anthocyanins, catechin, ellagic acid, gallic acids, and other polyphenols,69 punicalagin from the extract mitigates 
UV-induced growth arrest in the ageing human fibroblast cell line HFB4, enhances Col1A1 and Timp3 gene expression, 
preserves collagen levels, and reduces MMP3.70 The primary dye in pomegranate arils, anthocyanins, decreased facial 
wrinkles in volunteers using a cold cream containing these compounds.71 Fermented pomegranate extracts have 
demonstrated improvements in skin moisture, brightness, elasticity, and collagen density after eight weeks, effectively 
preventing skin ageing.72 Thus, daily consumption of pomegranate extracts supports skin health by combating inflam
mation and decelerating the ageing process.

Quercetin is a promising anti-inflammageing agent, offering anti-inflammatory, anti-ageing, and antioxidant effects 
via the NF-κB pathway.12 Quercetin significantly reduces inflammatory cytokine production in primary human 
keratinocytes,73 decreases MDA levels in the skin tissues of psoriasis-like mice via NF-κB pathway inhibition,74 and 
directly targets PKCδ and JAK2, protecting against UV-induced skin ageing and inflammation.75 Quercetin 3-O-β- 
D-glucuronide (Q-3-G), a glucuronide conjugate of quercetin, has anti-inflammatory, antioxidant, moisturizing, and anti- 
melanogenesis effects in human keratinocytes and melanoma cells because of NF-κB pathway modulations.76 Quercetin 
also downregulates pro-inflammatory genes and cytokines such as COX-2 and TNF-α in HaCaT cells and reduces 
melanin production in B16F10 cells,76 highlighting its potential as an effective anti-inflammageing compound.

Green tea’s primary polyphenolic catechin, Epigallocatechin gallate (EGCG), along with its structural isomer GCG 
and a compound containing digallate (specifically, theaflavin-3,3ʹ-digallate), exhibit robust inhibitory effects on RIG-I. At 
low micromolar concentrations, EGCG interacts with RIG-I in HEK293T cells, thereby suppressing RIG-I signaling. 

Table 3 (Continued). 

No. Natural Plant/ 
Compound

Plant Sources/Main Compounds Mechanism of Action Model of 
Evaluation

References

36 Limonium tetragonum 
(Thunb.) Bullock 

extract

Myricetin 3-O-β-d-galacto-pyranoside TGFβ/Smad pathway; pro-inflammatory cytokines; 
MMP-1; collagen

Cell experiments [144]

37 Sacha inchi albumin 
extract

– TGF/Smad pathway; TNF-α; IL-6; MDA Mice model [145]

38 Red bean extract Caffeic acid, rutin, and rosmarinic acid TGF-β1; MMP-1; IL-1β, −6, −8, CCL17/TARC and 
CCL22/MDC

Cell experiments [146]

39 Prunella vulgaris 
L. extract

Polyphenols, vitamins, polysaccharides, 
amino acids, and alkaloids

TGF-β/Smad signaling pathway; MMPs, TNF-α and 
IL-6

Cell experiments [19]

40 Phyllanthus emblica 
L. fruit extract

homoplantaginin ERK/TGF-β/Smad pathway; MAPK/AP-1 pathway; 
IL-1α,-6; PGE2; COX-2

Cell experiments [147]

41 Salvia plebeian extract Rutin, glyceroclycolipids, 
kaempferolrutinoside, etc.

TGF-β/Smad pathway; MMP-1; IL-6 Animal models 
and cell 

experiments

[148]

42 Panax notoginseng 
extract

Ginsenoside Rb1, Rb2, Rb3, Rc, Rd, Re, 
Rg1, and notoginsenoside R1

TGF-β/Smad signaling pathway; MMP-1; IL-6; 
COX-2

Cell experiments [149,150]

43 Acer tataricum subsp. 
Ginnala extract

Ginnalin A TGFβ/Smad pathway; MMP1; TNF-α, IL-1β, −6 Cell experiments [151]

44 Astragalus and Radix 
Rehmanniae extract

Saponins, flavonoids and 
polysaccharides; catalpol, inosine, and 

echinacoside

TGFβ/Smad pathway; Ras/MAPK; collagens; TIMP- 
3; MMP-3

Cell experiments [37]

45 Rubus idaeus extract Anthocyanins, flavonoids, and phenolic 
compounds

TGFβ/Smad pathway; MMPs; collagens; SOD; 
Nrf2; NF-κB; COX-2; MAPK

Cell experiments [203]
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Table 4 Natural Plants That Regulate Skin Inflammageing via the AMPK–Sirtuins and Other Signaling Pathways

No. Natural Plant/ 
Compound

Plant Sources/Main 
Compounds

Mechanism of Action Model of Evaluation References

46 Salviae miltiorrhizae 
Radix et Rhizoma 

extract

Cryptotanshinone, 

tanshinone and salvianolic 
acid B

AMPK/sirt1, AMPK/ULK1 signaling pathway; MMPs; ROS; IL-4, −10, −2, −6; IFN-γ; NF-κB 

p65; autophagy; MDA; CAT, Nrf2; NQO1; HO-1

Mouse models and 

in vitro experiments

[152–158]

47 Youngia denticulata 

extract

Phenolic compounds AMPK–sirtuins, AMPK/Nrf pathway; MMPs; TNF-α; COX-2; IL-6; p65; p50; autophagic Cell experiments [159–164]

48 Ginseng Ginsenosides LKB1/ AMPK/SIRT1 pathway; inflammatory factor; type I collagen; MMPs Clinical Trial; animal 

models and in vitro 

experiments

[46,165–170]

49 Almond Prunus 
dulcis (Mill.) D.A. 

Webb extract

Fatty acids, phytochemical 

polyphenols, VE and 

chlorogenic acid

AMPK–sirtuin pathway; COL1A1; COL1A2; TNF-α; hyaluronic acid synthase mRNA; GR 

signaling; MCP-1; CCL-5

Clinical trial and cell 

experiments

[171–178]

50 Icariin Epimedium SIRT6; NF-κB Mice model [179]

51 Aronia melanocarpa 

extract

Phenolic compounds AMPK/SIRT1/NF-κB, PI3K/AKT/mTOR pathway; MMP-1, 3; immunoreactivity of collagen 

types I and III; pro-inflammatory mediators

Mice model and in vitro 

experiments

[117,180]

52 Crocus sativus 
extract

Polyphenols SIRT1 Clinical trial [181]

53 Tinospora cordifolia 
extract

Alkaloids, terpenoids, 
sitosterols, flavonoids, and 

phenolic acids

AMPK–sirtuins signaling pathway; PI3K/AKT; IL-1α, −1β, −6, −8; IFN-γ; PGE-2; TNF-α Mouse model [182]

54 Peanut skin extract Oligosaccharides and 
flavonoids

AMPK; MMP-3, −9; TRP-1; DPPH; MITF; Tyrosinase; Collagenase Mice model and cell 
experiments

[183,184]

55 Hypericum 
perforatum extract

Hyperforin AMPK mRNA; Il1; Il6; Il23; Il17a; Il22; antimicrobial peptides (AMPs); IL-6; IL-17A; TNF-α; 

MAPK/STAT3

Mice model and cell 

experiments

[185,186]

56 Resveratrol The skin of the grape, 

blueberry, raspberry, 

mulberry, and peanut.

AMPK; NF-κB, PI3K/AKT, TLR4/NF-κB/STAT3, NOTCH; Wnt signaling pathway; p53, p16, 

p19, NLRP3 and Cas1 p20; (MMP)-1, MMP-9, MMP3 and interleukin-8; CAT, GSH, SOD, 

MAPK-AP-1/NF-κB-TNF-α/IL-6, iNOS, COX-2-mediated inflammation-induced ageing; and 
p53-Bax-cleaved caspase-3-cytochrome C-mediated apoptosis induced ageing

Clinical trial; animal 

models and in vitro 

experiments

[39,187–189]

57 Echinacea purpurea 
L. Moench extract

Phenolic compounds Complement system pathway; C3a/C3aR pathway; anti-collagenase, anti-elastase, anti- 

hyaluronidase activity

Animal models and 

in vitro experiments

[58,190]

58 Impatiens textori 
Miq. extract

Palmitoleic acid, palmitelaidic 

acid and methyl undecanoate

NLRP3 pathway; IL-1β; caspase-1 Cell experiments [191]

59 Piceatannol Peanuts and grapes JAK1/STAT3 pathway; Notch pathway; COX-2, iNOS, AP-1, MMP-1, IKKβ, MAPK, mTOR Cell experiments [192–194]

60 Houttuynia cordata 
Thunb.

Volatile oils, polysaccharides, 

and flavonoids

MAPK pathway Cell experiments [195,196]
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Furthermore, it dampens IL-6 secretion and IFN-β mRNA production in BEAS-2B cells.77 EGCG also mitigates UV- 
induced MMP-1 expression, exhibiting anti-ageing effects. EGCG treatment reduced UVA-induced skin damage, such as 
roughness and sagginess, and protected against decreases in dermal collagen in hairless mouse skin.78 Additionally, 
EGCG obstructed the UV-triggered escalation of collagen secretion and collagenase mRNA levels in fibroblast 
cultures.79 Potential plant-derived RIG-I pathway inhibitors include β-sitosterol,60 Abelmoschus manihot total 
flavones,198 Asphodelus microcarpus leaf extract,199 and berberine.200 Although direct evidence for improving skin 
inflammageing is lacking, these inhibitors show potential.

Phytochemicals such as luteolin,80 carotenoids,81,82 pterostilbene,83 myricetin,84 artemisinin,85 sulforaphane,86,87 

Lithospermum erythrorhizon (Gromwell) root extract,88,89 Kaempferia parviflora Wall. ex Baker,90 and soy isoflavones91,201 

are also beneficial for managing skin inflammageing. These compounds contribute to skin health by inhibiting the NF-κB/RIG-I 
signaling pathway, indicating their potential as therapeutic agents for promoting skin health and anti-ageing.

Inhibition of the mTOR Pathway
Cordyceps exert anti-ageing, anti-inflammation, and anti-oxidative stress effects, and their efficacy is attributed to their 
rich composition of active compounds, including cordyceps, nucleosides, polysaccharides, sterols, proteins, amino acids, 
polyphenols, and peptides.93 Cordyceps sinensis counters cigarette smoke extract-induced cellular senescence by 
inhibiting the ROS/PI3K/AKT/mTOR signaling pathway;94 it also shields human skin cells from UV-induced oxidative 
stress and DNA damage.93,95 Cordyceps cicadae (Miq.) aqueous extract enhances HAS2 expression and reduces MMP- 
12 expression in human skin fibroblasts, demonstrating moisturizing and anti-ageing capabilities.96 Cordyceps medium- 
loaded nanoparticles prompted a significant 2.76-fold increase in skin regeneration in human dermal fibroblasts (HDFs) 
by upregulating ECM production (collagen and elastin synthesis) and repairing H2O2-induced cell damage.92 Cordyceps 
extract is an ideal topical solution for skin inflammageing as it mitigates inflammatory factor secretion, reduces cellular 
senescence, and boosts collagen synthesis.97

Curcumin, a phytochemical in turmeric, inhibits the phosphorylation of S6K1 and 4E-BP1, which are downstream targets 
of mTOR, in Rh1 and Rh30 cells. It mechanistically blocks mTOR by destabilizing mTORC1 through raptor dissociation at 
low concentrations and disrupts mTORC2 by detaching Rictor at higher concentrations.98 Curcumin and its metabolites have 
extended the lifespan of several ageing models, including C. elegans, D. melanogaster, yeast, and mice.99–101 Nano- 
formulated curcumin has a potential for anti-ageing and wound healing.99 Curcumin also inhibits the proliferation of 
differentiated HaCaT cells by reducing IL-17, TNF-α, IFN-γ, and IL-6 levels.100 A clinical study of 28 women in their 30s 
who used a turmeric-containing gel (Tricutan®) for four weeks reported improved skin firmness according to self- 
assessments.101 Turmeric hot water extract countered elevated TNF-α and IL-1β mRNA and protein levels induced by 
UVB in the skin of healthy subjects and led to increased hyaluronic acid production by keratinocytes, as well as enhanced 
facial skin hydration.102 Thus, curcumin has emerged as a potent anti-inflammageing agent and moisturizer.

Fisetin, a flavonol found in various fruits and vegetables such as strawberries, apples, persimmons, and onions, has also 
emerged as a potent anti-inflammageing agent. Recognized for its senolytic, antioxidant, and anti-proliferative properties, 
fisetin acts as a natural source of senolytics, offering a novel treatment for ageing.103 Fisetin also effectively addresses 
psoriasis and other inflammatory skin conditions by modulating the mTOR/IL-17A, PI3K/Akt/mTOR, and autophagy 
pathways across several models.104,105 Moreover, fisetin suppresses cutaneous melanocytic lesions by targeting the Akt/ 
mTOR signaling axis106 and inhibits α-MSH- and IBMX-induced melanosis in B16F10 melanoma cells, simultaneously 
upregulating mRNA for skin fibril-related genes.107 Furthermore, fisetin reduces MMP, ROS, PGE1, TNF-α, IL-6β, IL-53, 
and cyclooxygenase-2 expression, mitigating UVB-induced skin inflammation, DNA damage, wrinkles, and sunspots.108 

Finally, fisetin enhances filaggrin expression, protecting against the UVB-induced disruption of barrier function.109

Anthocyanins, water-soluble flavonoid pigments from Sambucus canadensis, exhibit anti-inflammatory and antiox
idant properties.110 These compounds significantly mitigate cell senescence and lens ageing by inhibiting the PI3K/AKT/ 
mTOR signaling pathway. This inhibition promotes the apoptosis of senescent cells, increases autophagic and mitophagic 
flux, and enhances mitochondrial renewal to maintain cellular homeostasis.111 Purple sweet potato (PSP) anthocyanins 
reduce oxidative stress and inflammation in rats with neuropathic pain induced by chronic constriction injury,112 and 
extend the lifespan of D. melanogaster by activating autophagy via AKT-1, PI3K, and mTOR gene downregulation and 
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4E-BP upregulation, while increasing lysosome production and autophagy activation. Thus, PSP extract can be used to 
delay skin inflammageing.113 Furthermore, anthocyanins from pomegranates and grapes, as well as caffeic acid from 
various natural sources, inhibit mTORC1 by preventing the phosphorylation of S6K1 and AKT at the Ser473 residue 
mediated by mTORC1.114 Furthermore, mulberry anthocyanins reduce MMP-2 and MMP-9 expression in the ECM of 
melanoma B16-F1 cells by targeting the Ras/MEK/ERK/mTOR pathway.115

A clinical trial showed that a phytocosmetic formulation containing Myrothamnus flabellifolia leaf extracts significantly 
improved skin ageing markers, including spot length, wrinkle area and volume, skin lightening, and homogeneity, by 
downregulating mTOR genes.116 Additionally, novel phytopeptides have shown efficacy in restoring cellular homeostasis, 
modulating oxidation, and hyperproliferation, thereby impacting the mTOR pathway.117 Peptides are favored over small- 
molecule drugs given their higher specificity and lower cytotoxicity, with plant-derived natural peptides having a long history 
of human consumption, indicating minimal potential adverse effects compared with synthetic or nonspecific therapeutics.117 

Various natural plants and compounds, including Handelin from Chrysanthemum boreale flowers,118 Latifolin,119 

Stigmasterol,120 α-,β-,γ-mangostins, isogarcinol, and gartanin from Garcinia mangostana L. (mangosteen),121–123 

Momordica charantia L.,124 Isatis tinctoria L. leaf,125 Amaranthus cruentus L. seed oil,126 Mikania micrantha L.,127 and 
Nypa fruticans Wurmb,202 are potential modulators of skin inflammageing via the mTOR signaling pathway. However, further 
in vitro and in vivo studies are required to verify their effects.

Modulation of the TGF-β Signaling Pathway
Prunus yeonesis Matsum. (Rosaceae) is recognized for its anti-allergy, anti-ageing, and anti-inflammatory properties. The bark 
extract was traditionally used for treating coughs, urticaria, pruritus, dermatitis, asthma, and measles.129 Prunetin from 
P. yeonesis extract (PYE) exhibited anti-inflammatory effects on LPS-stimulated RAW 264.7 macrophages and an LPS- 
induced septic shock model.130 Polyphenols from the bark show high antioxidant activity, contributing to anti-ageing 
effects.131 Moreover, PYE at 1, 10, and 100 μg/mL enhanced type I procollagen production in UVB-irradiated normal 
HDFs via the TGF-β1/Smad signaling pathway. This involved the upregulation of TGF-β1 by Smads and the downregulation 
of transcription activator protein-1 and MAP kinase, resulted in reduced MMP-1 and MMP-3 production.131 PYE also reduced 
nitric oxide secretion in LPS-treated RAW 264.7 cells. In an SLS-stimulated patch test, PYE showed lower visual and 
erythema scores compared with a placebo on days 5 and 9, indicating potent anti-inflammageing effects in vitro and in vivo.132 

These qualities position PYE as a promising ingredient for skincare products.
Eucalyptus globulus L. (EG) (myrtle family) contains an essential oil in the leaves that is rich in compounds 

such as thymol, 1,8-cineole, linalool, limonene, and pinenes, and acclaimed for its antioxidant and anti- 
inflammatory properties. EG extract promotes collagen synthesis by modulating the TGF-β/Smad signaling path
way, including the inhibition of negative Smad regulators. Treatment of UV-irradiated HDFs with 1 to 100 μg/mL 
EG extract resulted in decreased MMP and IL-6 expression, alongside increased TGF-β1 and type 1 procollagen 
levels. Additionally, this treatment prevented activation of the AP-1 transcription factor.128 Furthermore, EG 
essential oil and hydrodistillation residual water minimized the activation of senescence markers, such as β- 
galactosidase and MMPs, while increasing collagen type I expression and exerting strong anti-inflammatory effects 
by reducing nitric oxide and pro-inflammatory mediators.133 Therefore, EG extract shows potential as an anti- 
inflammageing substance.

Ellagic acid (EA), a polyphenolic compound found in numerous fruits (eg, raspberries, pomegranates, and plums), 
seeds (eg, walnuts and almonds), and vegetables, either exists in free form or as part of ellagitannins. EA exerts 
antioxidant, anti-inflammatory, and anti-ageing effects.134 Specifically, EA shields HaCaT cells and mice from photo
ageing by modulating the TGF-β/Smad signaling pathway (TGF-β1➔pSmad3➔Smad7).135 The topical application of 
10 μmol/L EA to SKH-1 hairless mice, exposed to UV-B for eight weeks, significantly reduced skin wrinkles and UBV- 
induced inflammation, decreased IL-1β and IL-6 production, prevented inflammatory macrophage infiltration, and 
reduced ICAM-1 expression in UVB-irradiated keratinocytes and mouse epidermis.136 Moreover, EA boosts elastin 
and collagen production in HDFs.137 Chitosan-coated niosomes containing EA-modulated skin ageing-related genes 
(upregulating Col1A1, TERT, Timp3, and downregulating MMP3) in HFB4 cells, thereby protecting collagen levels and 
decelerating skin ageing.138
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Pentacyclic triterpenoids from Terminalia arjuna may enhance in vitro TGF-β expression and vascular endothelial growth 
factor secretion, significantly increasing skin hydration, reducing transepidermal water loss, and improving skin 
elasticity.139,140 Oleracone C, derived from Portulaca oleracea mitigated UVB-induced MMP changes and type I pre- 
collagen production in human keratinocytes through the TGF-β/Smad pathway.141 Additionally, two compounds from 
P. oleracea extract, portulacanone A and portulacanone D, inhibited MMP-1 secretion and boosted type I procollagen 
production in UVB-stressed human keratinocytes, demonstrating potent anti-ageing effects.142 Fucosterol,143 Myricetin 
3-O-β-D-galactopyranoside from extracts of Limonium tetragonum (Thunb.) Bullock,144 Sacha inchi albumin,145 red bean 
(Vigna angularis),146 Prunella vulgaris L.,19 Phyllanthus emblica L. fruit,147 Salvia plebeian,148 Panax notoginseng,149,150 

Acer tataricum subsp. Ginnala,151 Astragalus and Radix Rehmanniae,37 and Rubus idaeus203 all showed efficacy in mitigating 
inflammageing-induced skin damage. These effects are mediated by modulation of the TGF-β signaling pathway, highlighting 
the potential of these compounds as therapeutic agents for skin health and anti-ageing.

Regulation of the AMPK–SIRTs Signaling Pathway
Danshen (Salviae miltiorrhizae Radix et Rhizoma) is widely used in traditional Chinese medicine and exhibits extensive 
pharmacological benefits, including anti-inflammatory, antioxidant, anti-ageing vasodilatory, lipid-lowering, and improved 
energy metabolism effects.153 The active compounds of danshen are primarily fat-soluble tanshinones, such as cryptotan
shinone, and water-soluble tanshinone, notably salvianolic acid B.154 Cryptotanshinone enhances mitochondrial biosynthesis 
in skin cells via the AMPK/SIRT1/PGC-1α pathway, reducing skin ageing and extending the lifespan of budding yeast 
Saccharomyces cerevisiae, indicating its potential or delaying senescence.155 Cryptotanshinone also shows promise in 
dermatology, including psoriasis treatment,156 UV-induced melanoma mitigation,152 and scar formation reduction.157 

Salvianolic acid B activates the AMPK/ULK1 pathway, enhancing the autophagic degradation of pS757-ULK1 and 
autophagic activity in astrocytes.152 Salvianolic acid B boosts autophagy, significantly increases Beclin1 expression, 
a marker of autophagy, and increases the microtubule-associated protein light chain 3 B (LC3B) II/LC3B I ratio. 
Additionally, salvianolic acid B extends cell survival, enhances the release of anti-inflammatory factors (IL-4, IL-10, IL-2, 
IL-6, and IFN-γ), and reduces apoptosis; it can also reduce inflammation and oxidative stress, which is attributed to activation 
of the AMPK/SIRT1 pathway.158 Thus, danshen extract represents a potential skin anti-inflammageing agent.

Youngia denticulata (YD, Asteraceae; synonym: Crepidiastrum denticulatum) is a traditional vegetable in Korea. YD extract 
contains phenolic compounds such as dicaffeoylquinic acid chicoric acid, youngiasides A, B, and C, showing anti-inflammatory, 
anti-ageing and antioxidant activity.159,160 These compounds decrease MMPs, including MMP-1, −2, −3, and −9, in HaCaT cells 
and HDFs, increase collagen production via the AMPK/Nrf2 pathway in HDFs, and inhibit NF-κB-mediated inflammation.161 

Treatment with YD extract results in significant autophagic vesicle formation within the non-cytotoxic range and induces AMPK 
phosphorylation without mTOR inhibition.162 The role of autophagic signaling pathway in skin homeostasis has been thoroughly 
investigated.163 Besides its critical role in epidermal differentiation, autophagy contributes to skin barrier integrity, inflammation 
reduction, and ageing mitigation.164 Anti-pollution efficacy was evaluated using benzo[a]pyrene (BaP) and cadmium chloride 
(CdCl2) as model compounds; the YD extract protected against cytotoxicity and effectively reduced pro-inflammatory 
cytokines,162 indicating its potential as an anti-inflammageing cosmetic ingredient.

Ginseng is a perennial herb of the Araliaceae family that is widely used in Asia. Its efficacy is attributed to triterpenoid 
saponins called ginsenosides, which are categorized into three groups, with microbial transformation producing their active 
metabolites. Notably, ginsenosides with two glucopyranosyl groups at the C-3 position are recognized as SIRT1 activators. 
These compounds target the SIRT1 signaling pathway, offering therapeutic potential against oxidative stress, inflammation, 
ageing, and depression.165 The ginsenoside metabolite 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol mitigates UV- 
induced MMP-1 expression in HDFs by enhancing liver kinase B1 (LKB1) and AMPK phosphorylation.166 Ginsenoside 
Rb1, by activating the SIRT1/AMPK pathway, diminishes endothelial cell senescence.46 Comprehensive clinical investiga
tions have validated the anti-inflammageing benefits of ginseng extract on skin and the regulation of MMPs and type 
I collagen in human fibroblasts to augment skin elasticity and hydration.167 Additionally, ginsenoside Rb1 decreases IL-1β 
release at injury sites in mice, which mitigates inflammation.168 Ginseng extracts, as anti-ageing components, also enhance 
immunity and modulate inflammation.169 Herbal formulations with ginseng extract are leading natural candidates for 
innovative dermocosmetics exhibiting anti-ageing benefits for the skin.170
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Almond (Prunus dulcis (Mill.) D.A. Webb), a leading nut crop globally, is a rich source of fatty acids, phytochemical 
polyphenols, and antioxidants, including vitamin E and chlorogenic acid. Almond bark polyphenol extract notably enhances 
AMPK phosphorylation and mitigates TNF-α-induced cellular inflammation by reducing the secretion of monocyte 
chemotactic protein-1 and chemokine ligand 5.171 This extract also prolongs the lifespan of yeast, possibly because it 
preserves mitochondrial function with age.172 β-Violanone from almond oil counters the suppression of dexamethasone- 
induced collagen and hyaluronic acid synthesis in HDFs.173 A study on skin massage with almond oil-infused essential oils 
indicated significant alleviation of itchiness and mental stress in 64 women (≥65 years old).174 Moreover, almond oil exhibits 
anti-inflammatory, antioxidant, anti-ageing, wound-healing, and skin barrier-restoration effects 183,184. Topical almond oil 
and extract application diminishes UVB-induced photoageing both in vitro and in vivo.177 Furthermore, regular almond 
consumption can reduce facial wrinkles and pigment intensity in postmenopausal women.178

Natural compounds such as icariin179 and extracts of Aronia melanocarpa,117,180 Crocus sativus,181 Tinospora 
cordifolia,182 peanut skin,183,184 and Hypericum perforatum185,186 modulate AMPK signaling. The plant extracts and 
compounds reviewed in this study attenuate inflammatory senescence by regulating the AMPK–SIRTs pathway. SIRT 
enzymes have drawn significant interest for their pivotal role in anti-ageing. Thus, comprehensive research into the 
AMPK–SIRTs pathway and the molecular underpinnings of inflammageing highlights phytotherapies targeting this 
pathway as novel interventions for managing skin inflammageing.204

Regulation of Other Pathways
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a natural phenol found in grape, blueberry, raspberry, mulberry, 
and peanut skins, which exhibits anti-inflammatory, antioxidant, and anti-ageing properties.39 As the most potent 
Notch activator, resveratrol is thus capable of alleviating skin inflammageing damage,187 potentially by inducing 
cell death via the ROS-dependent inactivation of the Notch/PTEN/AKT cascade reaction.188 Resveratrol also 
inhibits mast cells, sphingosine kinase-1, STAT3, expression of senescence markers (p53, p16, and p19), inflam
masome markers (NLRP3 and Cas1 p20), nuclear translocation of NF-κB, IL-1β, IL-6, TNF-α, and IL-18, and 
activation of the NF-κB p65 signaling pathway.189

Echinacea purpurea (L.) Moench extract suppresses inflammation by inhibiting the C3a/C3aR signaling pathway in 
the complement system in TNBS-induced ulcerative colitis rats.58 E. purpurea extract exhibits significant anti- 
collagenase (78.5 ± 0.0%), anti-elastase (69.0 ± 1.4%), and anti-hyaluronidase activity (64.2 ± 0.3%).190 This extract 
may impede skin inflammageing by inhibiting the complement system.

Impatiens textori Miq. (Balsaminaceae) is a traditional medicinal herb used to treat inflammation-related skin 
infections and allergic disorders. The extracts demonstrate inhibitory effects on interleukin 1β secretion and reduce 
ASC oligomerization and caspase-1 maturation by attenuating NLRP3 inflammasome activation, which were 
observed at concentrations of 25, 50, and 100 μg/mL.191 Additionally, the extracts exhibited stimulatory effects 
on HaCaT cell proliferation, migration, sprout outgrowth, and the synthesis of types I and IV collagen.191 These 
extracts also alleviate the dulling effect of skin color that is characteristic of skin inflammageing.191 Furthermore, 
Myrothamnus flabellifolia leaf extracts and resveratrol can attenuate inflammageing damage to the skin by 
inhibiting NLRP3, as outlined in Table 1 for natural plants 19 and 56.

Piceatannol is a resveratrol metabolite commonly found in red wine grapes. It reduces atopic dermatitis by inhibiting JAK1 
and decreasing JAK–STAT protein phosphorylation.192 It also inhibits MMP-1 expression via the JAK1/STAT3 pathway in 
keratinocytes. Piceatannol exhibits various effects on the skin, including promoting collagen production, inhibiting melanin 
synthesis, inducing the antioxidant glutathione, and eliminating ROS.193 A clinical trial showed that passion fruit seed extract, 
when taken orally, is rich in piceatannol and can improve the moisture levels of dry skin and reduce fatigue,194 implying that 
the compound has a skin inflammageing-prevention effect. Furthermore, EGCG, sulforaphane, stigmasterol, Hypericum 
perforatum extracts, and resveratrol can attenuate inflammageing damage to the skin by inhibiting STAT, as outlined in Tables 
1, 2, and 4 for natural plants 5, 11, 23, 55, and 56.

Houttuynia cordata Thunb. (Saururaceae), a native perennial herb, contains many active compounds, including 
volatile oils, water-soluble polysaccharides, and flavonoids, and exhibits antioxidant, anti-ageing, and anti- 
inflammatory activities.195 The hyperoside-enriched fraction obtained from H. cordata inhibits skin ageing by 
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regulating the MAPK signaling pathway and attenuating JNK/ERK/c-Jun activation in HDFs.196 Furthermore, 
extracts of Isatis tinctoria L. leaves, Nypa fruticans Wurmb, seaweed, Phyllanthus emblica L. fruit, Astragalus 
and Radix Rehmanniae, Rubus idaeus, Hypericum perforatum, and piceatannol can attenuate skin inflammageing 
damage by inhibiting MAPK, as outlined in Tables 2–4 for natural plants 26, 29, 35, 40, 44, 45, 55, and 59.

Conclusion
Chronic low-level inflammation contributes to ageing and age-related degenerative diseases, which manifest outwardly as 
skin ageing, including wrinkles, sagging, thinning, and pigmentation changes. This review explores the mechanisms of skin 
inflammageing, focusing on nine critical signaling pathways: NF-κB/RIG-I, mTOR, TGF-β, AMPK–SIRTs, complement 
system, NLRP3, Notch, JAK–STAT, and MAPK. In the natural environment, the process of skin inflammageing is marked by 
complexity, involving intricate interactions among multiple signaling pathways. Notably, the NF-κB signaling pathway 
intersects with MAPK, PI3K, and TGF-β pathways to collectively regulate this inflammageing process in the skin. AMPK 
can regulate AMPK/mTOR pathways, which relieve neuropathic pain and inflammatory pain.42 Additionally, this review 
highlights how various natural plant extracts and monomers impact skin inflammageing through these pathways. Due to their 
diverse composition, plant extracts exhibit unparalleled advantages in addressing multiple interventions concurrently. This 
research therefore strengthens our understanding of skin inflammageing mechanisms and identifies promising natural 
interventions against skin inflammageing, as well as key directions for future research. Unfortunately, few natural plants 
modulate Notch, the complement system, NLRP3, JAK–STAT, or MAPK pathways. This requires more attention from 
relevant researchers on the botanical regulators of these pathways, to determine their effectiveness and safety in more skin 
inflammageing related in vitro and animal models, detailed, well-controlled and larger scale dose-response randomized 
clinical trials. Limited in-depth animal and clinical studies exist on the regulatory effects of plants extracts, such as Echinacea 
purpurea (L.) Moench, on skin inflammageing via the complement system or other signaling pathways. Further investigation 
by relevant researchers is warranted. Therefore, future research should explore active substances that affect inflammageing in 
the identified plant species to promote further development in this field. Given the complex compositions and mechanisms of 
action of natural plants, clinical trials are required to evaluate their actual effects, safety, and effectiveness. Additionally, the 
use of natural molecules derived from plant extracts to modulate skin inflammageing is a promising area for future exploration. 
Elucidating the effects of these natural plant extracts and active chemical monomers on the prevention of skin inflammageing 
will also enrich the library of raw materials available for treating skin inflammageing. Future research should also aim to 
discover new natural plants that offer more possibilities for counteracting skin inflammageing damage.
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