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Abstract

Motivation: A critical element of drug development is the identification of therapeutic targets for diseases. However,
the depletion of therapeutic targets is a serious problem.

Results: In this study, we propose the novel concept of target repositioning, an extension of the concept of drug reposi-
tioning, to predict new therapeutic targets for various diseases. Predictions were performed by a trans-disease analysis
which integrated genetically perturbed transcriptomic signatures (knockdown of 4345 genes and overexpression of
3114 genes) and disease-specific gene transcriptomic signatures of 79 diseases. The trans-disease method, which
takes into account similarities among diseases, enabled us to distinguish the inhibitory from activatory targets and to
predict the therapeutic targetability of not only proteins with known target–disease associations but also orphan pro-
teins without known associations. Our proposed method is expected to be useful for understanding the commonality
of mechanisms among diseases and for therapeutic target identification in drug discovery.

Availability and implementation: Supplemental information and software are available at the following website
[http://labo.bio.kyutech.ac.jp/~yamani/target_repositioning/].

Contact: yamani@bio.kyutech.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the process of drug development, the identification of therapeutic
targets, biomolecules that lead to therapeutic effects is fundamental
(Santos et al., 2017). The identification of therapeutic targets for
specific diseases should be both accurate and rapid in order to facili-
tate efficient drug development (Wang et al., 2020). The initial selec-
tion of inappropriate therapeutic targets impacts the entire drug
development pipeline, and poor choices greatly reduce the rate at
which the efficacy of compounds can be confirmed in humans in
Phase II clinical trials (Arrowsmith and Miller, 2013; He et al.,
2019; Plenge, 2016). The depletion of therapeutic targets is a major
problem and has resulted in the recent stagnation of drug discovery
research. Most therapeutic targets that can be easily identified using
pathological knowledge have already been thoroughly investigated.
The conventional methods used to investigate individual diseases are
also limited in their ability to discover novel therapeutic targets.

Over two decades, a large body of medical data about various
diseases has been accumulated, in the form of omics data about bio-
molecules, and chemical data about drugs and small compounds
(Duan et al., 2014; Lamb et al., 2006). These big data resources pro-
vide a previously unparalleled opportunity to identify novel thera-
peutic targets with optimum efficiency. Popular approaches to date
include the use of single nucleotide polymorphisms (SNPs) and

transcriptomic data. SNPs occurring in the protein-coding regions of
genes associated with a disease are assumed to alter the function of
the gene product, and thus to be potential therapeutic targets (Sabik
and Farber, 2017; Shastry, 2007). However, this is not necessarily
the case. Since SNP information is static, SNP information alone
cannot indicate whether a protein encoded by the SNP-associated
gene is activated or repressed: the mechanism of the disease of inter-
est thus remains unknown. Therefore, further analyses that deter-
mine if a candidate target should be activated are prerequisite to the
treatment of the disease. In transcriptome-based approaches, pat-
terns of gene expression in healthy subjects and patients are com-
pared, with the aim of identifying proteins encoded by abnormally
expressed genes. Disease-specific proteins are then assumed to be
candidate therapeutic targets (De Vos et al., 2002; Ruiz-Garcia
et al., 2010). This approach has led to the identification of a thera-
peutic target for prostate cancer (Dhanasekaran et al., 2001).
However, these approaches tend to predict too many candidates for
therapeutic targets, which makes the search space too large to be
explored exhaustively.

Drug repositioning—the identification of new indications for
known drugs—is an efficient drug discovery approach. Many previ-
ous studies have used gene expression data in human cell lines fol-
lowing treatment with drugs. Such drug-induced transcriptomic
data are used to identify potential targets and pathways of drugs
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and then to predict new therapeutic indications for existing drugs
(Chen et al., 2015; Iwata et al., 2017). Because the best therapeutic
agents for diseases are assumed to facilitate the recovery of impaired
cell systems, the focus of research has been placed on the inverse cor-
relation method, looking for drugs that invert the expression profile
characteristic of a disease. For example, drugs that are effective for
the treatment of inflammatory bowel disease, prostate cancer and
colorectal cancer have been discovered using the inverse correlation
method (Dudley et al., 2011; Kosaka et al., 2013; Van Noort et al.,
2014). In addition to drug-induced gene expression transcriptomic
data, large amounts of genetically perturbed transcriptome data,
arising from either gene knockdown or gene overexpression experi-
ments, have become available from public databases (Sawada et al.,
2018; Subramanian et al., 2017). The genetically perturbed gene ex-
pression signatures of therapeutic targets for diseases are assumed to
reflect the functions of the drugs targeting those proteins. Similar to
the inverse correlation method used in drug repositioning, it is worth
investigating the correlation between disease-specific gene expres-
sion signatures and genetically perturbed gene expression signatures,
to facilitate the identification of therapeutic targets.

In this study, we propose the novel concept of target reposition-
ing, an extension of the concept of drug repositioning, to predict
new therapeutic target indications for a wide range of diseases.
Figure 1 provides an overview of our proposed method, and
Figure 1A shows the concept of our study. Predictions were per-
formed by a trans-disease analysis based on the integration of genet-
ically perturbed transcriptomic signatures and disease-specific gene
transcriptomic signatures. This method allowed us to consider simi-
larities among diseases, and to predict the therapeutic targetability,
not only for proteins with known target–disease associations but
also for orphan proteins without known associations.

2 Methods

2.1 Transcriptomic data following genetic perturbation
The L1000 database is a repository of gene expression profiles, main-
tained by the Library of Integrated Network-based Cellular Signature
(LINCS) program (http://www.lincsproject.org) (Subramanian et al.,
2017). The gene expression profiles GSE70138 and GSE92742 were
obtained from the Gene Expression Omnibus (GEO) database
(Barrett et al., 2007). This assay involved a range of cellular perturba-
tions to 93 human cell lines. The L1000 database provided 978 land-
mark genes, which are referred to as ‘L1000 genes’. Here, we used
‘level 5’ data, which consists of profiles generated by collapsing sev-
eral replicates.

The gene expression levels were measured at 6, 24, 48, 96, 120,
144 and 168 h after gene knockdown, and 24, 48, 72 and 96 h after
gene overexpression, producing a total of 591 855 gene expression
profiles. Each profile was represented by its ‘sig_id’. We used 36
720 gene knockdown profiles (denoted as ‘trt_sh.cgs’) and 22 205
gene overexpression profiles (denoted as ‘trt_oe’). We individualized
the gene knockdown profiles by averaging the biological replicates,
time points and doses. We constructed 4345 gene knockdown pro-
files on 17 cell lines. We used the same procedure to construct 3114
gene overexpression profiles on 10 cell lines. Supplementary Table
S1 shows the list of cell lines.

We constructed gene expression profiles following gene
knockdown and gene overexpression, which are referred to as
‘gene knockdown signatures’ and ‘gene overexpression signa-
tures’, respectively. Together, these signatures are referred to as
‘genetically perturbed signatures’. Each gene knockdown and
gene overexpression signature was represented as a feature vec-
tor, xinh ¼ x1; x2; . . . ; xpð ÞT and xact ¼ x1; x2; . . . ; xpð ÞT, respect-
ively, where p is the number of genes. Each element in the signature
was defined as the difference between the gene expression value meas-
ured after gene perturbation and the value measured in the corre-
sponding control, the background of the plate. Each genetically
perturbed signature was affected by the human cell line used, the dose
administered and the time point of the experiment.

2.2 Transcriptomic data from individuals with disease
The gene expression profiles of patients with various diseases were
obtained from the CRowd Extracted Expression of Differential
Signatures database (Wang et al., 2016) based on the characteristic
direction method (Clark et al., 2014), which compares the gene ex-
pression measured in diseased tissue with that measured in control
tissue.

In this study, 695 profiles annotated as ‘manual disease signa-
tures’ were used, because these profiles were assigned disease ontol-
ogy IDs (DOIDs) (Kibbe et al., 2015). The DOIDs were converted
to their corresponding KEGG DISEASE database (Kanehisa et al.,
2009) IDs using medical subject heading terms or the Online
Mendelian Inheritance in Man database (Hamosh et al., 2005). We
extracted the profiles obtained from humans for 79 diseases and 14
804 genes. The gene expression profiles of the patients were referred
to as ‘patient-specific gene expression signatures’. Supplementary
Table S2 shows the diseases that had at least one therapeutic target
protein. Thirty-two diseases had at least one inhibitory target pro-
tein, whereas 15 diseases had at least one activatory target protein.
These diseases included Alzheimer’s disease, inflammatory bowel
disease and type II diabetes mellitus.

We averaged multiple patient-specific signatures for the same
disease and constructed a disease signature for each of the 79 dis-
eases. The gene expression signature of each disease was represented
by a feature vector, z ¼ z1; z2; . . . ; zqð ÞT, where q is the number of
genes. Disease signatures were constructed for all genes and the
L1000 genes. The disease signature comprising all genes was used to
calculate the cosine similarity among the diseases. We also con-
structed a disease similarity matrix.

2.3 Therapeutic target data
Therapeutic target information was constructed by manually curat-
ing data in medical monographs (Papadakis et al., 2014) and the
KEGG DISEASE database (Kanehisa et al., 2009). In total, 525 tar-
get–disease associations involving 224 inhibitory target proteins and
32 diseases were used as gold standard inhibitory target data, and
37 target–disease associations involving 30 activatory target pro-
teins and 15 diseases were used as gold standard activatory target
data.

2.4 SNP profiling method for therapeutic target

prediction
Information about disease-associated SNPs is typically utilized to
identify therapeutic targets (Sabik and Farber, 2017; Shastry, 2007).
The assumption underlying this approach is that diseases are caused
by functional changes to the proteins encoded by genes containing
SNPs within their coding regions; thus, the genes are regarded as po-
tential therapeutic targets. We used this SNP-based approach as the
baseline method and referred to it as the ‘SNP profiling method’.

SNP data for the various diseases were downloaded from the
NHGRI-EBI genome-wide association studies (GWAS) catalog data-
base (Buniello et al., 2019). This database provides information about
SNP–disease associations, in which SNPs identified in GWASs are reg-
istered with their identifiers, associated genes, and the corresponding
P values. In this study, 142 gene–disease associations involving 77
genes, and 21 diseases were used in the performance evaluation.

We constructed disease-specific SNP profiles, which were
referred to as ‘SNP profiles’. When a gene had multiple SNPs or was
reported by multiple GWASs, we averaged the P values for the gene.
We constructed SNP profiles corresponding to the gold-standard
data by assigning the value 0 to genes with no SNP data.

We used �logðPÞ values as predictive scores. Genes that had
SNPs with significantly strong associations with disease were con-
sidered to be candidate therapeutic targets. Since this method
depends on the presence or absence of SNPs in gene-coding regions,
it cannot be used to predict whether a therapeutic target is inhibitory
or activatory. The performance assessments of four alternative SNP
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prioritization strategies are included in Supplementary Methods and

Results due to space limitations.

2.5 Inverse signature method for therapeutic target

prediction
The inverse signature method is a popular transcriptome-based drug
repositioning approach used to identify novel drugs for the treat-
ment of diseases (Dudley et al., 2011; Jahchan et al., 2013; Kunkel

et al., 2011; Sirota et al., 2011). Drug signatures are generally
assumed to have an inverse correlation with disease signatures if the

drugs have therapeutic effects on those diseases (Van Noort et al.,
2014).

In this study, we used the concept of inverse correlation for tar-
get repositioning to predict new applications of existing targets to
different diseases. Genetically perturbed gene expression signatures

were assumed to reflect the functions of the drugs targeting those
genes. Therefore, potential inhibitory and activatory target–disease
associations were predicted based on the inverse correlations be-

tween the gene knockdown or gene overexpression signatures and
the disease signatures.

We calculated the correlation coefficient between the gene
knockdown signatures, xinh, and disease signatures, z, for each of

the inhibitory targets and diseases, and between the gene overex-
pression signatures, xact, and disease signatures, z, for each of the
activatory targets and diseases. Pearson’s correlation coefficient, rxz,

was calculated as

rxz ¼
Pd

i¼1ðxi � xÞðzi � zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼1 ðxi � xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼1 ðzi � zÞ2

q ; (1)

where xinh and xact were described as x, and d represents the number
of genes common to the genetically perturbed and disease

signatures, d ¼ 884. Target–disease pairs that had high inverse cor-
relations were considered to be candidate therapeutic targets.

2.6 Trans-disease method for therapeutic target

prediction
We developed a trans-disease method that can predict therapeutic
targets for diseases from genetically perturbed gene expression sig-
natures and disease similarity. Note that there are a number of can-
didates for diseases, and different diseases may have common
characteristics in terms of molecular mechanisms. The same thera-
peutic targets are sometimes used for multiple diseases. Thus, we
propose formulating the problem of therapeutic target prediction in
the framework of supervised multiple label prediction (Bickel et al.,
2008).

Suppose that there are M diseases and we are given N targets.
We consider predicting which diseases would be treated by a target,
that is, the ith target (i ¼ 1; 2; . . . ;N). Each target is represented by
a d-dimensional feature vector as xi in this study, where xi is a genet-
ically perturbed gene expression signature.

We constructed a learning set of target–disease pairs that are
pairs given in target–disease associations. There are M candidates
for diseases, and each target in the learning set is assigned a binary
class label representing the mth disease (m ¼ 1; 2; . . . ; M). Let
ym;i 2 0; 1f g be the class label for the mth disease assigned to the ith
target, where ym;i ¼ 1 means that ith target is used for the mth dis-
ease, and ym;i ¼ 0 means that the i-th target is not used for the mth
disease.

We construct a predictive model to predict whether the ith target
would be used for the mth disease. Linear models are a useful tool
to analyze extremely high-dimensional data for both prediction and
feature extraction tasks. Thus, we adopt a linear function defined as
fm ¼ wT

mx, where wm is a d-dimensional weight vector for the mth
disease. We represent a set of M model weights by a d � M matrix
defined as W :¼ ½w1; w2; . . . ; wM� and estimate the weight matrix
W by minimizing an objective function using the gradient descent
method.

To overcome the scarcity of existing knowledge on the relation-
ships between targets and diseases, we performed learning of indi-
vidual models, f1; f2; . . . ; fM, jointly, by sharing information across
M diseases.

We attempt to estimate all of the weight vectors
w1;w2; . . . ; wM jointly in the models by minimizing the logistic
loss as follows:

R Wð Þ ¼
XM
m¼1

XN

i¼1

log 1þ exp �ym;iw
T
mxi

� �� �
: (2)

We introduce a regularization term XðWÞ to the loss function to
enhance the generalization properties in the optimization problem
as follows:

minW R Wð Þ þX Wð Þ: (3)

Here, we introduce two regularization terms. First, we use a
standard ridge regularization term to avoid the overfitting problem
as follows:

Xr :¼ 1

2
Tr WWTð Þ; (4)

where Tr indicates trace operation.
Second, we design a regularization term reflecting the similarities

among diseases. A multitask/multilabel regularizer based on task/
label similarities is useful for analyzing related tasks (Evgeniou,
2005). We evaluate the similarity among diseases using the cosine
similarity based on disease signatures and construct an M�M simi-
larity matrix S for diseases in which each element Si;j is a similarity
score between the ith and jth diseases. Then, we introduce the fol-
lowing regularization term:

Fig. 1. Data processing flow charts of the proposed method for predicting therapeut-

ic targets from transcriptomic signatures. (A) The concept of this study: target repo-

sitioning, which is an extension of the concept of drug repositioning. Target

repositioning predicts new therapeutic target indications for diseases. (B) The in-

verse signature method. Correlation coefficients for inhibitory or activatory target–

disease pairs were calculated from gene knockdown and disease-specific signatures

or gene overexpression and disease-specific signatures, respectively. (C) The trans-

disease method. Gene knockdown and gene overexpression signatures were used as

input to predictive models for individual diseases. Predictive models are simultan-

eously learned by sharing the disease similarities of disease-specific signatures
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Xs Wð Þ :¼ 1

4

XM

l¼1

XM
m¼1

Sl;m
wlffiffiffiffiffiffiffi
Kl;l

p � wmffiffiffiffiffiffiffiffiffiffiffi
Km;m

p
����

����
����

���� ¼
1

2
Tr WLsW

T
� �

; (5)

where �j jj j is the Euclidean norm, K is a diagonal matrix defined as

Kl;l :¼
PM

m¼1 Sl;m, and Ls is a symmetric normalized Laplacian

defined as K�1=2ðK� SÞK�1=2. Xs Wð Þ has the effect of bringing the
weight vectors wi and wj close to each other if Sl;m is high. Finally,

we introduce the following regularization term in the optimization
problem (3):

X Wð Þ :¼ ksXs Wð Þ þ krXr Wð Þ; (6)

where ks � 0 and kr � 0 are hyper-parameters to control the
strength of the regularization terms XS and Xr, respectively. Further
details can be found in the Supplementary Methods.

2.7 Data completion method
We imputed the missing entries of the genetically perturbed gene expres-
sion signatures using a tensor decomposition algorithm (Iwata et al.,
2019). Genetically perturbed gene expression data can be represented
by a third-order tensor. Gene expression data collected following gene
knockdown consisted of 224 knocked down genes, 978 genes and 17
cell lines, and can be represented as a 224 � 978 � 17 tensor.
Similarly, gene expression data collected following gene overexpression
consisted of 30 overexpressed genes, 978 genes and 10 cell lines, and
was represented as a 30 � 978 � 10 tensor. Most parts of these ten-
sors are missing or unobserved. The missing rates in each cell line are
shown in the bottom panel of Supplementary Figures S4–S6.

3 Results

3.1 Gene expression profiles following gene

perturbation are associated with many potential

therapeutic targets
We examined the features of the gene knockdown signatures of
4345 proteins and the gene overexpression signatures of 3114 pro-
teins. We performed hierarchical clustering of the perturbed genes
coding for the proteins using the Ward method. We also performed
principal component analysis (PCA) on the genetically perturbed
gene expression signatures. Figure 2 shows the heatmaps and PCA
plots of gene knockdown and gene overexpression signatures,
labeled based on protein families provided by the PANTHER re-
source (Mi et al., 2013; Thomas et al., 2003). Some proteins from
different families clustered into the same group, whereas some pro-
teins from the same family clustered separately. Thus, the effects of
gene perturbation on proteins appear to be independent of the ori-
ginal protein families, to some extent, and proteins with similar per-
turbation patterns are likely to have similar associations with
diseases, regardless of the sequence-based protein families.

To evaluate whether the perturbed genes contained a sufficient num-
ber of candidate therapeutic targets, we examined the molecular func-
tions and biological processes of the products of these genes. Figure 3
shows the classifications of the perturbed genes coding for proteins
according to the protein class, biological process, and KEGG pathway.
Figure 3A shows the classifications of the 4345 knocked down genes
according to protein class, biological process, which were classified
based on the Gene Ontology (GO) Biological Process terms, and the
KEGG pathway (Kanehisa et al., 2002). For the classifications based on
protein family, the knocked down genes were classified using
PANTHER. The most commonly found protein class was ‘metabolite
interconversion enzyme’, followed by ‘protein modifying enzyme’,
‘gene-specific transcriptional regulator’, ‘transmembrane signal recep-
tor’, ‘nucleic acid metabolism protein’, ‘protein-binding activity modu-
lator’ and ‘transporter’, accounting for 80% of all proteins. The
category ‘metabolite interconversion enzyme’ (19.4%) contained pro-
tein subfamilies such as kinases, dehydrogenases, reductases and
cyclases (Supplementary Fig. S3A). ‘Protein modifying enzyme’ (18.3%)
contained protein subfamilies such as proteases and kinases. ‘Gene-spe-
cific transcriptional regulator’ (14.2%) and ‘nucleic acid metabolism

protein’ (8.3%) contained various transcription factors, nucleic acids
and related proteins. ‘Transmembrane signal receptor’ (8.4%) con-
tained subfamilies such as ‘G-protein coupled receptor’ and ‘serine/
threonine protein kinase receptor’. These subfamilies in the top protein
families are often targets for first-in-class drugs (Eder et al., 2014). The
most common term among GO biological processes was ‘Cellular pro-
cess’, followed by ‘metabolic process’ and ‘biological regulation’,
accounting for 66% of the total. These GO terms contained those asso-
ciated with ‘metabolic reaction’, ‘signaling transduction’ and ‘cell-to-cell
communication’. The most common term among the KEGG pathway
was ‘Signal transduction’, followed by ‘metabolism’ and ‘endocrine sys-
tem’. These GO terms and KEGG pathways play important roles in reg-
ulating many biochemical reactions that are effective target processes
for many drugs. These results suggest that the knocked down genes in
this analysis contained many potential therapeutic targets, in terms of
both biological processes and molecular functions.

Figure 3B shows the classifications of 3114 overexpressed genes
of proteins according to protein family, biological process and
KEGG pathway. ‘Gene-specific transcriptional regulator’ was the
most commonly found protein family, followed by ‘protein modify-
ing enzyme’, ‘metabolite interconversion enzyme’, ‘nucleic acid me-
tabolism protein’ and ‘transmembrane signal receptor’, accounting
for 71.8% of all proteins. Similar to the knockdown gene analysis,
there were many protein subfamilies that are commonly used as
drug targets (Eder et al., 2014) (Supplementary Fig. S3B). These
results suggest that overexpressed genes contain many genes that are
potential therapeutic targets, according to their biological processes
and molecular functions.

3.2 Performance evaluation of therapeutic target

predictions
We evaluated the performance of our proposed methods for thera-
peutic target prediction, the inverse signature and trans-disease

Fig. 2. Heatmap and PCA plot of (A) gene knockdown and (B) gene overexpression

signatures. The heatmaps represent the results of hierarchical clustering of both

types of perturbed genes of proteins (4,345 knocked down and 3,114 overexpressed

genes) and L1000 genes (978 landmark genes from the L1000 database). The color

bars to the right of the heatmaps represent the levels of gene expression ratios. The

colored labels under the dendrograms represent protein families corresponding to

the genetically perturbed genes. High-resolution images of the dendrograms of gen-

etically perturbed genes and the genes belonging to each cluster can be found in

Supplementary Figure S2 and Tables S3 and S4, respectively. The PCA plots repre-

sent the distribution of genetically perturbed genes labeled based on their protein

families, which are represented by different colors
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methods, using gold standard data (see Section 2). We also tested
the ability of a data completion process to overcome the problem of
missing data. To evaluate the performance, we used receiver operat-
ing characteristic (ROC) curves for the performance of a classifier
over all possible cutoffs, by plotting true positive rates (TPRs)
against false-positive rates (FPRs). The area under the ROC curve
(AUC) score ranges from 0 to 1.0, with 1.0 indicating perfect infer-
ence, (100% TPR and 0% FPR) and 0.5 representing random infer-
ence. The AUC scores for all target–disease pairs were calculated for
each cell line. We evaluated the performance of therapeutic target
predictions with the trans-disease method by 5-fold cross-validation
experiments. We compared the performance of the proposed meth-
ods with that of a baseline method, the SNP profiling method.

Figure 4 shows the AUC scores for the baseline method, the in-
verse signature method and the trans-disease method, with missing
or completed data. Figure 4A and B shows the results of inhibitory
and activatory target predictions, respectively. The SNP profiling
method could not predict therapeutic targets by dividing them into
inhibitory and activatory targets. Although it is technically impos-
sible to determine whether the predicted targets are inhibitory or
activatory by SNP profiling, they were regarded as true inhibitory or
activatory target–disease pairs in this performance evaluation of in-
hibitory or activatory target predictions. Therefore, the accuracy of
the SNP profiling method may have been overestimated.
Nevertheless, the trans-disease method with completed data per-
formed better than the SNP profiling method. The AUC scores for
the trans-disease method with completed data (AUC¼0.630 for in-
hibitory target prediction; AUC¼0.651 for activatory target predic-
tion) were higher than those for the SNP profiling method
(AUC¼0.516 for inhibitory target prediction; AUC¼0.587 for
activatory target prediction) for both inhibitory and activatory tar-
get predictions. These results indicate that the trans-disease method
with completed data was the most effective for predicting the thera-
peutic targets of diseases. Finally, we evaluated the performance of
therapeutic target predictions on a cell-by-cell basis. For nearly all
cell lines, the trans-disease method with completed data performed
best. Because of space limitation, the detailed results are presented
in Supplementary Results.

3.3 Target repositioning can predict novel uses for

existing therapeutic targets in different disease classes
We comprehensively predicted the unknown inhibitory targets and
activatory targets of 79 diseases using the trans-disease method with

completed data. All known target–disease associations were used as
the learning dataset, and novel inhibitory and activatory targets
were predicted. To predict the inhibitory targets, we used the gene
knockdown signatures of 4345 proteins; to predict the activatory
targets, we used the gene overexpression signatures of 3114 pro-
teins. The knocked down and overexpressed genes included not only
genes with known therapeutic indications for the diseases but also
genes with no known therapeutic indications for any of the diseases.
Specifically, 224 of the knocked down genes had known target–dis-
ease associations, whereas the remaining 4121 genes had no known
target–disease associations. Thirty of the overexpressed genes had
known target–disease associations, whereas the remaining 3084
genes had no known target–disease associations. The genes that had
known therapeutic indications for the diseases were predicted to be
repositioned from one disease to another, whereas the genes with no
known therapeutic indications for any disease were predicted to be
potential new therapeutic targets.

To evaluate the predicted therapeutic targets in the framework
of target repositioning, we examined their distribution based on the
predicted indications. Figure 5A shows the distribution of inhibitory
targets repositioned from the original disease classes to other disease
classes, based on the predicted therapeutic indications of these tar-
gets. Sixty-two inhibitory targets were repositioned to other diseases
in classes that differed from those of the original diseases. Diseases
were classified according to the disease chapters in the International
Statistical Classification of Diseases and Related Health Problems
11th version (ICD-11) (Reed et al., 2019). The predictions indicated
that a large number of inhibitory targets could possibly be reposi-
tioned from Chapter II (neoplasms) to Chapter IV (diseases of the
immune system) and vice versa; furthermore, a possible reposition-
ing from Chapter II (neoplasms) to Chapter VIII (diseases of the ner-
vous system) and vice versa was indicated. These results suggest that
the proposed large-scale prediction method can provide new thera-
peutic indications for a wide range of diseases. Supplementary Table
S5 shows matrices that indicate the directions of repositioning be-
tween diseases.

Figure 5B shows the distribution of activatory targets repositioned
from the original disease classes to other disease classes based on the
predicted therapeutic indications of these targets. Forty-six activatory
targets were repositioned to other diseases in classes that differed
from those of the original diseases. As with the inhibitory target pre-
dictions, diseases were classified according to the ICD-11 disease
chapters (Supplementary Table S6). A large number of activatory tar-
gets could possibly be repositioned from Chapter V (endocrine, nutri-
tional or metabolic diseases) to Chapter II (neoplasms) and vice versa;
additionally, possible activatory target repositioning from Chapter V
(endocrine, nutritional or metabolic diseases) to Chapter VIII (diseases
of the nervous system) and vice versa was indicated. Target reposition-
ing can be performed using pathological knowledge, whereas reposi-
tioning to other diseases in classes that differ from those of the
original disease cannot easily be predicted. Thus, the proposed

Fig. 3. Classifications of perturbed genes according to protein class, biological pro-

cess, and KEGG pathway. (A) Knockdown genes. (B) Overexpressed genes. The top

panels show a classification based on protein family in PANTHER. Asterisks indi-

cate the top five protein families; the subfamilies belonging to these protein families

are shown in Supplementary Figure S3. The middle panels show a classification

based on GO biological process. The bottom panels show a classification based on

KEGG pathways; each label represents a pathway category

A B

Fig. 4. Comparisons of the performance of the baseline method (SNP profiling) and

the proposed methods. (A) Inhibitory target predictions. (B) Activatory target pre-

dictions. The proposed methods are the inverse signature and trans-disease methods,

with missing and completed data. Each box plot represents the AUC scores for all

cell lines
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approach has the potential to predict new therapeutic indications that
are not easily identified from pathological knowledge alone.

3.4 Predicted network of inhibitory target–disease

associations
We elaborated the validity of the newly predicted inhibitory target–
disease associations. Fifty-two inhibitory targets were repositioned
from the original disease to other diseases; these targets are listed in
Supplementary Table S7.

Figure 6A shows a small portion of the network of inhibitory tar-
get–disease associations that was predicted using the trans-disease
method. The associations are shown by focusing on targets that
were repositioned from the original disease to other diseases. For ex-
ample, the inhibition of TSLP, an inhibitory target of atopic derma-
titis, was predicted to lead to therapeutic effects in cervical cancer
(CC), ovarian cancer (OC), systemic lupus erythematosus (SLE),
chronic myeloid leukemia (CML) and congenital muscular dystro-
phies. TSLP has previously been reported in the contexts of OC, in
which the inhibition of TSLP was found to block metastasis
(Ragonnaud et al., 2019; Xu et al., 2019; Chan et al., 2021); the
TSLP signaling pathway is associated with SLE (Gorji et al., 2019);
and TSLP was found to promote the development of CC (Zhang et
al., 2017; Xie et al., 2015, 2013; Zhang and Jin, 2017). Thus, the in-
hibition of TSLP could produce therapeutic effects in these diseases.
It appears that is possible to identify the therapeutic indications of
existing inhibitory targets for various diseases using our proposed
target repositioning method.

To evaluate the value of the therapeutic indications of TSLP for
predicted diseases, we then analyzed the GO biological process
terms and KEGG pathways of the differentially expressed genes.
Figure 7A shows the GO and pathway network for which TSLP is
an inhibitory target. The GO gene annotation and KEGG pathway
analysis of TSLP included 24 GO terms and 7 KEGG pathways.
Significantly enriched GO groups included protein localization to
mitochondrion (GO: 0070585; P ¼ 6:05 � 10�8), intrinsic apop-
totic signaling pathway (GO: 0097193; P ¼ 9:94 � 10�7), re-
sponse to heat (GO: 0009408; P ¼ 1:40 � 10�5) and response to
oxygen levels (GO: 0070482; P ¼ 3:38 � 10�5); thus, strong

associations were detected between TSLP and the proliferation and
apoptosis of cancer cells. The CML pathway (KEGG: 05220) was
also significantly enriched (P ¼ 2:00 � 10�2), suggesting an associ-
ation with the therapeutic effects on CML. Overall, these results
suggest that the inhibition of TSLP could be an effective treatment
against OC, CC and CML. The results also provide further evidence
that our proposed method of target repositioning can predict thera-
peutic indications of inhibitory targets.

3.5 Predicted network of activatory target–disease

associations
We evaluated the validity of the newly predicted activatory target–
disease associations; 46 activatory targets were repositioned from
the original disease to other diseases (Supplementary Table S8).

Figure 6B shows a small portion of the network of activatory tar-
get–disease associations that was predicted by the trans-disease
method. As in Figure 6A, the associations are shown by focusing on
targets that were repositioned from the original disease to other dis-
eases. As an example, the activation of IFNG, an activatory target of
chronic granulomatous disease, was predicted to lead to therapeutic
effects on rheumatoid arthritis (RA), Parkinson’s disease (PD), type I
diabetes mellitus (T1DM), acute myeloid leukemia (AML) and
breast cancer (BC). Previous research has found that the loss of
IFNG reduces the therapeutic effects against AML (Matte-Martone
et al., 2017), that IFNG mitigates resistance to anticancer drugs in
BC (Showalter et al., 2019), that it is a key factor in the treatment of
RA (He et al., 2020) and that it is poorly expressed in T1DM
(Sasaki et al., 2004; Vaseghi et al., 2016); thus, it is possible that the
activation of IFNG would have therapeutic effects in these diseases.
AML depresses the immune system, and both RA and T1DM are
autoimmune diseases. IFNG is a cytokine that regulates the immune
system. The predicted therapeutic indications of IFNG therefore ap-
pear to be promising.

We then performed GO analysis of biological processes and
KEGG pathway analysis for IFNG based on differentially expressed
genes. Figure 7B shows the GO and pathway network of IFNG as
an activatory target; 38 GO terms and 5 KEGG pathways were asso-
ciated with IFNG. Genes annotated to the biological process ‘regula-
tion of ubiquitin–protein transferase activity’ (GO: 0051438; P
¼ 8:23 � 10�7) and its related GO group were significantly
enriched (P ¼ 2:57 � 10�3). Ubiquitin plays an essential role in the
removal of abnormal proteins from cells, and the loss of ubiquitin
leads to neurodegenerative disorders. Thus, the activation of IFNG
may lead to therapeutic effects in neurodegenerative disorders such
as PD. Significant enrichment of GO groups related to female gam-
ete generation (GO: 0007292; P ¼ 2:82 � 10�6) and female meiot-
ic nuclear division (GO: 0007143; P ¼ 3:99 � 10�6) was also
detected, as well as significant enrichment of the KEGG

A B

Fig. 5. Distribution of therapeutic targets repositioned from the original disease

classes to other disease classes. (A) Inhibitory targets. (B) Activatory targets. Nodes

[indicated by blue and red diamonds in (A) and (B), respectively] represent ICD-11

disease chapters (shown with the chapter number). Edges [indicated by blue and

pink lines for (A) and (B), respectively] represent potential correlations between dis-

eases according to the new therapeutic effects of targets. The node size indicates the

sum of the number of edges of each node. The edge width indicates the number of

therapeutic targets repositioned between two disease chapters. I: certain infectious

or parasitic diseases; II: neoplasms; III: diseases of the blood or blood-forming

organs; IV: diseases of the immune system; V: endocrine, nutritional, or metabolic

diseases; VI: mental, behavioral, or neurodevelopmental disorders; VII: sleep–wake

disorders; VIII: diseases of the nervous system; IX: diseases of the visual system; X:

diseases of the ear or mastoid process; XI: diseases of the circulatory system; XII:

diseases of the respiratory system; XIII: diseases of the digestive system; XIV: dis-

eases of the skin; XV: diseases of the musculoskeletal system or connective tissue;

XVI: diseases of the genitourinary system; XVII: conditions related to sexual health;

XVIII: pregnancy, childbirth, or the puerperium; XIX: certain conditions originating

in the perinatal period; XX: developmental anomalies; XXI: symptoms, signs, or

clinical findings, not elsewhere classified; and XXII: injury, poisoning or certain

other consequences of external causes

A B

Fig. 6. Small portions of newly predicted therapeutic target–disease association net-

work. (A) Inhibitory target–disease association network and (B) activatory target–

disease association network were predicted using the trans-disease method with

completed data. Circles and diamonds denote therapeutic targets and diseases, re-

spectively. Solid and dotted lines denote known and predicted associations, respect-

ively. The upper squares in (A) and (B) denote the first nodes of TSLP and IFNG,

respectively
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pathways ‘progesterone-mediated oocyte maturation’ (KEGG:
04914; P ¼ 5:94 � 10�3) and ‘oocyte meiosis’ (KEGG: 04114;
P ¼ 2:39 � 10�3). Because progesterone is a hormone involved
in the secretion of milk and the proliferation of BC cells, IFNG is
expected to be an activatory therapeutic target for BC. The P53
signaling pathway (KEGG: 04115) was also significantly
enriched (P ¼ 1:60 � 10�2). This pathway could potentially
regulate the proliferation and apoptosis of cancer cells. Overall,
these findings indicate that the activation of IFNG may lead to
therapeutic effects in cancers such as BC and AML. As with the
therapeutic indications of inhibitory targets, our proposed target
repositioning method can potentially predict promising thera-
peutic indications of existing activatory targets.

3.6 Newly predicted therapeutic targets for orphan

proteins without known target–disease associations

Finally, we evaluated the validity of the newly predicted therapeutic
targets for orphan proteins without known target–disease associa-
tions. We evaluated the top 20 therapeutic target–disease pairs,
which included completely new targets that have no known target–
disease associations.

Table 1A lists the top 20 inhibitory targets for the applicable dis-
eases from 4345 gene knockdown signatures and 32 diseases. Some
examples, including ADA for adult T-cell leukemia (ATL), CD3D
for T1DM and EPCAM for hepatitis C (HC), are known target–dis-
ease associations, indicating that our proposed method can accurate-
ly predict known therapeutic indications. Some proteins were

A B

Fig. 7. GO and KEGG pathway networks of (A) TSLP and (B) IFNG. (A) TSLP was predicted as the inhibitory target, and (B) IFNG was predicted as the activatory target.

These analyses were performed based on the genes differentially expressed following TSLP knockdown and IFNG overexpression, respectively. The top panels show the GO

analysis results for biological process terms. The bottom panels show the results of KEGG pathway analysis. The circles in the GO and KEGG pathway analysis represent GO

terms and KEGG pathways, respectively. The edges denote term–term interactions and functional groups (GO groups) based on genes shared between the terms. The node col-

ors represent GO groups. The node size represents the term significance; the biggest term of a group is the most significant, and it is highlighted on the network. These GO

terms and pathways in the networks are shown in Supplementary Figure S7 and S8

Table 1. Inhibitory targets (A) and activatory targets (B) predicted using the trans-disease method with completed data

(A) Newly predicted inhibitory targets (B) Newly predicted activatory targets

Rank Diseases Inhibitory targets Prediction scores Rank Diseases Activatory targets Prediction scores

1 Adult T-cell leukemia TAF1B 1.000 1 Parkinson disease OLIG3 1.000

2 Endometrial cancer TAF1B 0.896 2 Chronic myeloid leukemia IFNAR2 0.999

3 Adult T-cell leukemia USP9X 0.871 3 Multiple myeloma IFNAR2 0.998

4 Type I diabetes mellitus TAF1B 0.868 4 Parkinson disease NDUFC2 0.998

5 Hepatitis C TAF1B 0.867 5 Ovarian cancer FBXW7 0.995

6 Endometrial cancer USP9X 0.832 6 Rett syndrome MECP2 0.992

7 Testicular cancer TAF1B 0.831 7 Type II diabetes mellitus RPS6KA2 0.992

8 Type I diabetes mellitus USP9X 0.826 8 Type II diabetes mellitus SIRT1 0.990

9 Adult T-cell leukemia TLK1 0.820 9 Parkinson disease FOXO4 0.990

10 Hepatitis C USP9X 0.819 10 Type II diabetes mellitus PDIK1L 0.989

11 Tuberculosis TAF1B 0.816 11 Type II diabetes mellitus MEF2C 0.989

12 Adult T-cell leukemia AATF 0.816 12 Type II diabetes mellitus SETMAR 0.988

13 Adult T-cell leukemia ADA 0.814 13 Parkinson disease MYO3B 0.987

14 Hypercholesterolemia TAF1B 0.813 14 Colorectal cancer TP53 0.987

15 Type I diabetes mellitus CD3D 0.813 15 Type II diabetes mellitus PPARG 0.986

16 Chronic lymphocytic leukemia TAF1B 0.810 16 Crohn’s disease IL10 0.984

17 Type I diabetes mellitus TLK1 0.809 17 Inflammatory bowel disease IL10 0.984

18 Type I diabetes mellitus ABCC1 0.807 18 Parkinson disease BCR-ABL 0.983

19 Hepatitis C EPCAM 0.807 19 Parkinson disease ZNF384 0.983

20 Endometrial cancer TLK1 0.807 20 Parkinson disease FLJ25006 0.983

Note: These predicted targets included both existing therapeutic targets and entirely new therapeutic targets without any known target–disease associations.

Inhibitory and activatory targets are listed. Prediction scores represent the therapeutic targetability of the indicated diseases. The top 100 target–disease associa-

tions can be found in Supplementary Tables S9 and S10. The bold values indicates known target–disease associations.
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predicted to be common inhibitory target candidates among differ-
ent diseases. For example, TAF1B was predicted to be a common in-
hibitory therapeutic target for ATL, endometrial cancer, T1DM,
HC, testicular cancer, tuberculosis and chronic lymphocytic leuke-
mia. This wide distribution is thought to be due to the similarity of
some of the causes and mechanisms of progression of these diseases.
The same therapeutic target can be shared among different diseases
if the mechanisms of disease pathogenesis are similar. These results
both validate our inhibitory target prediction approach and identify
new potential inhibitory targets that could potentially be used thera-
peutically for the treatment of their respective diseases.

We also closely examined the top prediction for an inhibitory
target–disease pair: TAF1B, an orphan protein without known tar-
get–disease associations, and ATL. We performed GO, KEGG path-
way, and network topology analyses using the differentially
expressed genes of the gene knockdown signature of TAF1B
(Supplementary Fig. S9). From the GO analysis of TAF1B, 132 GO
terms were detected. The significantly enriched GO groups included
‘myeloid leukocyte differentiation’ (GO: 0002573; P ¼
1:27 � 10�7), ‘CD4-positive, alpha-beta T-cell activation’ (GO:
0035710; P ¼ 1:58 � 10�10), and ‘regulation of CD4-positive,
alpha-beta T-cell activation’ (GO: 2000514; P ¼ 4:31 � 10�5).
These annotations suggest that TAF1B is associated with the differ-
entiation and regulation of CD4-positive T cells and other leuko-
cytes. Because the oncogenic transformation of CD4-positive T cells
is the cause of ATL, TAF1B inhibition is likely to be associated with
ATL. In the KEGG pathway analysis, of 23 detected KEGG path-
ways, ‘human T-cell leukemia virus 1 (HTLV-1) infection’ (KEGG:
05166) was significantly enriched (P ¼ 8:98 � 10�4), suggesting
that TAF1B could be associated with therapeutic effects on ATL,
since HTLV-1 infection is the cause of ATL. Protein–protein
interaction network analysis using the STRING database (Snel
et al., 2000) identified the SRC node as having the highest degree.
SRC is a proto-oncogene that interacts with STAT3, one of the
causal genes of ATL (Garcia et al., 2001; Morichika et al., 2019).
SRC is also the target of the drug dasatinib, and its ingredients have
been reported to have therapeutic effects on ATL (Kodama et al.,
2019). Thus, several lines of evidence suggest that TAF1B is a poten-
tial therapeutic target for ATL. Overall, these results imply that our
proposed method can successfully predict therapeutic indications
not only for proteins with known target–disease associations but
also for orphan proteins without known target–disease associations.

Table 1B shows the top 20 activatory targets for the applicable
diseases from 3114 gene overexpression signatures and 15 diseases.
Some previously known target–disease associations detected were
IFNAR2 for CML, IFNAR2 for multiple myeloma, SIRT1 for type
II diabetes mellitus (T2DM), TP53 for colorectal cancer, PPARG for
T2DM and IL10 for both Crohn’s disease and inflammatory bowel
disease. We confirmed the validity of several prediction results using
independent resources that were absent from the learning data. For
example, the transcription factor MEF2C is not an existing activa-
tory target with known target–disease associations, but it was pre-
dicted in this study to be an activatory target for T2DM. MEF2C
has previously been reported to be poorly expressed in T2DM
(Razeghi et al., 2002; Yuasa et al., 2015); thus, MEF2C is expected
to produce therapeutic effects. These results demonstrate that our
proposed method was valid for predicting both existing therapeutic
targets and new therapeutic targets without known target–disease
associations. These newly predicted activatory targets could poten-
tially be developed for therapeutic purposes.

4 Discussion

In this study, we proposed target repositioning and developed two
novel methods for predicting therapeutic targets of diseases, inte-
grating disease-specific gene expression signatures and genetically
perturbed gene expression signatures of target candidate proteins.
The proposed trans-disease method, which takes into account simi-
larities among diseases, enabled us to distinguish between inhibitory
and activatory targets, and to predict the therapeutic targetability of
proteins with known target–disease associations, and also those of

orphan proteins without known associations. Our proposed method
is expected to be useful for understanding the commonality of mech-
anisms among diseases, and for therapeutic target identification in
drug discovery.

We attempted to predict therapeutic targets based on the as-
sumption that there were inverse correlations between the diseases
and their therapeutic targets; however, our results showed that pre-
diction via the inverse signature method was challenging. The low
prediction accuracy of the inverse signature method may be due to
the lack of true therapeutic relationships between diseases and pro-
teins because the inverse signature method is an unsupervised ap-
proach. The presence of multiple unknown therapeutic relationships
between diseases and proteins would reduce the prediction accuracy.
Therefore, the provision of additional relevant data will be import-
ant for further development.

In this study, the use of SNPs was employed as the baseline
method. Since SNPs are naturally occurring phenomena that occur
with high frequency, and are not patient specific, their use rarely
leads to the identification of effective therapeutic targets. Thus, the
SNP profiling method performs poorly at selecting effective thera-
peutic targets, because too many candidate genes for these targets
are identified. The targets predicted by the SNP profiling method
cannot be annotated as inhibitory or activatory, because the genetic
data are static. Our proposed methods, however, can divide the pre-
dicted therapeutic targets into inhibitory or activatory, because they
use gene expression data, which are dynamic, and reflect the tran-
scriptomic responses of human cells. The determination of thera-
peutic targets as inhibitory or activatory is an advantage of our
methods.

Although we analyzed 79 diseases in this study, our methods
could be applied to many other diseases. The trans-disease method
considers the similarities among diseases to overcome the scarcity of
existing knowledge about the relationships among targets and dis-
eases. The predictive performance of this method can be expected to
improve as more diseases are targeted. The proposed method shares
disease similarities among individual predictive models and there-
fore facilitates the repositioning of therapeutic targets.
Consequently, our method has the potential to discover therapeutic
targets that are effective for treating intractable diseases for which
no effective therapeutic targets are currently available.
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