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Abstract 

Background:  In a sudden cardiac arrest, starting CPR and applying an AED immediately are the two highest resus-
citation priorities. Many existing mobile applications have been developed to assist users in locating a nearby AED. 
However, these applications do not provide indoor navigation to the AED location. The time required to locate an 
AED inside a building due to a lack of indoor navigation systems will reduce the patient’s chance of survival. The exist-
ing indoor navigation solutions either require special hardware, a large dataset or a significant amount of initial work. 
These requirements make these systems not viable for implementation on a large-scale.

Methods:  The proposed system collects Wi-Fi information from the existing devices and the path’s magnetic infor-
mation using a smartphone to guide the user from a starting point to an AED. The information collected is processed 
using four techniques: turn detection method, Magnetic data pattern matching method, Wi-Fi fingerprinting method 
and Closest Wi-Fi location method to estimate user location. The user location estimations from all four techniques 
are further processed to determine the user’s location on the path, which is then used to guide the user to the AED 
location.

Results:  The four techniques used in the proposed system Turn detection, Magnetic data pattern matching, Closest 
Wi-Fi location and Wi-Fi fingerprinting can individually achieve the accuracy of 80% with the error distance ± 9.4 m, ± 
2.4 m, ± 4.6 m, and ± 4.6 m respectively. These four techniques, applied individually, may not always provide stable 
results. Combining these techniques results in a robust system with an overall accuracy of 80% with an error distance 
of ± 2.74 m. In comparison, the proposed system’s accuracy is higher than the existing systems that use Wi-Fi and 
magnetic data.

Conclusion:  This research proposes a novel approach that requires no special hardware, large scale data or signifi-
cant initial work to provide indoor navigation. The proposed system AEDNav can achieve an accuracy similar to the 
existing indoor navigation systems. Implementing this indoor navigation system could reduce the time to locate an 
AED and ultimately increase patient survival during sudden cardiac arrest.

Keywords:  Automated external defibrillator (AED), Sudden cardiac arrest (SCA), Indoor navigation, Wi-Fi, Magnetic 
data, Dynamic time warping (DTW), Wi-Fi fingerprinting

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Sudden cardiac arrest
In sudden cardiac arrest (SCA), a patient’s heart beats in 
an irregular rhythm or stops beating [1]. In either case, 
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the patient should be immediately treated with cardio-
pulmonary resuscitation (CPR) and with an automated 
external defibrillator (AED) if clinically indicated [2, 3]. 
More than 350,000 deaths in the U.S. occur due to SCA 
and more than 40,000 in Canada annually [4–7]. Accord-
ing to the American Heart Association, the chances 
of surviving an SCA decrease by 10% per minute [2, 3, 
8–10], and studies also confirm that the patient’s survival 
increase by up to 24% if a bystander provides CPR before 
the arrival of emergency services [3, 11, 12]. To reduce 
the response time, some emergency services have imple-
mented Responder Network Systems (RNS) [12–15]. 
The emergency call receivers activate the RNS systems. 
The RNS system then alerts all the registered users in 
the patient’s vicinity to assist the patient either by pro-
viding CPR or transporting an AED to the patient. For 
locating nearby AEDs, there are several mobile applica-
tions such as AED Quebec, Staying Alive, and Pulse Point 
Respond [16–18], that displays nearby AEDs on a map. 
Using these mobile applications, the user can locate the 
nearest AED and navigate to them using mapping appli-
cations such as Google Maps (Android/iOS) [19], Apple 
Maps (iOS) [20], and Waze (iOS) [21]. These applications 
can guide the users to the mapped address only, however, 
users then have to locate the AED within the building. 
Previous research has shown that only 16% of the AEDs 
are located within a visible area (e.g., building entrance, 
front desk, or lobby) [22]. For the remaining 84% of AEDs 
in the community, the user will require time to locate the 
AED inside the building. Figure  1 shows a screenshot 
from the AED Quebec [16] mobile application displaying 
an AED location. The building referred is approximately 
3271 m2 in size and has two floors. Finding the AED in 
this building will be a challenging and time-consuming 
task. In such cases, indoor navigation can help the user 
locate the AED quickly and ultimately reduce the time to 
start the patient’s treatment and therefore, increase their 
chances of survival.

Navigation and sudden cardiac arrest
Navigation has always been an essential part of daily life 
and is becoming difficult with the ever-increasing urban 
growth. For navigation, a system requires a map and 
the user’s location to the map for providing directions. 
A map of the location can be built upon its physical fea-
tures such as longitude, latitude, and altitude informa-
tion, measurement of the building (meters, feet, yards), 
magnetic information inside a building, and Wi-Fi 
information inside a building [23–25]. Navigation can 
be split into two categories: (1) outdoor and (2) indoor. 
Outdoor navigation systems can be more precise, sup-
porting activities such as autonomous driving [26, 27]. 
These systems use the Global Positioning System (GPS) 

satellite network to localize the user’s position. Mobile 
applications such as Google Maps (Android/iOS) [19], 
Apple Maps (iOS) [20], and Waze (iOS) [21] have been 
using GPS to help users navigate while travelling. A sig-
nificant drawback of this technology is that it requires 
a line of sight between the receiver (e.g., a smartphone, 
tablet, and smartwatch) and the satellites. Thus, it can 
be used only outdoors.

With large buildings such as malls, offices, and ware-
houses, indoor navigation has become an important 
research topic in recent years [28–30]. Researchers 
have proposed various ways to localize the user for 
indoor navigation. Chumkamo et  al. used radio fre-
quency identification devices (RFIDs) to localize the 
user’s location and the same technology to construct 
an indoor map of the building [31]. Huang et  al. used 
Wi-Fi information to generate a map and to localize the 
user’s location [32].

During the literature review, indoor navigation sys-
tems were identified which can develop indoor maps for 
navigation for unmapped locations. The systems found 
in the literature have been grouped based on the tech-
nology they used. The following subsections explain the 

Fig. 1  Screenshot from AED Quebec Mobile application. The 
screenshot displays an AED location in an 3271 m2 building
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strengths of the existing systems, drawbacks, and a brief 
description of the proposed model.

Existing indoor navigation systems
RFID based indoor navigation systems use inexpensive 
and low-powered hardware devices that are installed at 
a particular location in the building [23, 31]. The system 
requires two types of devices: (1) readers—that need to 
be installed at fixed locations throughout the building 
and (2) RFID cards that the user will carry to communi-
cate with the fixed readers. The RFID reader can read the 
card from a very short distance, thus making the system 
precise in locating the user’s position. However, these 
systems require significant setup, including having a floor 
plan of the building with each RFID reader’s location. 
Also, based on the physical size of the building, the hard-
ware cost can increase substantially. This system will not 
be financially viable to implement on a large-scale (e.g., 
city-wide or countrywide).

An alternative solution to an RFID-based system was to 
use a Quick Response code (QR code) based system or a 
light-based system. The QR code system requires unique 
QR codes at visible locations on the pathway [33, 34]. The 
QR code system pre-requisite is to map the unique QR 
codes on the premises floor plan. The navigating user’s 
mobile device then scans the QR code, and the system 
determines the user’s location using the pre-built map. 
The light-based system requires replacing the overhead 
lights bulbs with a unique lighting tube that emits light 
similar to a barcode [35–37]. The barcode is not visible to 
the human eye, but it can be read using the smartphone 
camera and visual computing. This technology eliminates 
the need for special hardware requirements for the user. 
However, QR code-based systems are preferable to light-
based systems as printing QR codes are cheaper than 
replacing light bulbs. In both systems, installation of the 
system is required, along with mapping the premises. The 
initial work will be very costly when done for an AED in a 
large building.

Although the existing indoor navigation systems 
described have been proven to work well, the large-
scale setup of hardware required to deploy these systems 
across a city is cost-prohibitive. Artificial Intelligence 
(AI) driven camera-based indoor navigation systems are 
one potential system that does not require the exten-
sive hardware setup of the other systems [38–42]. These 
systems require the first-time user to capture video of 
the path using their smartphone cameras. The recorded 
video is then processed to identify unique objects such 
as fire extinguishers, nameplates, exit signs and other 
prominent objects. These objects are then used to locate 
the user within the building as they walk along the path. 
However, this system has some drawbacks. If people or 

other objects obstruct the object identified by the sys-
tem, then the user’s location will not be determined. 
The obstruction is a common situation in public build-
ings where people will be obstructing the line of sight 
between the object and the camera. The unique identify-
ing objects, such as exit signs or fire extinguishers, can be 
at multiple locations in a building. Thus incorrect local-
ization of the user is possible. Another issue is that the 
recording and processing of videos will be challenging 
for smartphones having low computing power, and the 
recording of videos may raise privacy concerns.

The Micro Electro Mechanical Systems (MEMS) and 
Wi-Fi-based technology are two potential solutions 
for the computation and privacy issues associated with 
camera-based systems. These technologies have been 
examined extensively. The MEMS is a micro-electri-
cal and mechanical system constructed at a miniature 
scale. These systems are small and can be installed in 
small devices such as smartphones and smartwatches 
to capture the required data with very little power con-
sumption. Most standard smartphones have the fol-
lowing MEMS sensors: accelerometer, gyroscope and 
magnetometer. These sensors can provide the device’s 
acceleration, orientation and magnetic field information. 
The accelerometer could be used for user localization, as 
speed can be calculated from the acceleration and dis-
tance. However, in practical use, the accelerometer gen-
erates significant noise, which cannot be removed from 
the signal and over short distances results in inaccurate 
data [43–45]. The noise in accelerometer data is primar-
ily caused due to multiple factors: (a) miscalibration of 
the device, (b) white noise, and (c) vibration in handling 
the device. Some of this noise can be removed using digi-
tal signal processing but not all. Therefore, none of the 
navigation systems proposed in the literature use accel-
erometer data solely. However, some researchers use the 
acceleration information and the dead reckoning method 
to localize a user between two reference points that are 
closeby [43–45]. Another approach that uses accelerom-
eter data is identifying the number of steps in the data 
and then calculating the distance [43, 46, 47]. An issue 
with this approach is that users do not always walk with 
the same stride length. The stride length differs between 
users, time of day, walking surface, walking speed and 
many other factors. Thus, there is uncertainty in how 
accurate this system will be in measuring distance.

Researchers have also proposed indoor navigation 
using magnetic field information [24, 47, 48]. These 
systems require collecting magnetic information along 
a path and the user using it to navigate. Imran et  al. 
proposed a system called mPILOT, this system used 
machine learning algorithms to localize the user based 
on magnetic information [49]. Chi et  al. proposed a 
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GROPING system; this system used a crowdsourcing 
technique to collect magnetic information [50]. The sys-
tems mentioned above and other systems proposed in 
the literature require a large amount of data for training 
the system. This requirement is a significant drawback 
when these systems need to be implemented in a large 
physical area. Wi-Fi-based indoor navigation systems 
are another potential method for indoor navigation [22, 
51–53]. These systems use Received Signal Strength 
Indicator (RSSI) values for the access points and cre-
ate a reference point in the path. RSSI values represent 
the strength of a particular signal. However, this system 
cannot be used alone to provide full navigation, as the 
Wi-Fi scan takes several seconds to scan and collect 
RSSI values of all available access points. In theory, if 
additional information, such as the transmission power, 
receiver power of the devices, obstructions in the path-
ways, and other environmental details, are available, 
then the distance between the access point and the 
receiver can be found. In real-life situations, the envi-
ronment is disturbed by nearby users, airflow, refraction 
and reflection of signals. Thus, RSSI values can be con-
sidered a reference point but not suitable for measuring 
distances. To build a continuous indoor navigation sys-
tem, researchers have proposed hybrid systems that use 
a combination of Wi-Fi, magnetic, and MEMS sensors 
[54–56]. In all of these systems, the system requires a 
large quantity of data to create the premises map, which 
is later used to provide navigation. This initial data 
requirement would be a significant challenge for indoor 
navigation systems when thousands of buildings need to 
be mapped.

Why are existing indoor navigation systems not suitable 
for navigating to AEDs?
AEDs are generally installed either by the owner or a 
contractor. The AED can be placed at a fixed location 
(e.g., on a wall) or a temporary location (e.g., cabinet). 
In both cases, it requires a person to install it, and this 
person is the first person to know the location. After 
installation, the AED will be accessed only at the time 
of its maintenance (i.e., six months to two years for 
battery or pad replacement) or during an emergency. 
Therefore, the opportunity to collect data for the navi-
gation path is possible only at the installation time. 
Since one or two individuals do the AED installation, 
they can potentially collect only a handful of datasets 
for the entire path.

The requirements for the proposed system are:

•	 No hardware dependency on the premises
•	 No special hardware required for the end-user
•	 Minimum initial work for collecting the path

•	 Scalable and easy implementation
•	 Minimum maintenance

Table 1, compares the different technologies that are 
used to provide indoor navigation. These are not com-
patible for navigating users to the AED, as one or more 
criteria are not viable for implementation. Based on the 
existing systems’ learnings, the Proposed Solution sub-
section provides the implementable solution in locating 
the AED.

Summary of the proposed solution
In this paper, we propose a system called AEDNav to 
fulfill requirements for an indoor navigation system to 
locate an AED. This system will use the magnetic field 
and Wi-Fi information of the premises collected by an 
installer through a smartphone. The magnetic field 
information will be used to generate a map, and the 
Wi-Fi information will be marked on the generated 
map as reference points. For a potential user seeking 
to find an AED, the user’s smartphone will collect the 
magnetic field and Wi-Fi information. The collected 
information will be transmitted to a server, and the 
server will then compare the information with the 
previously collected information. After the compari-
son, the system will determine the path covered by the 
user and provide the directions for navigation to the 
AED.

Achievements and novelty of the proposed system 
AEDNav:

•	 AEDNav requires only one dataset describing the 
path to provide navigation.

•	 The end-user will be able to navigate to the AED 
using their smartphone.

•	 AEDNav is highly scalable and cost-effective.

Table 1  A comparison showing existing indoor navigation 
technologies

Red text highlights drawbacks when implementing the technology to find an 
AED in malls/high-rising buildings or on a large scale such as city

RFID QR code Camera MEMs Wi-Fi

Premises hardware 
required

Yes Yes No No Yes

Cost of hardware High Low None None Use existing

Initial data Small Small Medium Large Large

Require floor plan Yes Yes No No No

Computation Low High High Low Low

Initial work cost High High Low Low Low

Privacy issues No No Yes No No
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Methods
Overview
Based on the survey of existing indoor navigation tech-
nologies in the literature, the authors have chosen to use 
MEMs and Wi-Fi sensors to localize and navigate the 
user to the AED. The main reason for this choice was 
that these technologies are available in a standard smart-
phone, and the AED installer and subsequent users can 
use their smartphones to collect data and navigate to 
the AED, respectively. Most buildings have Wi-Fi access 
points available for public or private use. The proposed 
solution uses the RSSI information of the access point, 
which can be obtained from both private and public 
access points without establishing a data connection with 
them. The authors would like to emphasize that estab-
lishing a data connection is not required by the proposed 
system. However, the system can work without the RSSI 
information.

The magnetometer information is used to determine 
the patterns and directions of the path. The sequence 
of direction or elevation changes is generated based on 
the magnetic altitude, magnetic latitude, magnetic lon-
gitude, and magnetic direction information of the path. 
The magnetic information of a physical location var-
ies depending on the physical environment, especially 
if a large electronic or magnetic device is nearby (e.g., a 
refrigerator, speakers, or air conditioning unit). Thus, the 
magnetic information can help map the premises with 
landmarks to estimate a user’s location. Like other MEMs 
sensors, magnetic sensors also have noise and high vola-
tility in the sensor data. The AEDNav recognizes this 
issue and the mitigation strategy is discussed in the Data 
Cleaning subsection.

The Wi-Fi RSSI information is added to the proposed 
system for creating reference points along the path. A ref-
erence point is a marker on the collected magnetic data 
where the Wi-Fi information is received from the mobile 
device. The reference point created using this technique 
helps in narrowing the path to find a Wi-Fi device with an 
appropriate RSSI value. The reference points are essential 
because the magnetic information is a continuous stream 
of information and is used to determine the path’s pat-
terns. However, there can be sections in the data where 
no pattern is identified. In such situations, reference 
points will provide a landmark to localize the user’s loca-
tion along the path. For example, if a user is walking in 
a straight line with no magnetic disturbances, then the 
magnetic data will not locate the user on the path. How-
ever, if RSSI information is captured along those paths, 
the collection points can provide landmarks for the path 
travelled. Theoretically, the RSSI of a particular Wi-Fi 
should be at a fixed distance from the sender (access 
point) in any direction. Unfortunately, the user’s distance 

to a single access point cannot be calculated due to the 
user being in a 3-dimensional space. To use the RSSI to 
determine the user’s location, triangulation of multiple 
access points is needed. The RSSI values are interrupted 
by the environment, weather, and people in the build-
ing. Therefore, matching several RSSI values does not 
help determine the closest access point. In the proposed 
solution, the RSSI information is filtered to capture dif-
ferent metrics used to locate the user. The RSSI filtering 
and cleaning details are discussed in the Data Cleaning 
subsection.

Data collection
During this study, an Android mobile application was 
developed to collect the data. Figure 2 is a screenshot of 
the Android application. Each user’s walk data record-
ing is assigned a unique Data Coll ID. The Track ID is 
used to differentiate the different tracks travelled during 
the study. The Additional Info field was used to record 
additional information related to the track or user’s com-
ments. The Data Label field is auto-populated upon the 
start of the data collection process, and it displays the 
unique label generated for the current data collection. 
The START​ and STOP buttons control the data collection 

Fig. 2  A screenshot from the Android app created to collect the 
magnetic and Wi-Fi data
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process. All collected data is stored in a comma-delimited 
(i.e., CSV) file on the mobile device and later exported to 
a laptop for analysis.

The features captured for the Wi-Fi scanning include 
Service Set Identifier (SSID), Basic service set identifiers 
(BSSID), Received Signal Strength Indicator (RSSI) and 
the frequency band (2.4  GHz or 5  GHz) of each access 
point found during scanning. The features captured for 
the magnetic data collection include magnetic longitude, 
magnetic latitude, magnetic altitude, and magnetic field 
strength. The data mentioned above were collected using 
standard Android APIs.

This research was conducted during a time of signifi-
cant restrictions due to Covid-19, therefore, the authors 
had access to limited physical locations and limited num-
ber of participants to test the system. For this study, the 
data was collected from a track inside a home. Figure 3 
shows the path used to collect the data. The length of the 
path is 24.9 m. The path was marked using green tape 
such that each user’s walk is aligned, as shown in Fig. 4. 
Three adults living in the home participated in collecting 
the data. Each of the three participants walked the prede-
termined path 20 times and used the same Google Nexus 
5X device with the application developed to collect the 
magnetic and RSSI data.

Data cleaning
The magnetic and RSSI data collected using the mobile 
device contains significant noise. The noise in the data 
is from multiple sources including: (1) calibration of 
the hardware, (2) vibration of the participant’s hand 
while holding the device, (3) environmental factors 
such as reflection and refraction of signals, (4) obstruc-
tion caused by objects or user’s movement between 
the sender (i.e., access point) and receiver (i.e., smart-
phone), (5) electrical or magnetic objects nearby, and 

(6) sensor initialization. Much of the noise can be 
reduced by calculating the signal’s moving average, 
shown in Fig. 5. The extreme noises in the signal are fil-
tered out using rule-based methods. More information 
is provided below.

Magnetic data cleaning The extreme values in the 
magnetic data were filtered out using a rule-based 
method. During sensor initialization, magnetic values 
are set to zero. These values were filtered out using the 
following rule: exclude records having magnetic alti-
tude, magnetic latitude, and magnetic longitude equal 
to zero. For small amounts of noise, the filtered signal 
is passed through a moving average function. The mov-
ing average window size is set to 40 because the data 
collection frequency for the magnetic data is 40hz. 
Within a second of an average walk, a large object can 
be detected, and smaller vibration peaks can be aver-
aged out using the moving average filter.

Fig. 3  The path used in this study to collect data

Fig. 4  The walking path was mapped using green tape for the user’s 
to follow

Fig. 5  Moving average of the raw signal with a window size of 40
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RSSI data cleaning A rule-based filter was applied to 
the RSSI data for excluding records with an RSSI value 
larger than −30. The value − 30 is selected based on the 
Free Space Path Loss (FSPL) of a signal. According to the 
FSPL Eq.   (1), if the RSSI value is −30, then in an aver-
age household environment, the distance between the 
access points and the receiving device is 0  m [57, 58]. 
Therefore, an RSSI value of − 30 or higher is an extreme 
value and thus ignored. Further cleaning of the data was 
performed by checking the footprint of access points in 
multiple locations. In this step, the data of a particular 
access point is excluded if it is not available in 80% of the 
locations. This filtration helps remove access points that 
are far from the user and can cause a significant variation 
in the euclidean distance calculation. In the experimenta-
tion dataset, the filtration process excluded 73% of access 
points from a total of 72 access points.

System architecture
It is assumed that the AED installer collects the path’s 
initial data from outside the building to the AED. The 
installer can be a contractor or the owner of the AED. 
The installer will start collecting the data outside of 
the building to determine the installer’s initial location 
using the GPS. The GPS location is precise and thus will 
be used as the starting point of the track. After the GPS 
location is determined, the developed mobile applica-
tion will start recording the magnetic and the Wi-Fi 
information until the installer arrives at the AED’s loca-
tion. After completing the path, the collected infor-
mation is transmitted to a remote server. When a user 
is searching for the AED, they will use the designed 

(1)FSPL (dB) = 10log10
4πdf

c

2

mobile application for indoor navigation. The mobile 
application first matches the user location with the ini-
tial GPS location of the track. Once the initial locations 
are matched, the mobile application will collect the 
magnetic and the Wi-Fi information and send it to the 
server for navigation directions. The server will com-
pare the input data with the pre-recorded track infor-
mation to provide the navigation directions. Since the 
navigation computation will be performed on the server, 
the system can handle multiple navigational requests 
simultaneously, and if required, additional servers can 
be added to handle a large number of requests. The sys-
tem architecture is shown in Fig. 6.

Storing data

Sending data and getting navigation instructions

First time 
user

Following
user

Magnetic Data

Building

Cloud DatabaseWiFiUser

Travel PathAED

Fig. 6  Workflow showing data collection and its usage

Magnetic Data

Wi-Fi Data

Collect Data
(Magnetic and Wi-Fi)

Moving average 
(window size = 40)

Data Cleannig
(Remove RSSI > -30)

Ramer-Douglas-
Peucker

Dynamic Time
Wrapping

Wi-Fi Fingerprinting

Filter Wi-Fi having
strong RSSI value

Calculate Euclidean distance between
RSSI values for each Wi-Fi

Calculate the  percentage of Wi-Fi's
matching with data collected by the

installer.

Estimate the path covered
by comaparing against the

data collected by the
installer.

Estimated Location of
the user and next
navigation steps

Technique 1

Technique 2

Technique 3

Technique 4

Determine minimum path
coverage and next turnIdentify turns

Fig. 7  The system architecture to determine the path travelled by the user
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Track comparison
The track comparison is performed between the pre-
recorded track data and the data collected by the 
user who is following the path. The track compari-
son involves four different techniques to estimate the 
user’s location and provide them with the navigational 
steps. Figure 7 shows the four techniques and the steps 
involved in each technique. Two of these techniques 
use magnetic data, and the other two use Wi-Fi data to 
compute the estimated path travelled by the user find-
ing the AED. None of the techniques used directly com-
pare the raw values due to significant noise. Therefore, 
data patterns are identified based on the type of data 
collected and used for performing comparisons. Each 
of these techniques is explained in detail below.

1.	 Turn detection and comparison Turn detection is an 
essential part of the navigation process. Turns in a 
path can be used as reference points to determine the 
user’s position. Turns can also help in the dynamic 
time warping comparison of the signal ignoring the 
user’s walking speed and stop time during the walk. 
The magnetic direction data contains noise induced 
by the magnetic sensor and the vibrations caused by 
the user’s hand when standing or while walking. The 
peaks generated by the noise are removed by calcu-

lating the moving average of the data. The moving 
average window size is 40 due to the data frequency 
(i.e., 40  Hz) to reduce noise on turn detection. The 
authors propose an algorithm (Algorithm 1) to detect 
turns in the magnetic data collected. The turn algo-
rithm loops through the data with a window of 2 s to 
detect a change in direction, line 2 in Algorithm 1. In 
the loop, the window data is divided into three equal 
parts, the difference between the average of the first 
and third parts of the data is used to determine a 
turn, line 4 and 5 in Algorithm 1. A difference of 30◦ 
is required for the algorithm to determine whether 
a turn was made, line 9 in Algorithm  1 . The mini-
mum threshold of 30◦ will disregard noise in the data 
(e.g., small deviations in direction change when walk-
ing around an object) when walking a straight line. 
If a turn is detected, then the next window’s start-
ing point is the previous window’s start. The window 
extension is performed to detect a U-turn (i.e., a 180◦ 
turn) in the data. A U-turn might take a few seconds 
to occur, and the 2-s window might not be suffi-
cient to detect it. Figure 8, shows the turn detected 
in a path. During the comparison, the turns are 
identified from the base dataset and the comparing 
dataset using Algorithm  1 . The identified turns are 
then compared with each other in the order of their 
occurrence. This comparison determines whether the 
user followed the instructions and took the advised 
turns or not. The last matching turn in both the data-
sets determined the minimum path covered by the 
user. The percentage of the path covered by the user 
is calculated based on when the last matching turn 
appears in the base dataset.

1.	 Magnetic data pattern matching The magnetic data 
collected using the mobile application consists of 
magnetic latitude, magnetic longitude and magnetic 
altitude. Each of these signals has a different pattern 
based on the magnetic field in that direction. For 
example, if a user takes a right turn by moving from 
the west direction to the north direction, the latitude 
and longitude values are almost interchanged. How-
ever, the signal still contains magnetic field interfer-
ence from the location. Thus in this work, the mag-
netic data is converted into a pattern that can detect 
local magnetic field changes. The Ramer–Douglas–
Peucker (RDP) method is used with epsilon = 5 to 
identify the pattern in magnetic data. Figure 9 shows 
the conversion of magnetic latitude data into an 
RDP pattern. The patterns generated for two signals 
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using the RDP method cannot be compared by sim-
ply overlapping them. Differences in the users’ walk-
ing speed can cause the pattern to occur at different 
times. Therefore, a Dynamic Time Warping (DTW) 
technique is used to compare the patterns to account 
for timing differences. An example of DTW match-
ing is shown in Fig. 10. DTW measures the temporal 
similarity between two temporal sequences that may 
have a variance in speed. This technique produces a 
2D matrix that stores the differences between each 
data value. Furthermore, a distance matrix is gener-
ated starting from an index of zero to the end of the 
matrix by adding the corresponding minimum dif-
ference value from the previous matrix. Finally, the 
minimum values in the distance matrix determine 
the similarity between the two datasets. The result 
from the distance matrix is further processed to cal-
culate the percentage of the path covered.

2.	 Wi-Fi Fingerprinting Wi-Fi fingerprinting has been 
used extensively in indoor navigation systems that 
collect Wi-Fi information [39, 52, 54]. In this method, 

Wi-Fi’s and their corresponding RSSI values for dif-
ferent locations are compared, and a similarity score 
is determined. The location with the highest simi-
larity score is determined to be the closest location. 
However, the number of Wi-Fi systems available and 
the differences in their RSSI values can significantly 
affect the score. For example, if a Wi-Fi is too far 
from the user, it may not always appear in the scan 
result and cause inaccurate estimation. Also, the 
RSSI values at a particular location may change due 
to obstructions in the sight line and cause significant 
differences in their RSSI values. To avoid this issue 
and reduce their impact on the estimation, the esti-
mating process is split into two different techniques 
(1) Using all the filtered Wi-Fi information, explained 
in the next paragraph, and (2) Using the RSSI values 
of Wi-Fi’s with strong RSSI values among all loca-
tions, explained in the Closest Wi-Fi location. The lat-
est Wi-Fi location information collected by the user 
is compared with each of the base dataset’s Wi-Fi 
locations. During the comparison, the percentage 
of matching BSSID is computed between the two 
locations. Occasionally, a distant Wi-Fi may appear 
in one or several locations along the path during a 
Wi-Fi scan. This unique Wi-Fi availability at particu-
lar locations can help in increasing the BSSID match-
ing percentage. Also, the unique Wi-Fi availability 
can help shortlist the closest Wi-Fi location for a 
user. This similarity score is later used as a part of the 
final estimation to determine the user’s path. 

(2)Loci = [(bssid1, rssid1), . . . , (bssidn, rssidn)]

(3)

LocDiff(i) =

n
∑

k=1

(

Locbase[bssidk ][rssid] − Loci[bssidk ][rssid]
)

(4)
Final Loc = MIN

(

LocDiff(i), . . . , LocDiff(n)

)

North

Walk path
Right turn detected
Left turn detected
U turn detected
U turn detected

Fig. 8  Map showing turns detected based on the magnetic 
information

Fig. 9  The plots show the conversion from the raw magnetic signal 
to the processed signal using the RDP technique to identify patterns

Fig. 10  A comparison of two signals using the Dynamic Time 
Warping (DTW) technique to identify similarity. 45◦ lines show 
similarity in the two signals
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3.	 Closest Wi-Fi location Researchers have proposed 
various approaches to identify the closest location 
using the BSSID and RSSI collected from differ-
ent locations [38, 55, 59]. In this method, the BSSID 
or the media access control (MAC) address and 
the RSSI information of the access points are cap-
tured and stored along with the capturing location, 
Eq. (2). The user’s location is estimated by comparing 
the user captured Wi-Fi information with the pre-
recorded database. Multiple approaches have been 
proposed in the literature to measure the difference 
between the two RSSI values of an access point [55, 
59]. One of the common approaches is to calculate 
the sum of the differences between the RSSI values 
of an access point for different locations, Eq. (3). The 
location with the minimum difference is selected as 
the closest location, Eq. (4).

In this study, the data is first cleaned to remove the 
records with RSSI values larger than −30. This step is 
necessary to remove the noise and unrealistic values as 
explained in subsection Data Cleaning. The data is fur-
ther filtered to select the Wi-Fi records with strong RSSI 
values and available in most locations. This filtration 
excludes Wi-Fis available in some locations and has weak 
RSSI values, as these cause large spikes in calculating the 
distance. The distance between the RSSI values is calcu-
lated using the Euclidean method. Thus, in the proposed 
system, the Eq. (3) is replaced with Eq. (5).

When selecting the closest Wi-Fi location, priority is 
given to the location with a minimum average distance. 
The second priority is given to the location with the max-
imum percentage of Wi-Fi matched.

Combining results from different techniques
Each of the four techniques discussed produces an esti-
mation of the user’s location. These results are combined 
to predict the location of the user. The path covered from 
Technique 2 is assumed to be the user’s location. In Tech-
nique 2, the DTW method matches data patterns in the 
processed magnetic data to find the overlapping pat-
terns with the user’s data. However, this technique can 
over-match the data, which leads to inaccurate estima-
tions. For example, Fig. 11 shows the path walked by two 
users. Both users started at the exact location and fol-
lowed the same path, however, in the middle of the track 
User 2 diverged from the path of User 1 and ended up in 

(5)

LocDiffi =

n
∑

k=1

(

Euclidean

(

Locbase[bssidk ]

[rssid], Loci[bssidk ][rssid]
)

)

a different location. The DTW analysis between the two 
user tracks shows that the users walked the same track 
with slight deviations. This issue of over-matching is 
managed by considering the results of Technique 1.

Technique 1 compares the turns identified in the dataset 
in the order of their occurrence. This comparison identi-
fies the differences between the two datasets and returns a 
percentage of the path that matches. The result from this 
technique confirms that the user took turns similar to the 
comparison dataset. The user location is estimated based 
on the following rules: Rule 1, if the result of Technique 1 
is larger or equal to the result of Technique 2, then consider 
the result of Technique 1, as the turn detection method is 
more accurate then the DTW matching, shown in Fig. 12A. 
Rule 2, if the user’s path covered from Technique 1 is less 
than the user’s path covered from Technique 2, it means 
that the DTW matching predicts the user has walked ahead 
of the last turn. It might be possible that the missed turn is 
due to DTW over-matching. To confirm that it is not over-
matching, the user’s path covered from Technique 2 should 
be before the next turn’s location. If the previous statement 
is true, then the user’s location is estimated to be the user’s 
path covered from the turn detection method (Technique 
1), otherwise user’s path covered from the DTW matching 
method (Technique 2), shown in Fig. 12B, C.

The results from Techniques 3 and 4 provide the clos-
est Wi-Fi location to a user. These results help achieve 
higher accuracy in locating the user, especially when they 
are walking on a straight path with no turns. For compar-
ing the results of these techniques, a set of possible Wi-Fi 
locations are identified from the base dataset. These loca-
tions include all the Wi-Fi locations between the previous 
turn to the next turn. If the result from Technique 3 and 
4 matches within the list of possible Wi-Fi locations, then 
the matching Wi-Fi location is estimated to be the user’s 
location. If no match is found from the list, it confirms 
that the user is not on track.

Testing environment and strategy
The testing for the proposed system was performed 
in a home with two floors. This home was selected 

Fig. 11  A comparison of the dynamic time warping (DTW) analysis 
between the two datasets
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primarily due to COVID-19 restrictions that limit 
access to office buildings and malls. This home is also 
located in a neighbourhood with many Wi-Fi connec-
tions available at a variety of distances. The availability 
of many Wi-Fi connections creates a similar environ-
ment to that of an office building or mall. With the two 
floors in the home, multi-floor navigation can also be 
tested. Some small start-up companies and community 
offices in remote locations use homes as their office 
space. They also store AEDs for public use, by selecting 
a home for experimentation we are simulating a similar 
environment.

The travel path selected for experimentation is shown 
in Figure  3. The path was selected to incorporate floor 
changes, long straight paths, different turns in the path-
way, walking next to electrical and magnetic devices, and 
covering the maximum distance without overlapping. 
In the planned path, the user has to walk 7.3 m straight, 
take a right turn, walk straight for 5.4 m, take a left turn 
to climb upstairs, and have a U-turn. Upon reaching the 
first floor, the user takes another U-turn and walks 4.2 m 
straight to reach the AED location.

Three participants used an Android mobile phone hav-
ing the android application shown in Fig. 2 to collect the 
data. Each participant walked the path 20 times to collect 
the data.

A cross-comparison among the datasets was per-
formed, each dataset collected was compared against all 
the other datasets. This type of analysis is performed to 
compare datasets collected by the same user and with 
other participants. The comparison also includes partial 
datasets to verify the user’s location on the path.

Computational resources
During experimentation, two devices were used to cap-
ture the information and process the results. First, an 
Android mobile (Google Nexus 5X with 2 GB RAM and 
Android 8.1.0 installed) for capturing the magnetic and 
Wi-Fi information during a user’s walk. Second, a laptop 
with an Intel i7 processor (8 core), 40 GB memory, and 
1TB Solid State Drive to compare the datasets. The lap-
top will eventually be replaced with a cloud-based server 
to perform the analysis.

Results
The experimentation dataset contains data from three 
participants who walked 20 times on the path shown in 
Fig. 3. A total of 60 datasets were collected. A cross-com-
parison of datasets is performed to measure the accuracy 
between intra-user datasets. However, this analysis com-
pares the entire dataset and misses the potential partial 
matching of the dataset for identifying a user’s location 
on the path. Therefore, each dataset is segmented into 
ten parts from 10 to 100% with a step of 10% (i.e., 0–10%, 
0–20%, ..., 0–100%). A total of 36,000 comparisons were 
performed (i.e., 60 datasets were cross-compared, each 
with 10 segments, 60× 60× 10 = 36,000).

Combining results from different techniques, the pro-
posed system achieved an accuracy of 79%, determining 
the path covered by a user with an error distance of ± 
2.4 m. Figure 13, shows the accuracy achieved by AED-
Nav for the different segments of data. The accuracy was 
lowest (i.e., 58%) when the full segment was compared 
with the base dataset.

Another reduction in the AEDNav accuracy occurs 
during segments 60%, 70%, and 80%. The lower accu-
racy is again observed during a straight line walk when 
only the Wi-Fi was accessed once along this path. As 
described earlier, due to a lack of data reference points 
along the path, the system is unable to estimate the 
user’s location precisely. The accuracy improved when 
the 90% segment was compared. This increase in the 
accuracy is due to an increase in the number of Wi-Fi 
scans completed and a turn is detected.

Figure 15 shows the accuracy achieved by the individ-
ual techniques proposed in this study. Technique 2 pro-
vides the highest accuracy among all of the techniques. 
However, this technique’s results are not reliable, as pre-
viously discussed in the Methods section. Technique 3 
and 4 provided the next best accuracy followed by Tech-
nique 1 Turn detection. Technique 1 was able to achieve 
an accuracy of 80% with an error distance of ± 9.4  m, 
Technique 2 with error distance of ± 2.4 m and Technique 
3 and 4  with error distance of ± 4.6 m.

Fig. 12  Result selection between Technique 1 and 2 
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Figure  14 shows the maps generated using the mag-
netic information, along with the Wi-Fi scan locations of 
six different datasets collected during this research. Two 
datasets for each participant are plotted to demonstrate 
the variations in their walks. All users travelled the same 
marked path at their average walking speed. If a user’s 
speed is consistent and they travel a path twice, then the 
plot for their walks should be overlapping. However, in 
Fig.  14, it can be observed that there is a considerable 

difference between the plots within and among users. 
These plots are created assuming all the users are walk-
ing at a consistent speed. In the map for Participant 1, the 
distance between the Right turn and the Left turn is sig-
nificant (approximately 1.8 m). The reason for the differ-
ence in distance is the variation in the walking speed of 
the user. However, the distance between the two U-turns 
for the two datasets for Participant 1 is similar (7.3 and 
7.9  m). There was slight variation in the user’s walking 
speed between these sections. Since there can be con-
siderable differences in a user’s walking speed, the AED-
Nav uses the path travelled patterns to estimate the user’s 
location rather than calculating the distance.

Figure  16 shows the accuracy achieved by AEDNav 
over the different error distances. When the error dis-
tance is set to zero, the system can achieve an accuracy 
of 6% in estimating the user’s location. The error distance 
of ± 2.4 m allows the system to reach an accuracy of 79%. 
Increasing the error distance increases the accuracy, 
however, the increase in error will affect the navigation 
instructions for the user and thus reduces the applicabil-
ity of the system for indoor navigation.

For the comparison of system accuracy, the one devel-
oped by Li et al. [54] is the most similar to AEDNav. Both 

Fig. 13  The graph shows the accuracy achieved by the proposed 
system when segments of datasets were compared

Fig. 14  The subplots show the map generated for all 3 users and 2 of their datasets using the magnetic information. The maps are marked with the 
turns detected by the system and the positions on the path where Wi-Fi information was collected
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systems use Wi-Fi and magnetic information to provide 
indoor navigation [60]. The system proposed by Li et al. 
achieved an accuracy of 80% with an error distance of 
± 4  m, and the AEDNav achieved an accuracy of 86% 
with the same error distance. Table  2, shows the com-
parison between AEDNav (the proposed system) and Li 
et al.’s proposed system. A significant difference between 
the two systems is that AEDNav uses data from a single 
walk to provide navigation. In contrast, Li et al.’s system 
required 30 min of walking to develop the baseline map 
to provide navigation.

Discussion
During a sudden cardiac arrest event, it is crucial to 
provide early resuscitation to the patient by performing 
CPR and applying an AED. The reduced survival rate of 
10% per minute necessitates quick action from bystand-
ers. Therefore, it is vital to provide resuscitation in the 

minimum possible time. Emergency service providers 
and communities understand the importance of early 
resuscitation and have implemented multiple solutions to 
ensure quick treatment times. Some of the solutions are: 
implementing responder network systems, increasing the 
availability of AEDs in public places, and mobile applica-
tions to provide the location of nearby AEDs.

The selection of the nearest AED can be performed 
either by the user manually or by using the responder 
network system that has been developed earlier by the 
authors [61]. By providing only the AED location, the 
user may have to spend significant time finding the AED 
within the premises. There are many existing indoor nav-
igation solutions available in the literature. However, they 
are not feasible for an extensive network of AEDs within 
a city because they either require enormous data or spe-
cial hardware on the premises. The authors could find 
only one proposed system that uses Wi-Fi and magnetic 
data to provide indoor navigation in the literature [60]. 
A primary reason for the limited use of these technolo-
gies is that the data often contains significant noise that 
can make the data unusable. Another reason is that these 
technologies independently cannot accurately provide 
the localization of the user.

This research proposes an indoor navigation system 
called AEDNav that does not require special hardware to 
be installed on the premises, nor requires a large quan-
tity of data to be collected. The AEDNav requires a user 
to walk from the building entrance to the AED with their 
smartphone running the data collection application. The 
application captures the information about the existing 
Wi-Fi devices and magnetic information of the path and 
transmits it to the server to build the map. This walk can 
be performed by the AED installer or the AED owner, as 
they are the first person to know the location of the AED.

The accuracy of the system is adequate to provide naviga-
tion within the building. When a user is walking in a straight 
line, the system’s accuracy with an error distance of ± 2.4 m 
is not a concern. However, estimates are crucial when a 
user is near a turn or about to reach their destination. In 
both cases, the error distance of ± 2.4 m can be corrected 
by the user upon examining the environment. For example, 

Fig. 15  The graph shows the accuracy achieved by the various 
techniques

Fig. 16  The graph shows the relationship between system accuracy 
over a range of error distances

Table 2  A comparison between the proposed system and 
existing systems

AEDNav (Proposed 
system)

You Li (2015)

Accuracy 86% 80%

Error distance (m) 4 4

Data collected A walk from start to the 
end of path

Half an hour 
of walk on the 
path
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if a user is a few meters behind or ahead of the turn, they 
can examine the environment and decide to take the near-
est turn. Also, the corridors in a building are typically 1.8 m 
wide on average. Thus, the significance of the error distance 
is further reduced. Another issue with accuracy occurs 
when the user reaches the end of their path. This problem is 
minimized because the AEDs are labelled to ensure they can 
be identified from a distance. Thus, a user can evaluate the 
environment and find the AED from a distance.

There are several reasons for the low accuracy that we 
observed in our experiment. First, the DTW compari-
son performs pattern matching and ignores the length 
of data in each pattern. The walk between segments 90% 
and 100% of the path is a straight line walk, and thus the 
DTW matching fails to estimate the user’s location. Sec-
ond, the distance between segments 90% and 100% of the 
path was covered in less than 4  s by the user. Four sec-
onds was insufficient time for the smartphone to scan the 
Wi-Fi access points multiple times. With only informa-
tion from a single Wi-Fi location, the Wi-Fi techniques 
could not be used to achieve higher accuracy. The accu-
racy at the end of the path can be ignored because the 
AEDs are easily identified from a distance. Furthermore, 
the user would likely be within ± 2.4 m from the AED.

Due to the COVID-19 restrictions, the AEDNav sys-
tem was tested in a home environment with all pos-
sible conditions that mimic real world scenarios, such 
as stairs, large electrical appliances and multiple Wi-Fi 
signals. When the restrictions are relaxed, the authors 
intent to test the system in different physical locations 
to further strengthen the case for real time implemen-
tation. The system was tested using the data collected 
from a single walk of the path. In theory, if the data of 
multiple paths are combined, then the accuracy in locat-
ing a user will further increase. In the future, the system 
will be further developed to include other technologies 
that may be available on the premises, such as beacons 
or RFIDs. The information from these devices can pro-
vide more reference points along the path. A step coun-
ter can overcome the existing limitation of estimating a 
user’s location on a straight-line path may also be benefi-
cial to the system.

The AEDNav was developed to provide indoor naviga-
tion to an AED. However, this system can also be used for 
other purposes to provide indoor navigation (e.g., confer-
ences, malls, and offices). Another critical implementa-
tion of this system is for the fire department. This system 
could potentially be used by emergency services such as 
firefighters or paramedics to track their colleagues while 
in an unknown environment to ensure their safety. The 
AEDNav system can serve both as mapping as well as 
tracking system within an indoor environment.

Conclusion
This research aimed to develop the AEDNav system 
to provide indoor navigation to an AED. The AEDNav 
uses Wi-Fi and magnetic information to build a path 
that can then provide navigation instructions to a user. 
The proposed system uses various techniques to local-
ize the user along the path. The novelty of the AEDNav 
system requires the AED installer/owner to walk the 
path a single time to provide the baseline navigation 
route, and no special hardware is required. Reducing 
the amount of data required to map the initial route 
makes it feasible for an individual to record the data 
and reduce overall computation time. The AEDNav 
outperforms some of the existing systems that use simi-
lar technologies but require larger datasets.
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