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Abstract

Recent studies on murine models have demonstrated the potential of dark field (DF) x-ray

imaging for lung diseases. The alveolar microstructure causes small angle scattering, which

is visualised in DF images. Whether DF imaging works for human lungs is not a priori

guaranteed as human alveoli are larger and system settings for murine imaging will probably

have to be adapted. This work examines the potential of translating DF imaging to human

lungs. The DF contrast due to murine and human lung models was studied using numerical

wave propagation simulations, where the lungs were modelled as a volume filled with

spheres. Three sphere diameters were used: 39, 60 and 80 μm for the murine model and

200, 300 and 400 μm spheres for the human model. System settings applied for murine lung

response modelling were taken from a prototype grating interferometry scanner used in

murine lung experiments. The settings simulated for human lung imaging simulations com-

bine the requirements for grating interferometry and conventional chest RX in terms of x-ray

energy and pixel size. The DF signal in the simulated murine model was consistent with

results from experimental DF data. The simulated linear diffusion coefficient for medium

alveoli diameters was found to be (1.31±0.01)�10−11 mm-1, 120 times larger than those of

human lung tissue ((1.09±0.01)�10−13 mm-1). However, as the human thorax is typically a

factor 15 times larger than that of murine animals, the overall DF effect in human lungs

remains substantial. At the largest lung thickness and for the DF setup simulated, human

lungs have an estimated DF response of around 0.31 and murine lungs of 0.23. Dark field

imaging can therefore be considered a promising modality for use in human lung imaging.

Introduction

In recent years x-ray dark field (DF) imaging has evolved into a promising tool for lung imag-

ing [1] based on its sensitivity to the air-tissue transitions in the alveoli. Increased detectability

of emphysema [2–5], fibrosis [6,7] and pneumothoraxes [8,9] has been demonstrated. Dark
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field images can be obtained using various methods [10–12], but the present study focuses on

grating interferometry based techniques (GI) [13] as most DF lung applications in the litera-

ture make use of this implementation. More specifically, Talbot interferometry was consid-

ered, in which two gratings (G1 and G2) are used to respectively create and measure a high

frequency Talbot fringe pattern [14]. Nevertheless, the main outcome of this work will also be

applicable for different dark field implementations. In GI the DF signal, df, is mainly related to

the visibility loss of the Talbot fringe pattern due to incoherent interactions in the object, or

df ¼ vobj=vref ð1Þ

where the visibility v is related to the relative amplitude of the fringe pattern in a pixel. Every

acquisition using a GI method yields, besides a DF image, an attenuation and a differential

phase image, corresponding to respectively the mean intensity and the phase shift of the fringe

pattern [14]. These images contain additional information on the imaged object, but are not

discussed here.

The DF response to different materials is complex and is more difficult to predict than

attenuation and differential phase imaging, where the contrast can be directly calculated from

the material dependent parameters β and δ respectively [14]. In DF, the logarithm of df scales

linearly with the thickness of the material. This has been expressed as [15]:

� logðdf Þ ¼
2p2d2

p2
2

� � t ð2Þ

where t is the thickness of the material and � the material specific ‘linear diffusion coefficient’.

In the same equation, d is the G1-to-G2 distance and p2 the period of the fringe pattern. The

link between � and the material compositions and structures is complex and has been studied

extensively over the years [16–21]. The fundamental idea is that � is low for homogenous mate-

rials and high for materials with a large number of density transitions. Both the quantity and

magnitude of the density fluctuations, the δ,βmaterial values and the length scale of the fluctu-

ations play a role in the magnitude of the measured DF signal [16–18]. For a material com-

posed of randomly distributed spheres of diameter S, covering a given volume fraction, Lynch

et al. [18] calculated and demonstrated that the � factor is a maximum when S = 1.8 � dauto,

with

dauto ¼ l
d
p2

; ð3Þ

the autocorrelation length. In π-phase shift Talbot setups, the following equation holds [22]:

d � m
p2

2

2
=l; ð4Þ

Or

dauto �
mp2

2
ð5Þ

with m an odd integer. At the first Talbot order (m = 1) and for p2 = 2 μm, dauto approximates

1 μm meaning that � is maximized for 2 μm diameter spheres and decreases for larger spheres.

The majority of the pulmonary DF imaging feasibility studies performed today, use murine

models [2,4–7,23–26]; the translation to human lung imaging is therefore not obvious as the

DF response strongly depends on microscopic characteristics of the lung tissue. In humans,

the alveoli typically range between 200 and 400 μm, which is a factor of five larger than in mice

Dark field radiography of human lung
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(39–80 μm) [27], and therefore, following Eq (5), a drop in the linear diffusion coefficient is

expected. At the same time, the human thorax is thicker and the overall DF signal loss would

be larger if � would have the same value (see Eq (2)). For DF lung imaging to be applicable in

humans, it should be sensitive to structural changes in the lung. This sensitivity is maximized

when the DF signal at the largest lung thicknesses along the beam direction, is a minimum

without being saturated. As far as we know, the translation from murine to human DF lung

imaging has not been documented and comparative DF lung imaging has not been modelled.

Given some initial studies on porcine lungs have been successful [9,28], a certain degree of sen-

sitivity is expected for human lungs as well. Porcine lungs have alveolar sizes and lung volumes

of the same order of magnitude as humans. Still, quantitative modelling is useful to investigate

the extent to which this method can be applied and which system adaptations may be required

and to understand the role of the different features attributing to the overall dark field signal

measured. This leads to the question addressed in this work: ‘how well will dark field lung

imaging perform for human lungs?’. This study estimates the impact of increased alveoli sizes

on the DF contrast using numerical wave propagation simulations. Murine response is evalu-

ated using the settings of a prototype GI system. Experimental data for this system are then

used to validate simulations of the murine model. Second, clinical geometries similar to those

in conventional chest x-ray are then applied in the evaluation of human lung DF response.

Materials and methods

Numerical simulations were used to predict the average DF signal for murine and human lung

models. The sizes of the alveoli and the dimensions of the lung were taken into account, as well

as the acquisition settings of a typical chest PA imaging protocol. The linear diffusion coeffi-

cient for murine and human lung was then estimated based on the DF response of six thick-

nesses, t, using Eq (2).

Simulation framework

The simulations were performed using a numerical wave propagation framework. In the

framework the x-ray wave was modeled as a 2 dimensional grid (x,y) of complex wave func-

tions and evaluated throughout different positions in the system. As the DF signal depends on

microscale variations, fine sampling of the wave function is necessary. The index 0s0 denotes

the finely sampled grid, without index refers to pixel sampling.

In the simulation platform, a plane wave interacts first with the object (i.e. the lung model)

and the phase grating G1, followed by propagation in free space to the attenuation grating G2,

where the (averaged) pixel intensity is recorded by the x-ray detector. By stepping G2, the

intensity pattern is sampled and a stack of NG2 projections is created [14]. Via a fast Fourier

transform, the average pattern as a function of the position of G2 (xG2) can be retrieved [14].

The wave function at the detector is given by

cðxs; ys; xG2Þ ¼ ½F
� 1
fFfc0ðxs; ysÞ � Oðxs; ysÞ � G1ðxs; ysÞg � Ĥdðus; vsÞ � FfFgauss;G0

ðxs; ysÞgg�

� G2ðxs; ys; xG2Þ ð6Þ

In our implementation, a monochromatic plane wave was assumed, making ψ0(xs,ys) equal to

unity. The transmission through the object is described by O xs; ys
� �

¼ exp i2p
l

R
dðxs; ys; zÞdz�

�

2p

l

R
bðxs; ys; zÞdzÞ, with λ the wave length and z the propagation direction. The coefficients δ,β

are related to the refractive index of the object via n = 1 − δ + iβ [29]. The grating G1 introduces

a periodic phase shift of π, or G1(xs,ys) = exp(iπP(xs,ys)), whereP denotes a rectangular pulse

function. Propagation over a distance d in free space is then simulated by a convolution with

Dark field radiography of human lung
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the free wave propagator H and in Fourier space Ĥðus; vsÞ ¼ expð� ipdlðu2
s þ v2

s ÞÞ; where (us,

vs) are the spatial frequencies corresponding to the spatial dimensions [30,31]. Blurring due to

the finite G0 apertures is included by filtering the wave function with a Gaussian kernel with

standard deviation equal to the scaled G0 aperture width (Fgauss;G0
ðxs; ysÞ). Lastly, G2(xs,ys,xG2) =

P(xs,ys,xG2), represents the absorption grating G2, which is evaluated at its fractional distances

xG2.

The pixel values are generated by integrating the finely sampled intensity of ψ over the pixel

area (AP) and scaled to realistic values via an x-ray dose dependent calibration factor (SPV).

Here, SPV is the average detector pixel value for a given air kerma (EAK), normalized to the

integrated intensity of a reference ψ function without object in place. SPV was calibrated for

the prototype TLI system as a function of EAK, measured at 5.6 cm from the G1 grating (the

centre location of the object). By assuming a linear relationship between detector pixel value

and EAK, the detector pixel value at any EAK can be estimated. Blurring due to both the finite

focal spot size and the detector is included by Fourier filtration in the spatial frequency

domain. For the former, a Gaussian kernel (Fgauss) with a standard deviation equal to the scaled

focal spot size of the source was used while detector blurring was applied using the presam-

pling modulation transfer function. Lastly, noise of the correct texture and magnitude was

added to each projection, resulting in the final pixel intensities I(x,y,xG2).

Iðx; y; xG2Þ ¼ F � 1
fFf

P
AP
jcðxs; ys; xG2Þj

2
� SPVg �MTFðu; vÞ � FfFgauss;FSðx; yÞgg

þ Nðx; y; xG2Þ sðx; y; xG2Þ=sN ð7Þ

Where MTF(u,v) for the x-ray detector was determined from experimental data

using an implementation of a slanted edge technique [32,33]. The noise, Nðx; y; xG2Þ ¼

F � 1
fFfRðx; y; xG2Þg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPSðu; vÞ

p
g, is modelled as a matrix of normally distributed random

values (R) with zero mean and unit variance, filtered by the square root of the noise power

function (NPS) [34]. Also the NPS was determined from experimental data using the approach

described in [35]. Due to the Poisson nature of the noise, the expected noise magnitude in

each pixel σ(x,y,xG2) is equal to the square root of the measured intensity in the corresponding

pixel. To ensure a unit variance in N, the noise image is scaled with a factor 1/σN, with σN the

average standard deviation of N.

This calculation is done twice, once with object in place and once without object. Following

[14] it is then possible to produce transmission, differential phase and dark field images. Here

only the dark field images were considered, although accurate transmission and differential

phase images are also generated. Due to the very fine sampling of ψ(xs,ys,xG2), these calcula-

tions are computationally expensive and creating large field of view images is time consuming.

However, this did not restrict this study as large fields of view were not required.

The periods of the G1 and G2 grating were set to match those of a prototype Talbot-Lau GI

system in our centre, with specified pitches of 3.901 μm and 2.000 μm. Other parameters

depended on the study and are tabulated in Table 1. The G1-to-G2 distance was set at the first

Talbot distance with characteristic values that depend on the x-ray energy (Eq 4). A high x-ray

exposure (103 mGy) was used to minimize the influence of noise, and therefore accurate

modelling of system visibility was not required. If a future study requires the correct magni-

tude then this can be achieved by empirically adjusting the transmission through G2.

Lung models

The lung was modelled as a compartment of spheres [36,37]. The centres of the spheres were

generated randomly and the sphere volumes were allowed to overlap. Creating non-

Dark field radiography of human lung
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overlapping spheres is computationally expensive for large volume fractions and given that the

objects are projected onto a single image plane, has little advantage. In the literature [37] alve-

oli are represented by hemispheres and overlapping spheres, may be even closer to reality. The

linear diffusion coefficient, for both murine and human lungs, was estimated in the case of a

minimum, maximum and intermediate diameter alveoli. The true lung response, characterized

by a distribution of alveoli sizes, is expected to lie within the range of the estimated � values.

The volume fraction of the spheres was set to 0.56, a bit lower than the volume fraction in the

case of random close packing of spheres (0.64) [38]. In order to fit Eq (2) accurately, the DF

contrast was estimated for six AP thicknesses. For each thickness, the average DF signal in the

whole field of view was calculated. The computation was repeated 10 times with new random

generation of the sphere locations, giving a final average value and standard deviation for each

thickness. Using Eq (2) the linear diffusion coefficient was then calculated (GraphPad Prism

version 5.04 for Windows, GraphPad Software, California, USA). Values for the murine and

human lung total thicknesses were estimated from CT data (Table 1).

The δ and β values for lung tissue were estimated using Henke et al [29] and NIST data

[39,40], while compositions were taken from the ICRP110 [41]. The tissue in between the

spheres was assumed to be made of muscle tissue and the spheres themselves were made of air

(with zero wall thickness). The compressed lung tissue tabulated in ICRP110 is a mixture of

both lung and air tissue and was thus not considered. The applied parameters and settings are

summarized in Table 1.

Murine. The murine lung model was evaluated for alveoli diameters of 39, 60 and 80 μm
[27]. The DF response was estimated for AP thicknesses of 1.8, 3.6, 5.4, 7.2, 9.0 and 10.8 mm.

Every 1.8 mm of lung consisted of on average of respectively of 325, 89 and 38 spheres per

detector pixel. The simulated field of view was 5 × 5 pixels of 100 μm.

Human. The human lung model consisted of 200, 300 or 400 μm diameter spheres [27].

The AP thicknesses evaluated are thicker than in the murine model, i.e. 25, 50,75 100, 125 and

150 mm. This resulted in 75, 22 and 9 spheres per pixel per 25 mm thickness for the different

alveoli sizes. In conventional chest-RX the voltage of the tube is typically set to 120 kVp, corre-

sponding to an intensity-weighted mean energy of 64.5 keV for 3 mm Al system filtration, 1800

mm air and 90 mm PMMA [42]. The design energy of the setup was assumed to equal the inten-

sity-weighted mean energy. Higher mean energy implies a longer distance d and is also linked

with lower x-ray δ and β coefficients (see Table 1). For typical pixel sizes in chest x-ray (120–150

μm), the alveoli exceed the pixel sizes and the field of view was increased to 10 by 10 pixels.

Experimental validation

To validate the simulation model, the � results from the murine simulations were compared to

experimental data acquired using the prototype GI setup (Carestream Health, USA) installed

Table 1. Summary of settings for the murine and human modelling studies. The mean x-ray energy was set as the design energy of the system.

Murine Human

Diameter alveoli S [μm] 39–80 200–400

Maximum AP thickness lung [cm] 1.1 20

Pixel size [μm] 100 150

kVp (mean energy [keV]) 40 (27.7) 120 (64.5)

d [cm] 4.47 10.4

δ, β air 2.71 × 10−10 1.42 × 10−13 9.02 × 10−11 4.27 × 10−14

δ, β muscle tissue 3.10 × 10−07 1.78 × 10−10 1.04 × 10−07 5.07 × 10−11

https://doi.org/10.1371/journal.pone.0206302.t001

Dark field radiography of human lung
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at our small animal research centre (MoSAIC, KU Leuven). The most straightforward

approach would use in-vivo GI CT datasets of a mouse, however this is not possible with this

particular system. An CT acquisition takes up to four hours for sufficient signal-to-noise levels

and it is not possible to keep the animals sedated over such long periods. To ensure normal

lung inflation when measuring the DF response, a dark field projection scan was used in com-

bination with a μCT scan (SkyScan 1278, Bruker, Kontich, Belgium), both made in-vivo. This

allows the lung thickness (from the μCT) to be combined with the DF response, to estimate

the � experimentally. Three small ROIs (1 x 1 mm2) were selected in the dark field projection

image of the mouse lung with low, medium and high DF response. Under the assumption that

the main contributor to the DF signal contrast is due to small angle scattering in the lung, the

dark field signal was then related to the thickness of the lung at the three corresponding posi-

tions in the μCT scan. To reduce the influence of mouse fur on the DF data, ultrasound gel

was applied to limit the hair-air transitions. The experiments were conducted under the insti-

tutional guidelines for animal welfare and approved by the KU Leuven ethical committee for

animal research.

Results

Fig 1(A) shows DF response as a function of thickness for the mouse model for the three differ-

ent alveoli sizes. Using the simulations, linear diffusion coefficients of (1.97±0.01)�10−11 mm-1,

(1.31±0.01)�10−11 mm-1 and (1.02±0.01)�10−11 mm-1 were found for respectively 40, 60 and 80

μm diameter murine alveoli. Meanwhile, for the human model (Fig 1(B)), � equalled (1.57

±0.01)�10−13 mm-1, (1.09±0.01)�10−13 mm-1 and (8.39±0.01)�10−14 mm-1 for respectively 200,

300 and 400 μm diameter alveoli. For the medium sized alveoli, the linear diffusion coefficient

is a factor 120 smaller in human lung compared to mouse lung tissue. However, as the lungs of

humans are much thicker, at the largest thickness, a similar DF contrast is created in the

human model compared to the murine model (see Fig 1(C)). Comparing DF signals at the

respective maximum thicknesses, the murine DF signal is around 0.23, while the human signal

is around 0.31. The human lungs therefore produce a comparable contrast.

Fig 1. The dark field signal as a function of thickness for the murine (a) and the human model (b). In (c) a comparison is plotted as a function of relative thickness,

ranging from 0 thickness to maximal thickness. The range of murine and human dark field response overlap. In (a), experimental data (black squares) validate the

simulated results of the murine model.

https://doi.org/10.1371/journal.pone.0206302.g001
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In the experimental DF scan of the mouse (Fig 2), respective signals of 0.34±0.03, 0.44±0.03

and 0.58±0.02 were measured in the three regions (Fig 2B–2D) corresponding to a lung thick-

ness of 8.0±0.2 mm, 5.7±0.2 mm and 4.0±0.3 mm or estimated � values of (1.44±0.11)�10−11

mm-1, (1.54±0.15)�10−11 mm-1 and (1.43±0.14)�10−11 mm-1. This can only be an approxima-

tion since e.g. the mouse fur (even with ultrasound gel) and other anatomical features also

cause DF signal loss. However, these values lie within the predicted range (Fig 1(A)) and thus

support the mouse model and the framework used.

Discussion

This work estimated the feasibility of human lung imaging using dark field radiography based

on a simulation study. The results showed a strong decrease in the linear diffusion coefficient

when going from murine to human lung models. While this could be interpreted as a loss of

sensitivity when trying to apply DF imaging to human lungs, this is in fact good news. If the

linear diffusion coefficient of human lung tissue were as large as that of murine lungs, DF

Fig 2. Dark field (GI) scan (a) and μCT slices (b-d) of the same mouse. Three regions of interest were selected in the dark

field image and related with lung thickness in the μCT scan.

https://doi.org/10.1371/journal.pone.0206302.g002
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contrast would be saturated after just 2 cm of lung tissue and it would be impossible to differ-

entiate between different regions or pathological stages of the lung. This study therefore sug-

gests the applicability of DF imaging for human lung and that the current interest in this topic

is well founded.

Both the simulation platform, using the simulated monochromatic plane wave, and the

lung model (single diameter spherical alveoli for a given simulation run, excluding bone, soft

tissue and skin) are obviously simplified representations of reality. Still, the results are consis-

tent with experimental data, supporting the approximations made. The linear diffusion coeffi-

cient is determined up to a range of magnitudes, between a specified minimum and maximum

alveoli size. More accurate modelling of the lung tissue could narrow down this range and

enable studies on the effect of pathologies and inflation on the DF response. The exact � values

will probably vary somewhat between systems due to different magnification and focal spot

blur [21], however, for high frequency fluctuations like the alveoli, the influence of these

pseudo-dark field effects is expected to be inferior. Beam hardening, on the other hand, may

affect the measured DF signal as the mean energy of the spectrum is shifted away from the

design energy of the setup [43,44]. In human imaging, the ribs are more pronounced than in

mice and the effects of beam hardening will be stronger.

The framework described here, including these results, could have potential use in the opti-

mization of GI setups for human lung imaging. During optimizing, there is always a trade-off

between sensitivity and system visibility. Since the response of DF for human lungs is expected

to be relatively large, mainly due to the lung thickness, an increase in G2 pitch could be consid-

ered. This would decrease the sensitivity of the setup but facilitate a higher system visibility

and therefore reduce noise in the DF image. This would be opportune since achieving a high

system visibility at high energies is challenging. Here, a mean energy of the chest RX was

assumed to be 64.5 keV. At such high energies the system needs to be retuned with adapted

gratings whose production is technically demanding, resulting in a visibility loss. Possible sys-

tems could be based on high-energy setups presented in the literature [45]. Note that the effec-

tive mean energy for DF depends on the system visibility versus energy and can deviate from

the mean energy assumed. Moreover, the high energy in chest RX was chosen based on current

practice in transmission imaging, but it may be desirable to decrease the applied energy in

order to increase the dark field contrast. Furthermore, following Lynch et al [18], the setup

could be further tuned towards the larger diameter alveoli.

Conclusion

This simulation study has demonstrated that it is possible to replicate the experimental dark

field response of murine lungs. The model was applied on human lungs and predicted a linear

diffusion coefficient some 100 times lower than that found for murine lungs. Since human

lungs are much thicker than murine lungs, viable, practically useful dark field values can still

be generated using a standard GI setup. Therefore, this study supports the translation of dark

field murine lung imaging to chest applications in humans. In the future, similar simulation

studies could help to optimize GI setups for human dark field lung imaging.
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