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Hormesis Promotes Evolutionary Change
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Abstract
Exposure to moderate environmental stress is one important source of evolutionary change. This evidence would support the
hypothesis that hormesis is an evolutionary expectation. In this short review, I discuss relevant examples of genetic and phe-
notypic responses to moderate stress exposure that are compatible with hormesis and with paradigms of evolutionary theory such
as evolutionary rescue or phenotypic plasticity. Genetic recombination, nonlethal mutations, activity of transposable elements, or
gene expression are some of the molecular mechanisms through which hormesis might enable organisms to maintain or even
increase evolutionary fitness in stressful environments. These mechanisms span the tree of life from plants to vertebrates.
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Introduction

Environmental stress has been one key driving force of evolu-

tion. It has long been recognized by evolutionary biologists that

exposure to moderate amounts of stress may facilitate adapta-

tion by inducing a number of genetic and phenotypic

responses.1-4 This pillar of evolutionary theory has not been

so influential in other disciplines, such as those dealing with

toxicology and environmental health risk assessment, where a

less holistic view has traditionally predominated.

Dose–response models are one example of conceptual sim-

plification of the biological reality, somehow needed to make

such models operational. Dose–response models are actually

used in environmental health risk assessment to predict the

biological effects due to exposure to given environmental stres-

sors or contaminants. The linear no-threshold (LNT) risk model

is the current human health risk assessment paradigm. It sim-

plistically assumes that the risk of adverse biological effects on

the organism increases linearly, as the total dose of a natural or

anthropogenic stressor (eg, contaminant, ionizing radiation,

and ambient temperature) increases. In contrast, the hormetic

model proposes that exposure to low or mild doses of environ-

mental stress would have stimulatory rather than toxic effects

on the organism, potentially increasing chances to survive and

reproduce.5-9 In other words, hormesis-based dose–response

models capture a bit more of the biological complexity that the

classic LNT models dramatically neglect. Prior work has, how-

ever, suggested that hormesis cannot be an evolutionary expec-

tation because, while hormesis of certain aspects of individual

performance may be possible, hormesis for fitness, itself, is

not.10 This is because short-term adjustments in any life-

history trait (eg, in response to exposure to toxic agents) are

expected to result in trade-offs with other fitness-related com-

ponents.10 Although this scenario is certainly plausible, there is

a growing number of instances suggesting a significant role of

hormesis in promoting evolutionary responses. Thus, there are

conditions whereby hormetic mechanisms boost fitness to

some degree or buffer it against any detrimental effects, indi-

cating that hormesis may provide selective advantages.

In this short review article, my goal is to illustrate examples

of key genetic and phenotypic responses of organisms to envi-

ronmental stress that are compatible with expectations of horm-

esis and of evolutionary theory. To this end, I discuss relevant

examples of experiments that support the role of hormesis in

promoting both genetic and phenotypic responses of organisms

to some environmental stressors. Although our understanding

of the environmental conditions under which hormesis pro-

motes adaptation is still elusive, the available evidence sug-

gests that hormesis can be an evolutionary expectation.
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Brief Excursus to Evolutionary Thinking

In this paragraph, I have listed some processes that are thought

to be fundamental in driving evolution.4,11-15 Current theory

sees evolution as a process by which allele (or genetic variants)

frequencies change in a population over time. Genetic variation

can arise from genetic recombination or gene mutations in

response to environmental stressors. Some of these genetic

responses are typical of evolutionary rescue, that is, those

genetic changes that enable populations to respond to environ-

mental perturbations irrespective of other factors such as gene

flow, migration, or dispersal.4 The novel genetic traits are more

likely to be passed to the next generation if they increase repro-

ductive fitness. However, in environments that change rapidly,

selection of given genotypes in one generation may become

maladaptive in the next generation or may be too slow to occur

as in species with long generation times. Organisms can

respond phenotypically to such changes, and the new pheno-

type may later become genetically encoded by natural selection

(genetic assimilation). These intergenerational effects are not

easily explainable with strict principles of genetic inheritance,

rather they would invoke the coparticipation of Lamarckian

mechanisms in shaping phenotypes. Phenotypic evolution

beyond genome evolution can actually occur. Phenotypic plas-

ticity is one source of phenotypic evolution. It refers to the

number of phenotypic responses that a single genotype can

produce under different environmental conditions. Plasticity

allows the organism to rapidly respond and maintain reproduc-

tive fitness under variable conditions. Plastic responses may be

reversible and of short duration (eg, physiological acclimation)

or may be long lasting and somehow imprinted in the molecular

memory (eg, some aspects of developmental plasticity). Plas-

ticity may thus aid the initial response to an environmental

stressor, with natural selection subsequently refining the phe-

notype with genetic adaptations to the new environment. If

there is low genetic variation underlying the phenotypic

response, such response might still have a relevant role in

evolutionary change if it were associated with nongenetic

inheritance, such as parental (eg, hormones passed by the

mother to the offspring) or epigenetic (chemical changes that

alter gene expression without any changes in allele frequen-

cies) effects. Biological information is typically considered as

being transmitted across generations by the DNA sequence

alone, but accumulating evidence indicates that both genetic

and nongenetic inheritance, and the interactions between them,

have actually important effects on evolutionary outcomes.

Genetic Responses

Genetic recombination occurs during meiosis and produces

new allelic combinations that are passed from the parents to

the offspring and thus may affect evolutionary processes. A

link between environmental stress and recombination has been

known for 1 century.16 Pioneering work on Drosophila mela-

nogaster showed that the recombination frequency increased in

young exposed to either heat or cold stress, but at near lethal

temperature extremes it decreased.17,18 Similarly, recombina-

tion frequency increased with temperature in grasshoppers

Goniaea australasiae until a point beyond which it

decreased.19 Even acute episodes of either heat or cold stress

at critical stages of meiosis increased genetic recombination in

Coprinus lagopus.20,21

Appearance of nonlethal genetic mutations is another poten-

tial route through which hormesis may affect evolutionary rate.

Ionizing radiation interacts with water to produce reactive oxy-

gen chemicals (eg, free radicals), which can in turn damage

biomolecules such as DNA. According to the LNT model,

exposure to increased ionizing radiation would result in dele-

terious effects with no chance for adaptive processes to kick in.

Although it is well established that exposure to high doses of

ionizing radiation is detrimental for the organism, research on

low-dose exposure found different outcomes. By subjecting

populations of Escherichia coli to selection for high resistance

to ionizing radiation,22 Byrne et al. generated bacteria with a

resistance to radiation comparable to that of Deinococcus

radiodurans, which can absorb doses of radiation over 1000

times the lethal dose for humans without lethality. It has also

been found that resistant bacteria had developed genetic muta-

tions that conferred them with higher capacity to repair DNA

damage.22 Experimental repairing of such mutations actually

completely removed the radiation resistance.

There are indeed genetic variants that may give rise to horm-

esis potential. For example, wild-type CB4856 Caenorhabditis

elegans worms exposed to heat stress survived longer than

those worms that were not exposed to heat stress, while this

hormetic effect on life span did not emerge in wild-type Bristol

N2 worms.23 Using recombinant inbred lines derived from a

cross between wild types CB4856 and N2, it has been found

that some of those lines displayed an hormetic effect on life

span and the ability to recover from heat shock mapped to a

significant quantitative trait locus on chromosome II.23

Transposable elements are DNA sequences that can change

position within a genome and induce the appearance of dele-

terious mutations, gene disruption, and chromosome rearrange-

ments. However, activity of transposable elements can also

play an important role as promoters of the function and evolu-

tion of genomes, such as creation of novel gene variants, chro-

mosome rearrangements, regulation of gene expression,

extended telomeric length, population differentiation, and spe-

ciation.24-29 Given that expression and activity of transposable

elements may play an essential role in facilitating adaptive

organism responses to stressors,28,30 it might be another poten-

tial route through which hormesis generates genetic variation

and promotes evolution.

Phenotypic Responses

Hormesis can be seen as a component of phenotypic plasticity

and, conversely to physiological acclimation (ie, short-term

physiological adjustments to changes in environmental condi-

tions), the phenotypic adjustments induced by hormesis should

be long lasting, probably irreversible to a large extent.6,7
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Exposure to low or mild doses of a given abiotic stressor or

contaminant may stimulate transcriptional responses and estab-

lish long-term somatic molecular memory that promote sur-

vival and even reproduction in some study models.5,31

Transmission of chromatin modifications through mitosis

(somatic memory) and meiosis (trans-generational memory)

is one potential mechanism for long-term storage of prior expo-

sure to low mild doses of a stressor.31 Growth and development

of Arabidopsis plants from seedlings exposed to a short mild

salt stress treatment were similar to those from seedlings that

were not previously exposed to salt stress (controls), yet they

had reduced salt uptake and enhanced drought tolerance after a

second stress exposure compared to controls.31 This increased

tolerance was associated with small changes introduced in the

structure of 4 specific histones and with altered transcriptional

responsiveness of several genes.31 These phenotypic responses

are stronger when exposure to the stressor occurs at specific

windows of the development period and do not necessarily

require that the organism is being exposed again to the stressor

at adulthood. For example, exposure of Drosophila flies to mild

heat stress early in life caused upregulation of heat shock

response genes long after the stress was ceased and increased

life span when compared to control Drosophila flies.32

Some molecular responses (eg, transcription rate) can be

modulated by transposable elements.29,33 For example, expo-

sure of Drosophila flies (belonging to the isogenic wild type

Oregon R line) to a pro-oxidant agent for 5 generations resulted

in elevated transcriptional activity of both telomeric and non-

telomeric transposable elements and extended their telomeric

length.29

Hormesis-induced phenotypic responses do not manifest

only at the molecular level but can be even substantial for

life-history or demographic traits (eg, fecundity and life span).

Life-history theory predicts that reproductive hormesis (eg,

increased fecundity) will be traded-off against survival per-

spectives, meaning that increasing fecundity (or life span)

would cause a decrease in life span (or fecundity). Thus, the

net effect of hormesis on individual reproductive fitness would

be negligible. However, many species reproduce once or a few

times in life, implying that a small reduction in survival might

have minor to negligible consequences for the lifetime repro-

ductive fitness. For long-lived species that have many repro-

ductive events, the relevance of reproductive hormesis might

differ from short-lived species. However, a number of studies

have found that, within a population, there are individuals that

can generate many offspring per reproductive event and live

longer than expected compared to individuals that generate less

offspring. One reason for this may lie with variation in indi-

vidual state or phenotypic quality, whereby high-quality indi-

viduals may boost both fecundity and longevity because they

may better sustain the costs associated. Thus, the point raised

about the evolutionary relevance of hormesis does not seem to

lie with the occurrence of a trade-off but with when the trade-

off would show up.

It has been showed that trade-offs may underlie reproduc-

tion hormesis.34 However, trade-offs did not result in overall

decreased reproductive fitness over several generations

because continuous exposure of multiple generations to an

hormetic dose resulted in higher overall production of off-

spring. Exposure of Acheta domesticus juvenile females to an

acute low dose of g-radiation increased lifetime fecundity, the

number of eggs laid over a 4-day period in early adulthood, egg

size, and hatching success when compared to females that were

not exposed or were exposed to high doses of radiation.35

Multigenerational exposure during development of Myzus per-

sicae aphids to low doses of the insecticide imidacloprid

primed offspring to better survive exposure to imidacloprid.36

This increased resistance to imidacloprid was not due to muta-

tions at target genes associated with insecticide resistance,36

indicating that such resistance was not probably mediated by

genetic responses.

Conclusions

Evolutionary theory sees exposure to moderate environmental

stress as one important source of evolutionary change. Thus, it

is reasonable to conclude that hormesis might be one engine of

evolution because it elicits genetic and phenotypic responses of

organisms to moderate stressful events that may promote main-

tenance of their evolutionary fitness. Some of these adaptive

responses appear to be compatible with paradigms such as

evolutionary rescue or phenotypic plasticity. Future work

should elucidate the environmental conditions under which

molecular mechanisms underlying hormesis provide selective

advantages.
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