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Abstract: Soil-borne parasitic nematodes cause severe deterioration in the health of crops and supply
animals, leading to enormous economic losses in the agriculture and livestock industry worldwide.
The traditional strategy to control these parasites has been based on chemically synthesised com-
pounds with parasiticidal activity, e.g., pesticides and anthelmintic drugs, which have shown a
negative impact on the environment. These compounds affect the soil’s beneficial microbiota and can
also remain as toxic residues in agricultural crops, e.g., fruits and legumes, and in the case of animal
products for human consumption, toxic residues can remain in milk, meat, and sub-products derived
from the livestock industry. Other alternatives of control with much less negative environmental
impact have been studied, and new strategies of control based on the use of natural nematode enemies
have been proposed from a sustainable perspective. In this review, a general view of the problem
caused by parasitic nematodes affecting the agriculture and livestock industry, traditional methods
of control, and new strategies of control based on eco-friendly alternatives are briefly described, with
a special focus on a group of natural nematode antagonists that have been recently explored with
promising results against plagues of importance for agricultural and livestock production systems.

Keywords: nematode antagonistic organisms; biocontrol; plant and animal plague; sustainable
control; eco-friendly control strategies

1. Introduction
1.1. Nematodes in Nature

Nematodes, also called roundworms, are considered the most abundant metazoan
organisms on Earth. It is estimated that soil nematodes can be found ranging from 1 to
100 × 106 individuals/m2 of soil, mainly in the upper soil layers living in water films and
water-filled pore spaces in the soil [1]. Nematodes can be found in decomposed organic
matter in soil and plant roots and in other organic-rich substrates [2,3]. In addition to
terrestrial environments, nematodes have adapted to most ecosystems, including aquifer
environments, i.e., freshwater [4] and marine systems [5,6] and even the most extreme
conditions where survival is difficult, i.e., in the polar regions of the world [7] and extremely
high-temperature conditions [8]. Soil nematodes have a wide range of relationships with
microorganisms of other species. Parasitism and predation are common ways of life, and
some nematodes can be parasites or predators [9,10]. Similarly, soil nematodes play an
important role in the food chain since they serve as food for other organisms of different
taxonomic groups, i.e., mites [11] or nematodes [12], and at the same time, they feed
on other organisms, including fungi, bacteria, and microarthropods [13]; additionally,
nematodes participate as biogeochemical cycle regulators and enhancers of vegetation
dynamics [14]. However, after hundreds of thousands of years, nematodes have developed
an extraordinary capability to adapt to other biological systems, and thus, they have become
parasites of animals, plants, and human beings [9]. In agricultural systems, soil nematodes
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can be divided into three groups: (1) entomopathogenic nematodes that feed on insects;
(2) free-living nematodes that feed on different microorganisms, i.e., bacteria, fungi, and
other nematodes; and (3) plant-parasitic nematodes that feed on plant tissues [15]. Next,
we will deal with soil-borne parasites, particularly parasitic nematodes of importance for
plants and ruminants.

1.2. Plant-Parasitic Nematodes

Plant-parasitic nematodes are worm-like pathogens usually less than 1 mm long,
feeding on plant tissues [16]. They have a wide range of host plants, including foliage
plants, agronomic and vegetable crops, fruit and nut trees, turfgrass, and forest trees [17].
Phytonematodes alter normal root functions, reducing rooting volume, foraging, and the
efficient use of water and nutrients [18]. In this way, they are responsible for severe losses in
economically important crops [3] that threaten global food security [19]. Phytonematodes
are unsegmented worms with cylindrical thread-like bodies that taper at both extremes.
Females could be from a cylindrical shape to an elongated or pear-shaped body [20]. Most
phytonematodes have a needle-like structure called a “stylet” at the oral cavity that they
use to feed on and kill plant tissues, particularly those cells of the root system, as in the
case of a highly pathogenic group called the root-knot nematodes [21].

Nematodes belong to the Phylum Nematoda (roundworms) and Class Secernen-
tea [22]. According to their feeding habits, plant-parasitic nematodes can be represented in
a general manner by two groups of nematodes: (1) ectoparasites, that feed on the epider-
mis, cortical cells and root-absorbent hairs, but they do not penetrate the plant roots, and
(2) endoparasites, that penetrate into the roots and feed on the root’s inner cells [23–26].

It is estimated that over 4100 species of plant-parasitic nematodes have been identi-
fied [27]. Some soil edaphic and ecological factors, e.g., altitude, temperature, moisture,
soil pH, nutrients, and soil patches, influence the presence of different genera and species
of phytonematodes [28]. Likewise, the presence of other microorganism species in their
microhabitats also influences their population dynamics [29,30]. Furthermore, some plants
have developed natural defence mechanisms through specific resistance genes that protect
them from different pests, including nematodes [31]. Some of the most common genera of
nematodes in agricultural soils, their hosts, their methods of attack, and their symptoms
are summarised in Table 1.

Table 1. Some of the most common genera of nematodes in agricultural soils, hosts, methods of
attack, and symptoms.

Genus/Host Range Plant/Crop Host Method of Attack Symptoms Author

Meloidogyne spp.
Root-knot nematodes

More than 90 host species

Wide horticultural and field
crop host range (about 2000

plant hosts worldwide)
Root system Root galls

Dead in young plants [32]

Nacobbus aberrans
False root-knot nematode

Affects a number of
economically important crops,

e.g., tomato, chilli pepper,
beans, potatoes, sugar beets,

and crucifers

Migratory/sedentary
Endoparasitic nematode

Penetrate into plant roots,
forming galls

Root galls [33,34]

Aphelenchoides spp.
More than 200 species

Wide host spectrum,
including ornamentals.

Some species are fungi feeders

Some species endoparasitic in
leaves, but also feeds

ectoparasitically on leaves and
flower buds in some plants

Chlorosis and necrosis of
leaves [35,36]

Heterodera spp.
At least 80 species
Obligate parasites

Affects more than 40 species

A few hosts, including:
oatmeal, soybean, alfalfa, corn,

and others

Penetrate cortex roots,
endodermis, or vascular

parenchyma
Feeds on root tissues

General debilitation
Reduction in the efficiency of

the root system
Chlorosis, stunted growth,

wilting
Poor yield

[37,38]

Longidorus spp.
More than 160 species

Can transmit Nepoviruses

Polyphagous
root-ectoparasites of many
plants, including various

agricultural crops and trees

Damage is caused by direct
feeding on root cells, as well as
by transmitting Nepoviruses

Chlorosis and stunted growth
in forest trees [39–42]
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Table 1. Cont.

Genus/Host Range Plant/Crop Host Method of Attack Symptoms Author

Pratylenchus spp.
Migratory endoparasites

Possess a wide host range
Commonly found in wheat,
canola, chickpea, and barley

Provoke plant tissue necrosis
because of migration and feeding

Crops show an in-field patchy
decline, lack of vigour, chlorosis
slower growth, crooked or bushy

appearance of tap roots, fleshy tap
roots, stunted, stubby small root

systems with excessive branching
Small roots that are large near

the tip
Sparse lateral roots

Brownish to black spots or streaks
or discolored necrotic areas on

the roots

[43,44]

Radopholus spp.
Burrowing nematodes

Two species:
R. citrophilus and R. similis

Affects several economically
important crops, e.g., banana
citrus, coconut, ginger, palm,
avocado, coffee, prayer plant,
black pepper, sugarcane, tea,

vegetables, ornamentals, trees,
grasses, and weeds

Attack the root system
Migratory endoparasite in all life

stages

In banana, provokes
toppling disease

In pepper, causes the
yellows disease

In citrus, can spread decline

[45,46]

Xiphinema spp.
39 species have been identified

They have a wide host range that
includes common weeds and

grasses, strawberries, soybeans,
forest trees, orchards, and grapes

Can be vectors of viruses, e.g.,
peach yellow bud mosaic virus in
peach, apricot, and plum, cherry
rasp leaf virus, and grape yellow

vein virus

Attack roots, causing root stunting
and tip galling Necrosis on roots [47]

1.2.1. Life Cycle

The life cycle in most plant-parasitic nematodes is a similarly complex process involv-
ing different stages, i.e., eggs and distinct free-living pre-parasitic stages living in the soil
and parasitic stages living in host roots. There is a simple and easy way to understand the
life cycle of plant-parasitic nematodes, and it can be divided into two stages: pre-parasitic
and parasitic. The pre-parasitic stage corresponds to free-living stages, basically comprised
of the second juvenile stage emerging from the eggs when they search for the host cell;
meanwhile, the parasitic stage starts when the nematode starts to feed on host roots [48].
Nematode parasitic stages possess a stylet situated at the nematode mouth at the rear end
of the body that is used to penetrate the root cells and intake food from the plant tissues.
The juveniles of the second stage (J2) of the root-knot nematodes penetrate the root near
the root tip and initiate intracellular migration towards the apical meristematic region [49].

In the case of cyst-forming nematodes, they penetrate the plant roots and carry out
intracellular migration to eventually settle at the vascular cylinder, where they develop
syncytial-feeding sites within their host roots. Syncytia grow by incorporating protoplasts
from dead cells. These organs serve as unique nutrient resources for development and
reproduction through biotrophic interactions [50]. Second-stage juveniles (J2) develop
three evolutionary stages to eventually become an adult. Adult males abandon the roots
near the soil, where they mate with females. Once females are fertilised, they produce a
large number of eggs that stay in the female body, forming a cyst where they are protected.
Finally, when females die, eggs containing the J2 stage hatch and free-living (J2) nematodes
will search for a new root to continue their life cycle [51].

1.2.2. Economic Impact

Nematode plagues are some of the most serious problems affecting agricultural pro-
duction all over the world and are even considered a global food threat [52]. Plant-parasitic
nematodes (PPNs) pose a serious threat to the quantitative and qualitative production of
many economic crops worldwide. It is estimated that plant parasitic nematodes cause 12.3%
of crop losses, which means USD 157 billion annually [53]. Due to their widespread and
devastating effect on economically important crops, root-knot nematodes (Meloidogyne spp.)
are considered the most important nematodes throughout the world [54]. Additionally,
Meloidogyne spp. can modify the plants’ defences, increasing their susceptibility to other
pathogens, e.g., bacteria and fungi, which results in higher yield losses [55].
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1.2.3. Traditional Chemical Control Using Pesticides and Other Strategies

Plant-parasitic nematodes are complex individuals that, over millions of years, have
had to overcome natural barriers, and they have had to develop adaptive strategies to
survive. In this context, nematode control is not easy, and eradicating this problem is out of
our reach. Therefore, reducing the parasitic population along with the damage caused to
crops is the most realistic expectation. The control of plant parasitic nematodes must be
faced from distinct perspectives. Some of the most common methods of prevention and
control of plant parasitic nematodes, as well as their advantages and drawbacks, are shown
in Table 2.

Table 2. Advantages and drawbacks of using different strategies of prevention and control of
plant-parasitic nematodes.

Prevention/Control Strategy Advantages Drawbacks

Chemical control using pesticides

Pesticides occasion a direct lethal effect on
the nematodes, and a prompt and effective
reduction in the nematode population
followed by an improvement in the plant
health is expected

(1) Public health risk. The consumption of agricultural
food contaminated with pesticide residues shows
mutagenic, carcinogenic, cytotoxic, genotoxic, and a
range of health-related issues in human beings [56].
Accidental pesticide poisoning can cause a large
number of fatalities [57].

(2) Environmental consequences. Contamination of soil
and aquifers affects beneficial microbiota, putting
soil fertility at risk and enhancing soil erosion [58].
This alteration of the ecosystem could cause an
imbalance in flora and fauna population densities
with potentially devastating consequences [59].

(3) Using chemical pesticides should be minimised, and
their use should be considered only as a part of an
integrated control using other sustainable
strategies [60].

Crop rotation

The rotation of crops with plants of a
different family can reduce the size of
nematode populations, thus mitigating their
establishment in the new species of plant
and reducing the disease [61].

Crops from different families must be alternated, and thus,
farmers have to consider changing and alternating
their crops.

Planting resistant crop varieties

Using crop varieties with different types of
natural genes that cause resistance to
nematodes has led to promising results
against nematodes [62]. Specialised
nematode resistance genes induce active
resistance against nematodes and provoke
important damage in nematode tissues,
including necrosis and the death of
nematodes improving the crop health [63].

This system requires RNA technology to select crop
varieties with genes associated with resistance
to nematodes.

Fallowing

During the off-season, clean fallowing
eliminates the nematode plant host
availability along with their chance to feed
on plants. This simple practice leads to a
gradual decline in the nematode population
due to nematode deaths because of
starvation [18].

None

Soil amendments

Incorporating organic matter, such as
compost prepared with animal manure and
decomposed plant material, into soil
enhances the soil organic matter and
proliferation of the microbial biomass,
releasing pest-regulating compounds and
eventually improving plant health [64].

None

Biological control

The control is highly specific in a blank
organism.
This practice is the most effective sustainable
strategy for the control of plant parasitic
nematodes based on the biotechnological
use of nematode natural enemies, including
fungi, bacteria, and other
microorganisms [30,65].

Setting up a biological control system is a costly effort. A
lot of planning and money goes into developing a
successful system.
The time to reduce the parasite population is much slower
compared with a chemical pesticide, which produces
results immediately.
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1.3. Gastrointestinal Parasitic Nematodes
1.3.1. Definition

Gastrointestinal parasitic nematodes (GIN) affecting ruminants are a group of cylindrical-
/filiform-bodied, 0.25 to 3 mm long, non-segmented worms, living as adult parasites in the
gastrointestinal tract of animals or as free-living stages, e.g., eggs, pre-parasitic larvae, and infective
larvae (L3) in faecal matter of infected animals [66]. They are responsible for a severe deterioration
in the health and productivity of small ruminants and livestock all over the world [67,68].

1.3.2. Common Ruminant Parasitic Nematode Genera/Species and Their Hosts

A high variation in the spectrum of genera/species of nematodes can be found when
comparing agroecosystems [69]. A number of biotic factors, e.g., soil microorganisms and life
cycle duration of different genera/species, and abiotic factors, including rainfall, temperature,
humidity, and other factors associated with climatic conditions, determine the prevalence of
GIN species found in either small ruminant flocks or livestock herds worldwide [70–72]. Ne-
matode populations are not static and are always under a continuous dynamic. Some of the
most common genera/species of nematodes in small and large ruminants include the follow-
ing: in cattle, Haemonchus spp., Mecistocirrus digitatus, Cooperia spp., Ostertagia spp., (Teladorsagia
spp.), Trichostrongylus spp., Nematodirus spp., Bunostomum spp., Strongyloides spp., and Trichuris
spp. [73–75]; in sheep and goats, H. contortus, Teladorsagia circumcincta, T. axei, T. comubriformis,
T. vitrines, T. rugatus, Cooperia curticei, Nematodirus spathiger, N. filicollis, B. trigonocephalum, Oe-
sophagostomum columbianum, O. venulosum, and Chabertia ovina [76]. Reports on the presence of
some genera/species of gastrointestinal nematodes in different countries with different climate
conditions and in different host species are shown in Table 3. The use of traditional specialised
taxonomic identification keys is an invaluable tool for morphological identification of adult ne-
matodes at necropsy [77–79] and L3 from faecal cultures [79,80], for epidemiological studies, for
research proposes, and for establishing control strategies. However, advanced molecular methods,
e.g., qPCR followed by a high resolution melting analysis of ITS-1, open other convenient, rapid,
and reliable alternative methods for taxonomic affiliation [81]. Similarly, new molecular tools, e.g.,
DNA metabarcoding using only faecal samples, have been claimed to provide a non-invasive
method for assessing parasitic nematode populations [82]. Nevertheless, due to the high cost and
the relatively small amplicon length, this cannot be considered a cost-effect method.

Table 3. Genera/species of gastrointestinal parasitic nematodes and prevalence recorded in cattle
and small ruminants in countries with different climate conditions.

Host Nematode/Prevalence Place Climatic Features Author

Cattle

Haemonchus spp.,
Oesophagostomum spp.,
Trichostrongylus spp.,

Overall prevalence = 42.33%

Bisofu, Oromia, Ethiopia warm semi-arid [83]

Haemonchus spp., Ostertagia spp.
Overall prevalence = 23.34% Mosul city, Irak warm semi-arid [84]

Strongylidae order = 16.5%
Strongyloides 3.8%

Colombian Northeastern
Mountain, Colombia Tropical rainforest [85]

Ostertagia ostertagi = 41.42% Germany Temperate [86]
Strongyloides spp. = 16.36%

Trichuris spp. = 22.73% Kalasin province, Thailand Tropical savanna [87]

Sheep

Chabertia ovina, Trichuris ovis,
Trichostrongylus spp., H. contortus

and Oesophagostomum spp. Overall
prevalence = 36.82%

Assam, India Tropics [88]

Strongylidae order = 31.9%;
Strongyloides spp. = 3.1% and

Trichuris spp. = 2.06%

Colombian Northeastern
Mountain, Colombia Tropical rainforest [85]
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Table 3. Cont.

Host Nematode/Prevalence Place Climatic Features Author

Goats

Trichostrongylus spp., Haemonchus spp.
Overall = 88.9%

Coahuila and Nuevo León, (Northeastern
Mexico) Semi-arid [89]

H. contortus = 97.4% Maseru, Leshoto, Africa Mild, warm and temperate [90]
H. contortus = 47.1% Bangladesh Tropics [91]

T. colubriformis, H. contortus, Teladorsagia
spp., Oesophagostomum spp., Trichuris spp.,
Nematodirus spathiger and Cooperia curticei

(The whole gastrointestinal tracts of goats at
necropsy resulted positive to parasitic

nematodes)

Northwest Arkansas, Fayetteville,
USA Warm and temperate [92]

1.3.3. Life Cycle

The life cycle of ruminant parasitic nematodes can be divided into two stages: one ex-
ternal, also called “exogenous,” that occurs outside the animals, where eggs and free-living
and infective larvae are in faeces, soil, or on grass leaves, and another phase called “internal
or endogenous stage,” where infective larvae are consumed by the animals together with
the contaminated pasture, and once larvae enter into the alimentary tract, they migrate
following the digestive flux to eventually establish themselves in corresponding organs,
e.g., abomasum or small or large intestines [93]. Once L3 are in the abomasum or guts,
they penetrate the gastric mucosa, where they have two options for development: they can
remain in situ and initiate an arrested inactive phase of development, called hypobiosis [94],
or they can continue with their subsequent stages of development, including histotrophic
larvae or fourth larval stage (L4), pre-adult stages (also called L5) and eventually enter
the sexually mature adult stage. When they reach the L4, they develop a small cavity at
their rear end, equipped with a prominent needle-like structure called an “oral lancet,”
which is specially designed to obtain blood from the stomach or gut veins, expressing their
blood-sucking activity [95–97]. Adult males and females living in the digestive tract mate,
and gravid females produce large amounts of eggs per day. It has been estimated that, in
the case of H. contortus, around 10 thousand eggs per day are produced by a single gravid
female [98]. The eggs of the parasites are expelled together with the faeces to the soil. When
temperature and humidity conditions are favourable for the development of eggs, they
develop L1 that hatch from the eggshell. The L1 grow and shed their external cuticles to
transform into L2. This “ecdysis” process is repeated with L2 to eventually become in the
subsequent larval stage (L3) [99]. A representative schematic diagram of the two phases of
the life cycle of gastrointestinal parasitic nematodes is shown in Figure 1.

1.3.4. Clinical Symptoms

Animals infected with parasitic nematodes can show a wide range of clinical symp-
toms, from very mild (almost imperceptible) to severe symptoms of disease and even the
death of young animals [100]. Such severity in clinical symptoms depends on different
epidemiological factors, such as body condition and origin of the animals, and host fac-
tors, including species, sex, and age [101]. Another crucial factor in expressing clinical
symptoms in flocks is the number of infective larvae ingested in a short period [102]. In
general, some of the most common symptoms reported for sheep and goats are weight
and appetite loss, anaemia, weakness, and paleness of mucous membranes, mainly in
ocular conjunctiva and subcutaneous oedema, i.e., jaw swelling, and diarrhoea [68]. Some
symptoms can be attributed to specific genera/species; for instance, Haemonchus contortus
can cause weakness, lethargy, lack of appetite, thirst, increased heart rate and breathing,
pale conjunctiva and gingiva, and mushy stools in lambs [103], or even sudden death
where animals can be found dead without preliminary symptoms [104]. Similarly, species
associations can express different clinical frames; for example, abomasal nematodes, e.g.,
Haemonchus contortus and Teladorsagia circumcincta, can cause gastritis with severe clinical
symptoms of anaemia and malnutrition in small ruminants. Ostertagia ostertagi and Cooperia
oncophora were reported to be responsible for loss of appetite, scouring, and poor condition
in cattle in the UK [105]. In general, small ruminants, particularly young kids, are more
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susceptible to being affected by nematodes than cattle [106]. However, a massive infestation
with the abomasal nematode Mecistocirrus digitatus was reported as fatal for a cow in the
Mexican tropics [73]. Productive parameters in small and large ruminants can be indicators
of nematodiasis, for example, weight loss or milk production decreasing in dairy ewes [107].
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1.3.5. Economic Impact

The economic impact associated with GIN is enormous and continuous; since the
life cycles of parasites are successfully completed every production cycle, and although
deworming methods with chemical anthelmintics help to exert some control, this effect
is only temporary because flocks and herds are always exposed to re-infection while they
pasture. Thus far, no study has evaluated the global losses attributed to the effect of
GIN. However, in different countries, the economic consequences of GIN in the livestock
industry have been published. For example, in the United Kingdom, the cost of parasitic
nematodosis in sheep was estimated at about GBP 99 million per year [108]. In Tunes, an
average decrease in milk production and organ condemnation in cattle due to parasitic
infections was estimated at 1.16 L animal−1 day−1 and 12.95%, respectively [109]. In
another study, the annual costs of treatments against H. contortus were estimated at USD
46 and 103 million in South Africa and India, respectively [110]. Similarly, in Mexico, the
economic impact caused by gastrointestinal parasitic nematodes in cattle was estimated
at USD 445.10 per year [67]. However, in a recent study in 18 countries of the European
Union, the average annual estimated cost of gastrointestinal nematode infections resistant
to macrocyclic lactones was GBP 941 million for dairy cattle, GBP 423 million for beef cattle,
GBP 151 million for dairy sheep, GBP 206 million for meat sheep, and GBP 86 million for
dairy goats [111]. These are only some examples of the worrying and growing problems
caused by GIN in the global livestock industry.
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1.3.6. Common Practices of Control and Their Advantages and Disadvantages

Traditionally, the regular administration of chemical anthelmintic drugs in flocks and
herds is the most common practice of control worldwide. This method is very attractive for
farmers because an effective and rapid lethal effect of these drugs against most parasitic
nematodes is expected. However, the imminent development of anthelmintic resistance
in parasites has dramatically diminished the efficacy of most commercially available an-
thelmintic drugs. This disadvantage is a limitation in the use of anthelmintic drugs since
anthelmintic resistance is rapidly spreading, threatening the health of livestock [112–114].
However, using chemical anthelmintic drugs has other problems; for example, the pres-
ence of drug residues in animal products and subproducts, e.g., meat, milk, and derivates
for human consumption, which is a potential risk to public health [115]. Anthelmintic
chemotherapy causes other worrying problems, such as soil contamination and its implica-
tions for soil microorganisms, since anthelmintic drug residues are eliminated in the soil by
the animals through faeces and urine. Some compounds are not degraded in the animals,
and they remain in the soil as active molecules, affecting the microbiota and causing soil
erosion in the long term [116–118]. The good news is that the use of chemical dewormers
is not the only method of controlling ruminant parasitic nematodes. Several practices of
control for gastrointestinal parasitic nematodes have been proposed, and they can be used
as strategies to attack different evolutionary stages of the parasites according to their status
in the parasitic life cycle [119]. In this review, we briefly summarise the most important
strategies for controlling gastrointestinal nematodosis in small and large ruminants.

2. Biological Control
Definition

The term “biological control” can be defined as the use of animals, fungi, or other
microbes to feed upon, parasitise, or otherwise interfere with a targeted pest species [120].
In other words, biological control can be understood when human beings identify some
antagonistic organisms in nature. The natural control agent is highly specific to an organism
and is harmful to plants, animals, or human beings. This natural control system can be used
to reduce the population of the undesirable organism using a natural enemy organism.

3. Natural Antagonists of Nematodes
3.1. Bacteria

In nature, bacteria and nematodes are closely related members of the soil biota. Dif-
ferent ecological interactions are established between these two types of organisms since
they not only share the same microhabitat but also participate in the same ecological roles,
such as food chains. Some nematodes mainly feed on bacteria [121]; in contrast, some
bacteria are natural nematode killers, synthesising toxic, antibiotic, or inhibitory products
of soil nematodes and acting as soil nematode regulators in nature [122]. There are many
different bacterial species that use different and sophisticated physiological strategies to
attack nematodes and eventually feed on them. One of the most widely studied nematode-
antagonist bacteria is Pasteuria penetrans. This is a Gram (+) bacterium living in soil that
produces endospores that attach to the nematode cuticle to penetrate it. They produce a
large number of microcolonies inside the nematode body, and this invasion alters nema-
tode reproduction [123] and eventually causes nematode death [124]. This bacterium has
been found mainly as a parasite of the phytonematode Meloidogyne incognita and other
phytopathogenic nematodes that affect the root systems of tomato and other economically
important crops [125]. This bacterium has been found as a parasite of 323 nematode species
belonging to 116 genera, including free-living nematodes, predatory phytonematodes,
and entomopathogenic nematodes [126–128]. Several studies have revealed a potential
use of P. penetrans for controlling root-knot nematodes, with an important implication
on agricultural productivity. Unfortunately, this control system has not been shown to
be a promising control method for ruminant parasitic nematodes since some attempts
at P. penetrans spore attachment to the cuticle of ruminant parasitic nematodes were un-
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successful, and the inability of spores to attach to zoonematodes was demonstrated [129].
However, there are many records of the benefits of using P. penetrans in the control of
root-knot nematodes. For example, in a study applying P. penetrans spores to Meloidogyne
arenaria-infected tomato and oriental melon plants, the root gall numbers were significantly
lower than in the control group [130]. In another study, the application of 3 x 105 P. penetrans
spores in a furrow revealed a reduction of up to 57.3% in M. arenaria egg production in the
greenhouse [131]. These are just a couple of examples of the efficacy of this organism in
the control of plant-parasitic nematodes. Many other genera/species of nematode-enemy
bacteria have been explored as potential biocontrol agents of root-knot nematodes; these
species include Agrobacterium sp., Arthrobacter sp., Azotobacter sp., Clostridium sp., Desul-
fovibrio sp., Serratia sp., Burkholderia sp., Azospirillum sp., Bacillus sp., Chromobacterium sp.,
and Corynebacterium sp. [132]. Other potential biocontrol agents with promising results are
Serratia plymuthica [133], Bacillus cereus [134], Pseudomonas fluorescens [135,136], and Bacillus
thuringiensis [137,138]. The use of natural nematode antagonistic bacteria is a promising
sustainable alternative tool that could be used in the combined or integrated control of
plagues caused by phytonematodes in economically important crops.

3.2. Protozoa

Although both protozoa and nematodes are very different organisms, they share the
same soil habitat and are bacteria feeders. Protozoa are unicellular microorganisms living
in soil, mainly in clay-rich soil, and most species feed on bacteria, similar to most free-living
nematodes [139]. There is a lot of information about the ecological and physiological
aspects of soil protozoa, including their prey role for predatory nematodes that feed on
protozoa and other nematodes [140,141]; however, there is only limited information about
the antagonistic and nematocidal effect of soil protozoa on nematodes. One common genus
of soil flagellate, Cercomonas spp., attacks and kills the free-living nematode Caenorhabditis
elegans, which is a much larger organism than flagellates. Once nematodes were added
to a dense culture of flagellates, these protozoa attached to the nematode cuticle, and an
increasing number of flagellates attacked the nematode cuticle. Some of them attached to
the head and tail regions, exhausting the nematode and eventually killing it. Sometimes,
flagellates enter the nematode’s body through natural orifices to invade and degrade their
internal tissues [142]. In another study, a trophozoite of an isolate of the amoeba Arachnula
impatiens was observed capturing a larva of Meloidogyne incognita, one of the most eco-
nomically important nematode pests in agriculture. The amoeba captured the larva using
fine filopodia and created several holes (2.5 to 5.5 µm in diameter) in the cuticular wall of
the nematode and completely emptied its contents in only 3 h at 25 ◦C. Similarly, other
amoeba identified as Vampirella vorax encysted after moving around the M. incognita larva
body to eventually engulf and feed on the nematode within 12 to 24 h [143]. The complex
adaptation process of protozoa and nematodes to their microenvironment has led them
to develop mechanisms to attack and defend themselves from other microorganisms that
compete against them for food, as is the case of the amoeba Acanthamoeba castellanii and
the free-living nematode C. elegans. Both organisms are important microfauna predators in
the soil, and both feed on bacteria. Acanthamoeba castellanni has developed an interesting
metabolic strategy against that specific nematode species through the synthesis of exoprod-
ucts characterised as proteases and glycosidases with nematostatic activity and nematode
repellent activity. Interestingly, C. elegans produces a biochemical counterpart that reduces
the activity of these two enzymes as a defence response, and these exoproducts are also
harmful to the amoeba, reducing their growth and increasing encystation. Thus, both
microorganisms regulate their own populations in the soil [144]. In general, protozoa are
important natural enemies of nematodes that deserve to be studied as potential tools of
control for parasitic nematodes infecting plants and animals.
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3.3. Acari

Acari are a subclass of ubiquitous arachnids with a tiny body, generally less than
1 mm in length with tracheal or cutaneous breeding, and many of them are parasites of
other animals or plants. Acari, also called “mites,” inhabit both terrestrial and aquatic
ecosystems and can even be found in relatively abundant amounts in aeroplankton [145].
Acari are one of the most diverse groups of arachnids on Earth, and about 60,000 species
have been described [146]. Similar to the other organisms addressed in this review, mites
have developed strategies to survive the adversities imposed by nature [147]. During this
process, mites have established different bioecological associations with individuals of
other taxonomic groups. In this way, mites are also involved in diverse biological activities,
i.e., they are active members of food chains. For example, it is well known that mites are one
of the favourite dishes for beetles. Beetles have a voracious appetite for mites. One adult
beetle can eat 75 to 100 mites per day [148]. Similarly, mites feed on a wide variety of plant
tissues, including economically important crops [149,150], and microorganisms, including
bacteria, protozoa, algae, fungi, and nematodes [151–153]. The mite-feeding behaviour
of nematodes was identified by Linford and Oliviera in 1934 and reported in 1938 [154],
who reported that root-knot nematodes were devoured by soil mites. However, in another
study, eighteen species of mesostigmatid mites were reported as nematode feeders. In
this study, the combination of two different mites, Caloglyphus spp. and Cephalobus spp.
(Nematoda), inoculated into the soil caused the nematodes to decrease in number [155]. In
the case of animal-parasitic nematodes, some studies have shown that some mites, such as
Lasioseius peniciliger and Caloglyphus mycopagus, have a voracious appetite for Haemonchus
contortus, which is considered one of the most economically important ruminant parasitic
nematodes, mainly in small ruminants [156]. Mites are potential candidates to be used
as biological tools to control plant and animal parasitic nematodes; however, because
of their wide range of food substrates, their living habits and their easy adaptive and
invasive behaviour to many microenvironments make their management, use, control, and
application difficult, and their behaviour should be deeply understood before they can be
used in production systems.

3.4. Nematodes

Similar to those organisms previously addressed in this review, nematodes also have
an important role in nature, mainly as important members of food chains, and they are
also in charge of degrading organic matter and recycling nitrogen in the soil [28]. They
are also important natural bioregulators of many other populations in the soil, including
other nematodes. There is a simple way to categorise predatory nematodes based on their
feeding apparatus and feeding behaviour in four major groups as follows: (a) Diplogas-
terids possess a large and strong buccal cavity with a strong claw-like movable dorsal
tooth to grind their prey [157], Figure 2a; (b) Mononchids possess a highly sclerotised
feeding apparatus with a large pointed dorsal tooth, small teeth, or denticles (Figure 2b);
(c) Dorilaimids have a piercing and sucking system and use a needle-like feeding apparatus
to puncture their prey and remove their contents; and (d) Aphelenchids are fungal-feeders,
parasites of aerial plant parts, and insect parasites or predators, and the genus Seinura is
the only member of the Aphelenchid group that are nematode predators. Seinura are small
worms with a hollow stylet to puncture their prey and inject venom that is produced in an
oesophageal gland [158]. Most studies about predatory nematodes have focused on the
control of plant-parasitic nematodes, and only recently have some studies started to explore
their antagonistic activity against ruminant parasitic nematodes. To be considered a good
candidate as a predatory nematode, with high expectations as a potential agent of control
of plant-parasitic nematodes, the predatory nematode should fulfil some characteristics,
such as a good ability to search for its prey, be specific for its prey, be an efficient predatory
nematode, have a certain life cycle duration and longevity, have reproductive potential, and
be capable of surviving and adapting to ecological conditions [158]. The prey preference of
some predatory nematode isolates is a good characteristic because it can focus control on a
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specific nematode prey. In a recent extensive revision, a large list of prey preferences for
predatory nematodes is shown [158]. Although several studies with nematode–predatory
nematodes have shown successful results under in vitro conditions, there are limited stud-
ies carried out under field conditions. The main limitations that researchers face in using
predatory nematodes in the control of nematode plagues include mass culture and survival
for a certain time after they are released in the field, which will have to be overcome for the
management of either plant or animal parasitic nematodes.
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3.5. Fungi

Fungi are one of the most abundant eukaryote groups of organisms on Earth, living
in practically all types of ecosystems and substrates, including ocean sediments, salterns,
rainforests, and even in the most extreme conditions, such as those in Antarctica [159]. Soil
fungi share their microenvironment with a wide variety of organisms, including different
kinds of nematodes, and consequently, different bio-ecological associations are established
between fungi and nematodes, including competition, predation, and mutualism, with a
tendency for equilibrium [30]. Fungi are one of the main natural nematode antagonistic
groups and act as bio-regulators of nematode populations in the soil [160]. There is a
large group of fungi that is considered the main natural enemy of nematodes, called
nematophagous fungi [161]. Nematophagous fungi are cosmopolitan microfungi that
attack or parasitise nematodes through different mechanisms. They can be classified
according to their mode of action against nematodes in four groups: (a) toxin-producing
fungi; (b) nematode-trapping fungi; (c) opportunistic or ovicidal fungi; and (d) endozoic or
endoparasitic fungi [162]. These groups are briefly addressed next.

3.5.1. Toxin-Producing Fungi

Some edible mushrooms have developed sophisticated mechanisms to kill nematodes;
for example, they produce a powerful toxin that immobilises and shrinks the head of
nematodes to infect them, kill them, and eventually digest their internal organs [163].
Pleurotus is one of the most widely studied the genus of edible mushrooms with nematocidal
properties. Pleurotus ostreatus is a carnivorous fungus that preys on nematodes to obtain a
nitrogen source in a nutrient-deficient environment. A nematocidal toxin obtained from P.
ostreatus (NRRL 3526) immobilised 95% of the free-living nematode Panagrellus redivivus,
and the nematodes never recovered. The toxin was identified as trans-2-decenedioic
acid [164]. In a recent study, the mode of action of P. ostreatus demonstrated that the
fungal toxin induces paralysis of prey nematodes via the cilia of nematode sensory neurons,
followed by an excess of calcium influx and hypercontraction of the head and pharyngeal
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muscle cells to eventually cause necrosis and death of the nematode prey [165]. Other edible
mushrooms, such as Coprinus comatus, form some structures called spiny balls that are
responsible for paralysing and killing nematodes [166]. In another study, a hydroalcoholic
extract obtained from the edible mushroom Neolentinus ponderosus showed potent in vitro
and in vivo nematocidal activity using gerbils as a model of study against H. contortus, one
of the most pathogenic parasitic nematodes affecting small ruminants worldwide [167].
This research showed evidence that secondary metabolites are present in edible mushrooms,
and they should be further elucidated. Edible mushrooms can be considered potential
alternatives for the control of plant and animal parasitic nematodes, although they still
require further study to obtain a practical and functional biological control system.

3.5.2. Nematode-Trapping Fungi

Nematode-trapping fungi are a group of microfungi living mainly in soil that are
saprophytic organisms that retain nutrients from organic and decomposed matter in the soil;
however, they have developed an extraordinary adaptation process to become predators
of nematodes, with two facultative feeding alternatives [168]. The mechanism by which
nematophagous fungi, after being saprobes, become predators of nematodes has been
studied, and a morphogenesis inducer substance called “nemin,” a peptide produced by
nematode cuticle peeling, is responsible for triggering the transformation of mycelia in
trapping devices to be able to capture, penetrate, kill, and feed on the internal organs of
nematodes [169] (Figure 3).
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Nematode-trapping fungi produce different kinds of trapping devices, depending on
their genus and species. Trapping devices can be classified as follows: (a) three-dimensional
adhesive nets (Figure 4a); (b) constricting rings (Figure 4b); (c) simple or non-constricting
rings (Figure 4c); (d) adhesive branches (Figure 4d); and (e) adhesive knobs (Figure 4e) [170].
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The mechanisms of capture include trap formation, and this process is regularly accom-
panied by other sophisticated fungal strategies, for instance, the production of nematode
attractant substances that mimic sexual and food olfactory cues [171]. Such predatory
efficiency of nematophagous fungi has been demonstrated in a number of in vitro as-
says where both plant and animal-parasitic nematodes are captured in trapping devices
and eventually killed and digested by predatory fungi [172,173]. Their potential use in
the control of phytonematodes in different economically important crops has also been
demonstrated with successful results [174–176]. The predatory activity of nematophagous
fungi, both in vitro and in vivo, against animal parasitic nematodes has been widely docu-
mented [177–179]; some of the most studied nematophagous fungi in the control of plant
and animal parasitic nematodes are species from the genera Arthrobotrys, Duddingtonia,
Purpureocillium and Pochonia chlamydosporia. Some of the main characteristics of these fungi
are briefly described.

Genus Arthrobotrys

The genus Arthrobotrys belongs to the order Orbiliales and family Orbiliaceae. To
date, 71 species have been reported. Members of this genus are predatory fungi that
capture, kill, and feed on nematodes. The genus Arthrobotrys was first reported by Corda
in 1839 [180]. Then, its ability to act as a predatory fungus forming trapping devices to
capture nematodes was reported by Zopf in 1888 [181]. Of the many species of this genus,
A. oligospora is one of the most widely studied species. This species is one of the most
abundant in nature, and it has been found throughout the world, living in most kinds of
ecosystems [182,183]. As previously mentioned, depending on the Arthrobotrys species,
they produce different trapping devices; for example, A. javanica, A. vermicola, A. musiformis,
A. superba, A. cladodes, and A. polycephala produce adhesive nets, while A. brochopaga and
A. dactyloides produce constricting rings [184,185]. The potential use of A. oligospora in the
control of plant-parasitic nematodes has been assessed in economically important crops, for
example, in tomato plants [173,186,187] and rice [188], which have been assessed in many
trials, with promising results. In the case of using this species for controlling ruminant
parasitic nematodes due to this fungus producing only a small amount of chlamydospores,
mainly in old cultures, A. oligospora has not been considered a good candidate for use in
the control of nematodes affecting ruminants. Although it produces a large number of
spores, these spores are much more sensitive to the gastrointestinal passage of ruminants
compared to D. flagrans chlamydospores, which are produced in large quantities in a
spontaneous way [189]. Other important biological activities in A. oligospora have been
discovered, including as a bio-regulator of metabolic processes in plants [190], lignolytic
and cellulolytic activity [191], and potential biomedical activity as an immunostimulatory
and antitumour agent [192].
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Species Duddingtonia flagrans

The species Duddingtonia flagrans was first isolated in England by Dr C.L. Duddington
in 1947 [193] from decaying vegetable matter. This fungus was reported as a new predatory
species of Trichotecium that was seen as quite aggressive, capturing and killing nematodes.
D. flagrans can produce three-dimensional adhesive nets, and it produces obovoidal to
ellipsoidal conidia clusters regularly from groups of three to five from short, simple, and
erect conidiophores with abundant chlamydospores [194,195]. Few records about the
activity of this species against nematodes of importance for the agricultural industry have
been published thus far [196,197]. However, in the case of the control of ruminant parasitic
nematodes, several studies searching for the potential use of D. flagrans as a biological
control agent have been published with excellent results [198–200]. The control of ruminant
parasitic nematodosis using D. flagrans works due to the spontaneous production of large
amounts of chlamydospores. These are thick-walled resistance spores produced to ensure
their survival in adverse conditions [201]. Chlamydospores are produced in the lab to
obtain sufficient fungal inoculum to be orally supplied to animals. Chlamydospores can be
mixed with animal feed to be offered to the animals. Once animals ingest chlamydospores,
these pass through the digestive tube and are eventually eliminated with the faeces to the
soil. In this way, close contact between the nematode eggs and recently hatched larvae
and the fungal chlamydospore takes place in situ. When nematodes develop from the first
developing stage to the second and third evolutive stages, larvae eliminate some cuticular
peeling cells. The peeling cell products include nemin, which possesses some binding
receptors that establish contact with receptors present on the surface of the fungal cells. This
binding stimulates the fungal cells to trigger the transformation of mycelia into trapping
devices, which is a physiological process called “morphogenesis” [202]. Larvae are trapped,
killed, and finally degraded and digested using the enzymatic strategies of the fungus [203].
This process provokes a blockade of the life cycle of the free-living stages of the parasite in
the faeces and a substantial reduction in the larvae population in faeces [204]. Thus, a much
lower quantity of infective larvae is spread to the grassland, and consequently, the animals
consume a much lower number of infective larvae. This is an indirect biological control
system since the infected animals consuming D. flagrans chlamydospores will maintain
their parasitic burden; however, they will not be reinfected in the same way since pastures,
which are the main source of contamination, will have less infective larvae after maintaining
this biocontrol system [204]. This system of control has many advantages in comparison
with the traditional methods of control using anthelmintic chemical drugs; for instance, it
does not contaminate the environment, does not provoke resistance, and does not leave
toxic drug residues in milk, meat, or sub-products of animal origin.

Species Purpureocillium lilacinum syn. Paecilomyces lilacinus

Purpureocillium lilacinum is a soil microfungus, first described by Bainier in 1907. It
lives in different ecosystems, mostly tropical and subtropical soils [205], and is a common
member of the soil saprophytic mycobiota. This species is a very peculiar cosmopolitan soil
fungus, with extraordinary biological versatility and an enormous capability to adapt to
many environmental conditions. P. lilacinum has been considered one of the most important
natural enemies of pests of agricultural importance [206]. This species has been identified as
a parasite of different kinds of plant pests, including nematodes, and it has been proposed
as a biotechnological tool for controlling diseases caused by phytopathogenic nematodes
affecting important commercial crops [207]. P. lilacinum is a well-known egg-parasitic
nematode. This species can grow over the surface of the eggshell of root-knot nematodes
and penetrate it, occasionally through the formation of an appressoria [208]. In addition
to ovicidal activity, P. lilacinum has also been found to affect all life stages of the root-knot
nematode Meloidogyne incognita using a similar strategy [209]. Meloidogyne incognita is one
of the most common pathogenic nematodes, and it is responsible for devastating losses in
agriculture worldwide [210]. In addition to its important nematocidal activity, P. lilacinum
has also been found to be a natural enemy of plant pathogenic insects. For instance, this
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species has been reported as a biocontrol agent of many species of leaf-cutter ants, such as
Acromyrmex lundii and Atta ants. This association has led to a reduction in the population
of ants, and it helps to reduce the indiscriminate use of chemical pesticides [211]. However,
in a recent study, the use of different entomopathogemic fungi, including P. lilacinum,
showed high insecticide activity against termites, and an important beneficial impact in
the management of soil micro-arthropods was recorded [212]. Regarding the activity of
P. lilacinum against animal parasitic nematodes, little information has been documented
thus far. The ovicidal activity of two strains of P. lilacinum against dog-parasitic nematode
eggs (Toxocara canis) was recorded by Gortari et al. (2008) [213]. The activity of P. lilacinum
against parasites of importance in the livestock industry has only been published in a few
papers. In a recent study, the lethal activity of organic extracts obtained from different
nematophagous fungi, including P. lilacinum, showed an important nematocidal effect
against the larval infective stage of Haemonchus contortus, the most pathogenic zoonematode
affecting small ruminants [214]. The use of P. lilacinum is a promising potential biotech-
nological tool of importance in the control of ruminant parasitic nematodes that deserves
to be widely explored to replace, at least partially, the indiscriminate use of chemical
anthelmintic drugs that risk public health and the environment and provoke resistance
in parasites [204]. Additionally, P. lilacinum establishes biological associations with other
organisms that involve it in important environmental roles. Such extraordinary versatility
has led this species to enter plant tissues, becoming an endophytic organism that promotes
plant defences against pathogens, e.g., reducing cotton aphid populations [215], and in
other studies, it has been identified as an important bio-stimulant of plant growth and crop
yield [216].

Species Pochonia chlamydosporia

Pochonia chlamydosporia belongs to the group of Hypocreales, a nematophagous fungus
that used to be classified as a member of the genus Verticillium; however, when new
nomenclature was proposed in 2012, it was reclassified as P. chlamydosporia [217]. This
fungus is considered a multitrophic species since it has been identified as parasitic or
pathogenic for invertebrate and nematode hosts [218]. It has also been considered an
endophytic organism since it can penetrate the plant’s root tissues and play an important
role in inducing plant resistance against phytopathogenic nematodes [219]. Similar to other
nematophagous fungi, P. chlamydosporia is a saprophytic fungus and a facultative nematode
parasitic fungus [220]. This species is well-known due to its extraordinary capability to
colonise the surface of the nematode eggshell and to develop an appressoria to penetrate
the egg and eventually feed on nematode embryonic cells [221]. This species is also capable
of parasitising root-knot nematode females [222]. P. chlamydosporia has been assessed
as a potential biotechnological tool for the control of plant plagues caused by root-knot
nematodes [223,224] and against animal-parasitic nematodes [225,226]. In the case of using
P. chlamydosporia in the control of animal-parasitic nematodes, the timing of egg hatching
in faeces, followed by the emerging larvae, is so rapid (ranging from 3 to 5 days) [227]
that it is not sufficient for P. chlamydosporia to colonise the faecal matter and exert its egg-
parasitic activity before eggs become larvae. This should still be deeply studied to identify a
successful strategy to use P. chlamydosporia to reduce GIN parasitic nematode eggs in faeces.
However, studies on secondary metabolites in P. chlamydosporia have provided important
information that offers a number of promising biotechnological compounds with potential
use in the control of parasitic nematodes of importance in the livestock and agriculture
industries [228]. In contrast, the use of P. chlamydosporia in the control of plant-parasitic
nematodes should be widely explored as an additional tool in integrated systems of control
of plagues of importance in agriculture according to the different crop production systems
in different agroecological areas of the world.
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4. Conclusions

The excessive use of chemical pesticides for controlling agricultural pests, particularly
phytoparasitic nematodes, as well as the use of chemical anthelmintic drugs for controlling
ruminant parasitic nematodes, are increasingly discredited strategies due to a number
of undesirable consequences. After intensively using these chemical compounds, their
final destiny remains as pollutants, either in soil or in aquifers, that severely affect the
environment, particularly the soil microflora and microfauna, putting the stability of
ecosystems at risk. Additionally, the anthelmintic drugs administered to animals can remain
in animal tissues for human consumption, e.g., milk, meat, or sub-products. Similarly,
chemical pesticides contaminate the environment with the same devastating effects on
beneficial organisms in nature. Other drawbacks in the use of these chemical compounds
are that parasitic nematodes, either phytonematodes or zoonematodes, after constantly
being exposed to these molecules, develop mutations that allow them to overcome the
lethal effect of the synthetic compounds; the selection of resistant pathogens exacerbates the
problem. Nevertheless, there are other alternatives of control that can be used in integrated
control programmes for agricultural pests or ruminant parasitic nematodes. As we have
shown, plagues of importance in the agriculture or livestock industry are highly complex
organisms, and they should be controlled using various strategic tools. In the present
review, different strategies of control have been shown and briefly discussed, making
special reference to the use of natural nematode antagonists that have been explored as
potential tools of control from the perspective of sustainability. Some of the organisms
mentioned in this review are still under basic study, and more information should be
generated to consider them as practical measures of control. Other nematode enemies have
already provided excellent biotechnological tools for the control of nematodes, affecting
important economic crops and/or against ruminant parasitic nematodes. It is important to
consider that research in this important area of knowledge should be encouraged since the
intensive use of chemically synthesised molecules and their negative effects threaten the
environment and public health all over the world.
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