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Testosterone metabolites differentially regulate
obesogenesis and fat distribution
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ABSTRACT

Objective: Low testosterone in men (hypogonadism) is associated with obesity and type II diabetes. Testosterone replacement therapy has been
shown to reverse these effects. However, the mechanisms by which testosterone regulates total fat mass, fat distribution, and metabolic health
are unclear. In this study, we clarify the impact of hypogonadism on these parameters, as well as parse the role of testosterone from its
downstream metabolites, dihydrotestosterone (DHT), and estradiol, in the regulation of depot-specific adipose tissue mass.
Methods: To achieve this objective, we utilized mouse models of male hypogonadism coupled with hormone replacement therapy, magnetic
resonance imaging (MRI), glucose tolerance tests, flow cytometry, and immunohistochemical techniques.
Results: We observed that castrated mice develop increased fat mass, reduced muscle mass, and impaired glucose metabolism compared
with gonadally intact males. Interestingly, obesity is further accelerated in castrated mice fed a high-fat diet, suggesting hypogonadism increases
susceptibility to obesogenesis when dietary consumption of fat is elevated. By performing hormone replacement therapy in castrated mice, we
show that testosterone impedes visceral and subcutaneous fat mass expansion. Testosterone-derived estradiol selectively blocks visceral fat
growth, and DHT selectively blocks the growth of subcutaneous fat. These effects are mediated by depot-specific alterations in adipocyte size. We
also show that high-fat diet-induced adipogenesis is elevated in castrated mice and that this can be rescued by androgen treatment. Obesogenic
adipogenesis is also elevated in mice where androgen receptor activity is inhibited.
Conclusions: These data indicate that hypogonadism impairs glucose metabolism and increases obesogenic fat mass expansion through
adipocyte hypertrophy and adipogenesis. In addition, our findings highlight distinct roles for testosterone, DHT, and estradiol in the regulation of
total fat mass and fat distribution and reveal that androgen signaling blocks obesogenic adipogenesis in vivo.

� 2020 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Low testosterone in men, known as hypogonadism, is associated with
reduced muscle mass [1,2] and an increased incidence of obesity and
diabetes [3e6]. Although the role of testosterone in maintaining
muscle mass in males is well established [7e9], how testosterone
exerts its anti-obesogenic effects is less clear. Testosterone is an
agonist of the androgen receptor (AR) and a pro-hormone capable of
being converted to the more potent androgen, dihydrotestosterone
(DHT), or estradiol by 5a-reductase and aromatase, respectively. DHT
cannot be aromatized to estradiol as testosterone can and exerts its
biological effects through AR; estradiol does so through estrogen re-
ceptors (ERs) and GPR30 [10,11]. Androgens and estrogens are
thought to mediate anti-obesogenic processes. For example, testos-
terone and DHT have been shown to inhibit adipogenesis in vitro [12e
14], and testosterone replacement therapy reduces adiposity in
hypogonadal men and mice [15,16]. However, data involving the role
of DHT in fat mass regulation in vivo are conflicting. DHT treatment of
hypogonadal males has been shown to decrease fat mass [17], have
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little to no effect on adiposity [15,16], and promote fat mass expansion
[18].
By contrast to DHT, estradiol has consistently been observed to
negatively regulate fat mass. For example, treating gonadally intact
male mice with estradiol impedes excessive fat mass expansion when
animals are fed a high-fat diet (HFD) [19], and ERa knockout male
mice develop obesity [20]. Aromatase knockout mice, which do not
convert testosterone to estradiol, also develop obesity [21,22], and a
deleterious mutation in the aromatase gene of a man resulted in
excessive adipose tissue and metabolic complications [23]. Therefore,
the conversion of testosterone to estradiol by aromatase is likely
important for impeding fat mass expansion in males. However, the role
of estradiol in the regulation of male fat distribution is less clear.
Under normal conditions, men are known to accrue a proportionally
greater quantity of visceral fat than women do, who accrue more
subcutaneous fat than men do [24]. However, after menopause, when
estradiol levels decrease, women progressively develop a more
masculine fat distribution [25] that can be slowed by estradiol treat-
ment [26]. Whether estradiol reduces visceral fat storage, enhances
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storage in subcutaneous depots, or both remains unclear. By contrast,
treating hypogonadal men with testosterone has been shown to
preferentially reduce either visceral [27,28] or subcutaneous fat stores
[29,30], and a role for DHT in fat distribution has not been reported.
Thus, fat distribution in males may be influenced by the combined
effects of testosterone, DHT, and estradiol. In this study, we leveraged
pharmacologic approaches and mouse models of male hypogonadism
to clarify the role of testosterone metabolism in the regulation of body
composition, fat distribution, and metabolic disease.

2. MATERIALS AND METHODS

2.1. Animal models
Experiments were approved by the Yale Institutional Animal Care and
Use Committee. ARdY mice [31](Stock #001809) and mTmG mice
[32](Stock #007576) were acquired from the Jackson Laboratory. The
eda mutation was bred out of the ARdY strain before initiating ex-
periments. ARdY:mTmG mice were generated by breeding AR mutant
heterozygous females with mTmGþ males. Castrated C57Bl/6J mice
were also acquired from the Jackson Laboratory. Surgery was per-
formed at 3 weeks of age. HFD was 60% lard from Research Diets
(D12492) and a standard diet from Harlan Laboratories (2018S).
Hormonal and drug treatments were administered by using Alzet mini-
osmotic pumps (model #1004). Alzet pumps were made compatible
with MRI by replacing the stainless-steel flow moderator with PEEK
medical microtubing (DURECT Corporation #0002612). Vehicle was
45% w/v 2-hydroxypropyl-b-cyclodextrin (Cayman Chemical #16169)
in 1X PBS or 45% w/v 2-hydroxypropyl-b-cyclodextrin (Cayman
Chemical #16169) in 1X PBS þ 10% DMSO (Sigma Aldrich #D5879).
Testosterone (Cayman Chemical #15645) and DHT (Cayman Chemical
#15874) were dosed at 2 mg/kg body weight/day and estradiol
(Cayman Chemical #10006325) at 2 ug/kg body weight/day. Letrozole
(Cayman Chemical #11568) was dosed at 0.4 mg/kg body weight/day,
and bicalutamide (Cayman Chemical #14250) and dutasteride
(Cayman Chemical #15956) at 0.5 mg/kg body weight/day. Notably,
the bicalutamide dosage used here was 25%e30% of the dose
commonly used for men with locally advanced prostate cancer [33,34].

2.2. Glucose metabolism, body composition, and fat distribution
Glucose tolerance tests (GTTs) were performed by fasting animals
overnight (16e18 h). Next, we determined the fasting blood glucose
level via a tail vein nick. A 20% glucose solution in saline was then
injected intraperitoneally at a concentration of 2 g glucose/kg body
weight. Blood glucose level was assessed 10, 20, 30, 60, and 120 min
after glucose injections. Glucose tolerance refers to the incremental
area under the curve (iAUC). Body composition (i.e., lean and fat mass)
was determined for each mouse by using MRI (EchoMRI-100H,
EchoMRI, Houston, TX, USA). Fat distribution was calculated according
to the following equation:

log10ðSWAT
VWAT

Þ

In this equation, SWAT ¼ inguinal subcutaneous fat mass (g) and
VWAT¼ perigonadal visceral fat mass (g). The logarithm is taken from
the SWAT/VWAT ratio to correct for skew.

2.3. Adipocyte hypertrophy and hyperplasia
To quantify adipocyte size (hypertrophy), adipose tissue was paraffin
embedded for histological analysis, as previously described [35]. Next,
5 um sections were trichrome stained and imaged at 20X on a Keyence
BZ-X800 microscope. A described pipeline in Cell Profiler [36] was
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used to determine adipocyte size [35]. The size of at least 100 adi-
pocytes was averaged for each biological replicate. New adipocyte
formation (hyperplasia) occurs in response to HFD feeding and occurs
in 2 stages. In the first stage, adipose-resident adipocyte precursors
(APs) proliferate during the first week of HFD feeding. In the second
stage, proliferative APs from stage 1 differentiate into new adipocytes
over the course of 7 weeks [37]. New adipocyte formation was
quantified by initiating animals on an HFD while treating them with
0.4 mg/ml BrdU in their drinking water for 1 week. BrdU is a thymidine
analog and is incorporated into the DNA of proliferating cells during the
S phase of the cell cycle.
After 1 week, BrdU was removed from the drinking water, and animals
were kept on a HFD for 7 weeks to allow APs to differentiate into
adipocytes. Adipose tissue was paraffin embedded and sectioned as
described. Sections were deparaffinized, rehydrated, and then un-
derwent antigen retrieval in 10 mM sodium citrate (pH 6.0) in a 2100
Retriever (PickCell laboratories). Sections were blocked and stained in
2% BSA PBS. Sections were incubated in rabbit anti-Caveolin (Cell
Signaling #3238; 1:400 dilution) and rat anti-BrdU (Abcam #ab6326;
1:300 dilution) primary antibodies overnight at 4C.
The next day, sections were washed in 2% BSA PBS and incubated in
secondary antibodies for 4 h at room temperature in the dark. Sec-
ondary antibodies were goat anti-rabbit rhodamine-x-red (Jackson
ImmunoResearch 111-295-144; 1:400 dilution) and goat anti-rat-
A488 (Jackson ImmunoResearch 112-545-167; 1:400 dilution).
Slides were mounted with DAPI Flouromount-G (Southern Biotech) and
imaged with a Leica SP5 confocal microscope. At least 100
BrdUþ adipocyte nuclei were counted for each biological replicate.
To quantify AP proliferation, animals are fed an HFD and given 0.8 mg/
ml BrdU in their drinking water for 1 week. After this treatment, ani-
mals were sacrificed and the adipose tissue was harvested. Adipose
tissue was minced and digested in 1X HBSS (Gibco Cat# 14185052)
supplemented with 3% BSA (AmericanBio 9048-46-8), 0.8 mM ZnCl2,
1.0 mM MgCl2, 1.2 mM CaCl2 and 0.8 mg/ml Collagenase Type 2
(Worthington) in a shaking water bath (130 rpm) at 37 �C. After
digestion, homogenate was filtered through a 40 um cell filter and
centrifuged at 300 g for 3 min. The pellets were then resuspended in
1 ml of 1x HBSS þ 3% BSA to wash the cells and transferred to a
1.5 ml Eppendorf tubes before centrifugation at 300 g for 3 min.
Next, the cell pellets were resuspended in 50 ul of 1x HBSSþ 3% BSA
with the following antibodies: CD29-A700 (BioLegend, 102218; 1:400
dilution), CD31-PECy7 (eBioscience, 25-0311-82, clone 390; 1:500
dilution), Sca1-Pacific Blue (BD Biosciences, 560653, clone D7; 1:250
dilution), and CD45-APC e780 (eBioscience; 47-0451-80, clone 30-
F11; 1:500 dilution) for 30 min on ice in the dark. Cells were then
washed in PBS, followed by fixation and permeabilization by Phosflow
Lyse/Fix (Cat# 558049) and Perm Buffer III (Cat# 558050) (BD Bio-
sciences) according to the manufacturer’s instructions. The cells were
pelleted and then washed in PBS with Ca and Mg, followed by treat-
ment with DNase (Worthington; 1mg/10 ml) for 90 min at 37 �C in a
water bath with gentle agitation (50 rpm) in the dark. Cells were
pelleted and washed in 3% BSA þ 1x HBSS followed by overnight
incubation at 4 �C in the dark in anti-BrdU antibody (Alexa Fluor 647;
Phoenix Flow Systems; AX647, clone PRB-1; 1:30 dilution).
The next day, the cells were washed in 3% BSA þ 1x HBSS and
incubated in the following antibodies for 1 h at room temperature in the
dark: CD24-PerCPCy5.5 (eBioscience, 45-0242-80, clone M1/69;
1:200 dilution), CD34-PE (BioLegend, clone MEC14.7; 1:400 dilution),
CD29-A700 (BioLegend, 102218; 1:400 dilution), CD31-PECy7
(eBioscience, 25-0311-82, clone 390; 1:500 dilution), Sca1-Pacific
Blue (BD Biosciences, 560653, clone D7; 1:250 dilution), and CD45-
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APC e780 (eBioscience; 47-0451-80, clone 30-F11; 1:500 dilution).
After antibody incubation, cells were washed in 3% BSA þ 1x HBSS,
and BrdUþ APs were identified by using flow cytometry. For the ARdY
to male adipocyte precursor AP transplants, APs were isolated via
FACS and 500,000e1,000,000 cells were injected into the inguinal
subcutaneous fat pad of 3e6-week-old male mice. After a 2-week
recovery period, mice were given an HFD and 0.8 mg/ml BrdU in
their drinking water to mark proliferative cells. Because ARdY cells
were mTmGþ, Sca1-Pacific Blue was replaced with Sca1-V500 (BD
Horizon, 561228, clone D7; 1:250 dilution) and CD34-PE was replaced
with CD34-BV 421 (BioLegend 119321, clone MEC14.7; 1:400
dilution).

2.4. mRNA expression
Gene Primer Sequence (50/30)

Androgen Receptor Forward: CCTTATGGGGACATGCGTTTG
Reverse: CCCAGAGTCATCCCTGCTTC

MED1 (reference gene) Forward: AATAGACCTTTCACCCCACCT
Reverse: CCCACCATCACTGTCCCTTTA

TBK1 (reference gene) Forward: ACTGGTGATCTCTATGCTGTCA
Reverse: TTCTGGAAGTCCATACGCATTG

Adiponectin (control) Forward: GGAGATGCAGGTCTTCTTGG
Reverse: GCGATACACATAAGCGGCTTC
All samples were run in technical duplicate or triplicate on a Light-
Cycler 480 instrument. Relative gene expression was determined by
using the standard curve method. Reference gene expression is shown
in (Supp. Fig. 3AeC). To confirm the separation of adipocytes from
stomal vascular cells in adipose tissue, adiponectin expression was
determined (adipocytes ¼ adiponectinþ; SVC ¼ adiponectin-; Supp.
Fig. 3D).

2.5. Statistical analysis
Statistical tests were performed using GraphPad Prism version 8.0 and
are denoted in figure legends. Data are presented as mean � SEM,
and p < 0.05 was considered statistically significant. For multiple
linear regression analysis, diet, hormonal status (castration vs. sham),
and body composition parameter (i.e., body weight, lean mass, or fat
mass) were considered independent variables. Analyses were parsed
according to body composition parameter to account for multi-
collinearity among these datasets, and structural multicollinearity was
reduced by centering the independent variables.

3. RESULTS

3.1. Hypogonadism alters body composition, impairs glucose
metabolism, and accelerates diet-induced obesity
Castrated rodents and other mammals are commonly used to model
hypogonadism in men because this procedure dramatically reduces
testosterone levels [38] and accurately recapitulates the changes in
body composition observed in hypogonadal men, namely, increased fat
mass and decreased lean mass [16,39,40]. Lean mass is predomi-
nately muscle, the major site of glucose uptake [41]. Lower muscle
mass is associated with impaired glucose metabolism in patients with
and without diabetes [42e44]. Excessive adipose tissue mass con-
tributes to metabolic disease risk in obesity [45].
To determine the impact of hypogonadism on body composition and
glucometabolic health, we fed castrated and sham mice a standard
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diet (SD) or HFD for 8 weeks followed by assessments of body
composition and glucose metabolism. Castrated mice weighed less
than sham mice on an SD, but total body weight was the same be-
tween the castrated and sham animals on an HFD (Figure 1A). Cas-
trated mice developed more fat mass and less lean mass than did
sham controls on both diets (Figure 1B,C). However, the rate of fat gain
was more pronounced on the HFD in castrated mice (Supp. Fig. 1A, B),
indicating that hypogonadism further accelerates obesity development
when dietary fat intake is high. The increased fat mass is accounted for
by a greater quantity of both visceral and subcutaneous fat
(Figure 1DeF). On an SD, castrated animals displayed elevated fasting
glucose, but glucose tolerance was the same as that of sham controls
(Figure 2A,C). On an HFD, however, fasting glucose and glucose
intolerance were significantly elevated in castrated mice (Figure 2B,D).
By using multiple linear regression analysis, we observed that diet and
hormonal status (castration vs. sham), rather than body composition
parameters, are the major determinants of glucometabolic health.
However, fat mass exhibits considerable multicollinearity with diet
(Supp. Table 1), which was expected because HFD feeding promotes
obesity. Taken together, these data support the notion that hypo-
gonadism in males impairs glucose metabolism, reduces lean mass,
and promotes the expansion of adipose tissue. Given that castration
further accelerates obesity development on an HFD (Supp. Fig. 1A, B),
we attempted to determine the cellular mechanisms by which
testosterone and its metabolites regulate fat mass.

3.2. Testosterone metabolites incur depot specificity to adipocyte
hypertrophy
To identify specific roles of testosterone, estradiol, and DHT in regu-
lating total fat mass and fat distribution, we treated distinct cohorts of
castrated mice with one of these hormones each in addition to feeding
them an HFD for 4 weeks. Because castration dramatically reduces
androgens and estrogens [46], adding back individual hormones will
allow the identification of their unique role in regulating obesogenic fat
mass expansion. As expected, testosterone effectively reduced HFD-
induced fat mass expansion (Figure 3A). DHT treatment, however,
had no effect on fat gain on an HFD (Figure 3B). By contrast, treating
castrated mice with estradiol modestly ameliorated HFD-induced
obesogenesis (Figure 3C). Consistently, treating gonadally intact
male mice with the aromatase inhibitor (AI), letrozole, resulted in a
greater accumulation of fat than in vehicle-treated controls (Figure 3D),
despite an apparent increase in androgen levels as a readout by
elevated seminal vesicle mass (Supp. Fig. 1C). These data support
findings that have indicated that the anti-obesogenic activity of
testosterone in males is at least partly mediated by its conversion to
estradiol by aromatase.
Next, we determined the impact of testosterone, DHT, and estradiol on
depot-specific fat mass expansion. Notably, testosterone treatment
significantly reduced visceral and subcutaneous fat mass, and DHT
reduced subcutaneous fat mass (Figure 3E,G). The DHT-mediated
reduction in subcutaneous fat was not sufficient to reduce total fat
mass compared with vehicle-treated castrated mice (Figure 3B). By
contrast, estradiol treatment specifically reduced visceral fat expansion
(Figure 3E), with no significant effect on subcutaneous fat mass
(Figure 3G). Consistent with these findings, inhibition of aromatase
activity in gonadally intact male animals resulted in the preferential
accumulation of visceral fat (Figure 3J) and a more prominent visceral
fat mass bias than in vehicle-treated gonadally intact males
(Figure 3L). This effect on fat distribution is corroborated by the
observation that estradiol reduces the proportion of visceral fat relative
to subcutaneous fat in castrated mice (Figure 3I).
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 3
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Figure 1: Castration alters body composition but not fat distribution. (A) Bodyweight. (B) Lean mass. (C) Fat mass. (D) Depot weights on a standard diet. (E) Depot weights on
a high-fat diet. (F) Fat distribution. SD ¼ standard diet, HFD ¼ high-fat diet, SWAT ¼ subcutaneous white adipose tissue, VWAT ¼ visceral white adipose tissue. Statistical tests
were unpaired Student’s t tests between denoted groups.
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Figure 3: Testosterone metabolism incurs depot specificity to adipocyte hypertrophy. (A) Fat mass gain in castrated mice treated with vehicle or T on an HFD (n ¼ 9e16).
(B) Fat mass gain in castrated mice treated with vehicle or DHT on an HFD (n ¼ 10e16). (C) Fat mass gain in castrated mice treated with vehicle or estradiol on an HFD (n ¼ 5e
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Visceral adipocyte size in castrated animals (n ¼ 5e16). (G) Subcutaneous fat mass in castrated animals (n ¼ 5e16). (H) Subcutaneous adipocyte size in castrated animals
(n ¼ 5e16). (I) Fat distribution in castrated animals (n ¼ 5e16). (J) Visceral and subcutaneous fat mass in vehicle- and aromatase inhibitor-treated male mice (n ¼ 14e15). (K)
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multiple comparisons test. Notably, the vehicle control is the same in (AeC); data were split into three graphs to aid visualization. Significance in (EeI) was determined by using
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Fat mass expansion occurs by the generation of new adipocytes (hy-
perplasia) and by the enlargement of existing adipocytes through lipid
uptake (hypertrophy). Obesogenic adipocyte hyperplasia takes
approximately 8 weeks from the outset of HFD feeding [37,47]. Sig-
nificant changes in adipocyte size can occur in as little as 24 h [48,49].
Thus, because of the 4-week duration of these experiments, adipocyte
hypertrophy is the most likely mechanism by which alterations in fat
mass would occur. The depot-specific effects of testosterone, DHT,
and estradiol on fat mass can be largely explained by changes in
adipocyte size in castrated animals (Figure 3F,H; Supp. Fig. 1E).
However, in male mice treated with AI, adipocyte size was only
modestly elevated in visceral and subcutaneous fat (Figure 3K; Supp.
Fig. 1F). As DHT reduced adipocyte size without affecting total fat mass
in castrated mice, the subtle effects on adipocyte size in AI-treated
animals could reflect the combined effects of reduced estradiol and
elevated androgen activity.
MOLECULAR METABOLISM 44 (2021) 101141 � 2020 The Author(s). Published by Elsevier GmbH. This is an open
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3.3. Testosterone negatively regulates obesogenic adipogenesis
in vivo in an AR-dependent manner
Enhanced adipocyte hyperplasia may also contribute to the increased
fat mass observed in male hypogonadism. Adipocyte hyperplasia oc-
curs through the proliferation and subsequent differentiation of APs.
Importantly, this process is initiated by HFD feeding and AP prolifer-
ation occurs only during the first week of the HFD stimulus. Prolifer-
ative APs then differentiate into adipocytes over the next 7 weeks of
HFD feeding. Therefore, AP proliferation, detectable after 1 week of
HFD, can be used as a proxy for new adipocyte formation. Adipo-
genesis can also be directly assessed after 8 weeks of HFD feeding by
using pulse-chase experiments that permanently label APs during
proliferation [37].
We observed that basal AP proliferation on an SD was modestly higher
in sham mice than in castrated mice (Supp. Fig. 2A), suggesting the
increased fat mass in castrated mice on an SD is not due to adipocyte
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 5
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Figure 4: Androgen signaling negatively regulates obesogenic adipogenesis in vivo. (A) HFD-induced new adipocyte formation. (B) HFD-induced visceral adipocyte precursor
proliferation. (C) HFD-induced subcutaneous adipocyte precursor proliferation. (D) HFD-induced adipocyte precursor proliferation upon low dose AR inhibitor treatment (25-30%
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hyperplasia. However, in response to HFD, obesogenic adipogenesis
was enhanced in the visceral and subcutaneous fat of castrated mice
relative to sham controls (Figure 4A), indicating hypogonadism in-
creases susceptibility to adipogenesis in response to dietary fat intake.
Consistent with these results, we observed that AP proliferation was
significantly elevated in response to HFD in both fat depots, compared
with sham controls (Figure 4B,C). Notably, treating castrated mice with
either testosterone or DHT rescues the hyperproliferative response of
APs to the HFD in castrated mice (Figure 4B,C). Given that DHT cannot
be aromatized to estradiol, these data indicate that androgens, rather
than estradiol, are sufficient to mediate anti-adipogenic effects in vivo
and do so in an AR-dependent manner. Thus, we focused on the role of
the androgen signaling pathway in this process.
We treated wildtype male mice with a low dose of the AR inhibitor,
bicalutamide, and observed a modest elevation in AP proliferation in
visceral and subcutaneous fat in response to an HFD (Figure 4D),
without effects on seminal vesicle mass (Supp. Figure 2B). These data
support the notion that AR activity negatively regulates HFD-induced
AP proliferation. We also tested HFD-induced AP proliferation in mice
without functional AR. These mice were karyotypically male (XY
chromosomes) but developed female secondary sexual characteristics
and ambiguous reproductive organs because of a deleterious mutation
in the AR gene [31]. AR deficient XY (ARdY) mice exhibited enhanced
HFD-induced AP proliferation, specifically in subcutaneous fat
(Figure 4E). The reason for this depot specificity in ARdY mice is un-
clear. However, it has been suggestied that the developmental
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establishment of visceral fat is impaired in ARdY mice [16], which
could contribute to the dampened hyperproliferative response of this
depot to an HFD. Altogether, these data support the conclusion that
androgens negatively regulate adipogenesis in vivo in a manner
dependent on AR function.
Next, we attempted to determine whether the anti-adipogenic effects
of androgens are dependent on adipose-intrinsic AR function. To
achieve this objective, we first profiled the mRNA expression of AR in a
panel of several major organs and observed that AR is expressed in
white adipose tissue at levels comparable to organs known to be highly
sensitive to androgens such as the seminal vesicles and skeletal
muscle (Supp. Fig. 2C). By digesting adipose tissue with collagenase,
we separated adipocytes from stromal vascular cells and profiled AR
expression in these different adipose-resident cell populations.
Notably, AR expression was significantly greater in adipocytes than in
total SVCs (Supp. Fig. 2D). Because multiple cell types compose the
SVC population, high AR expression in one cell type might be masked
by low AR expression in other SVCs. Therefore, we compared AR
expression in isolated APs with whole SVCs and isolated CD45þ he-
matopoietic cells from adipose tissue. AR expression was significantly
higher in APs than in whole SVCs and CD45þ cells (Supp. Fig. 2E).
Thus, the adipocyte lineage is likely highly sensitive to androgens. To
determine if AR function was required in APs for the anti-adipogenic
effect of androgens, we transplanted mTomatoþ APs from
ARdY:mTmG mice, which have significantly reduced AR expression
and function (Supp. Fig. 2F) [50], into wildtype male subcutaneous fat
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and quantified HFD-induced AP proliferation. This strategy allowed us
to differentiate AR mutant cells (mTomatoþ) from endogenous wild-
type cells (no fluorescence). Surprisingly, ARdY:mTmG APs did not
proliferate at a greater rate than endogenous male APs (Supp. Fig. 2G),
suggesting that AR function in APs is not required for the anti-
adipogenic effect of androgens in subcutaneous fat.
Lastly, we attempted to identify the physiologic ligand of AR required
for its anti-adipogenic effect. If DHT was the major agonist of AR
responsible for blocking adipogenesis, we would predict that reducing
DHT levels in male mice would exacerbate HFD-induced adipogenesis.
To test this hypothesis, we treated wildtype male mice with dutas-
teride, a pan 5a-reductase inhibitor [51] that blocks the conversion of
testosterone to DHT. Dutasteride treatment significantly reduced
seminal vesicle weight (Supp. Fig. 2H), indicating an effective reduc-
tion of DHT levels. Still, no effect was observed on HFD-induced AP
proliferation compared with vehicle-treated males (Figure 4F). Thus,
the major physiologic ligand of AR that negatively regulates adipo-
genesis in vivo is probably testosterone, not DHT.

4. DISCUSSION

Alterations in sex hormones have been associated with changes in
body composition, fat distribution, and metabolic disease. However,
the cellular mechanisms and adipose depot-specific effects of
testosterone and its metabolites have been poorly described in vivo. In
this study, we demonstrated that testosterone has potent anti-
obesogenic effects. Notably, testosterone blocks the expansion of
both visceral and subcutaneous fat (Figure 3E,G), and DHT specifically
impedes subcutaneous fat growth (Figure 3E,G) without significantly
impacting total fat mass (Figure 3B). Estradiol specifically prevents the
expansion of visceral fat (Figure 3E,G). Thus, the conversion of
testosterone to DHT and estradiol probably contributes to the regula-
tion of depot-specific fat mass. The observation that estradiol prefer-
entially impedes visceral fat expansion in diet-induced obesity is
particularly intriguing because men are more likely to develop visceral
obesity than women are [52e54]. It is possible that comparatively
reduced estrogen signaling promotes visceral fat mass expansion
without significantly impacting subcutaneous fat storage, which could
contribute not only to visceral obesity in men but in post-menopausal
women. Consistent with this notion, ovariectomized mice display
markedly enhanced visceral adipogenesis and are more prone to
visceral obesity when fed an HFD [55,56].
Fat mass is a function of adipocyte size and adipocyte number [57].
We demonstrated that in castrated mice, hormone-dependent
changes in depot-specific fat mass reflect concomitant changes in
adipocyte size (Figure 3EeH). However, in gonadally intact male mice
treated with AI, depot-specific changes in fat mass did not reflect
changes in adipocyte size (Figure 3J,K). A possibility is that this
discrepancy occurs because of the relatively brief (4 weeks) duration
of the experiment, as gonadally intact male mice gain less fat mass
on an HFD than castrated mice do, even when treated with AI
(Figure 3AeD). Thus, a longer duration of HFD feeding and AI
treatment (and greater fat gain) may be required to reveal differences
in adipocyte size that reflect the elevated visceral fat in these ani-
mals. In addition, elevated androgen activity in AI-treated males may
obscure the effects on visceral adipocyte hypertrophy by estradiol
loss. Regardless, these data support the notion that testosterone,
DHT, and estradiol exert unique effects on depot-specific adipocyte
hypertrophy but likely act in combination under normal physiologic
conditions. In this study, mice were castrated before puberty to
control for hormonal alterations that occur during this life stage.
MOLECULAR METABOLISM 44 (2021) 101141 � 2020 The Author(s). Published by Elsevier GmbH. This is an open
www.molecularmetabolism.com
Determining the individual contributions of sex hormones to the
regulation of total adiposity and fat distribution at different life stages
will be an important area of further investigation.
We also assessed the role of androgens in obesogenic adipogenesis.
Notably, castration resulted in elevated HFD-induced new adipocyte
formation in visceral and subcutaneous fat (Figure 4A), indicating
hypogonadism increases susceptibility to obesogenic adipogenesis
when dietary fat intake is high. Treating castrated mice with either
testosterone or DHT completely rescued this effect (Figure 4B,C),
which was surprising due to the inability of DHT to reduce total fat
mass gain on an HFD (Figure 3B). However, inhibiting 5a-reductase
activity in gonadally intact male mice had no impact on HFD-induced
AP proliferation (Figure 4F), suggesting testosterone rather than DHT
is the major agonist of AR that inhibits adipogenesis in vivo. We also
showed that AR is highly expressed in APs (Supp. Fig. 2E) and mature
adipocytes (Supp. Fig. 2D) but that the anti-adipogenic effect of an-
drogens appears not to require AP-intrinsic AR function (Supp. Fig. 2G).
This finding is in contrast to the work in vitro with adipogenic cell lines
[12,14]. Further work is necessary to identify how AR blocks adipo-
genesis in vivo but may involve crosstalk with mature adipocytes or
systemic effects of androgens. Characterizing the cellular contexts in
which testosterone metabolism is required to control obesogenic
adipogenesis and depot-specific fat mass will be important next steps
in understanding the role of sex hormones in the pathogenesis of
obesity and its related metabolic diseases.
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