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Quantum chemistry and charge 
transport in biomolecules with 
superconducting circuits
L. García-Álvarez1, U. Las Heras1, A. Mezzacapo1,2, M. Sanz1, E. Solano1,3 & L. Lamata1

We propose an efficient protocol for digital quantum simulation of quantum chemistry problems 
and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with 
superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular 
structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-
Wigner transformation. Furthermore, we address the modelling of system-environment interactions of 
biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider 
gate-truncated quantum algorithms to allow the study of environmental effects.

The field of quantum chemistry arises from the application of quantum mechanics in physical models to explain 
the properties of chemical and biological systems1,2. The study of complex electronic structures in atoms and 
molecules encounters the difficulty of the exponential growth of the Hilbert space dimensions with the system 
size3,4. This fact limits the results reachable with current computers and classical algorithms, and strongly suggests 
to explore the possibilities of new quantum-based tools5,6.

Quantum simulations are a powerful field based on the imitation of the dynamics of a quantum system in a 
controllable quantum platform7,8. Theoretical and experimental efforts for solving problems in physical chemis-
try have been performed in technologies such as NMR9, trapped ions10–12, photonic systems13–15, and supercon-
ducting circuits16, among others. Quantum algorithms for the simulation of electronic structures with fermionic 
degrees of freedom and its optimisation have been widely studied17–24. Environmental effects also play a crucial 
role in quantum physics, chemistry and biology25,26. Fundamental phenomena such as electronic transport and 
electron transfer are described through the correlated dynamics of electrons and phonons, involving bosonic and 
fermionic modes.

Circuit quantum electrodynamics (cQED) is a cutting-edge technology in terms of design versatility, coher-
ent control, and scalability27. Indeed, remarkable experimental progress in cQED has enabled the realisation of 
digital quantum simulations of fermions28, spin systems29, and adiabatic quantum computing30. These aspects, 
along with the possibility of encoding both fermions and bosons in this platform via digital31–34 and digital-analog 
techniques35, make cQED a suitable platform for simulating electronic Hamiltonians36 and dissipative processes.

In this manuscript, we combine efficient digital quantum simulation techniques for electronic Hamiltonians 
with existing algorithms in quantum chemistry, and we analyze the scalability and feasibility according to the 
state-of-the-art cQED27. In this sense, we study the gate fidelities required for the proposed tasks and the error 
propagation. We extend these procedures by exploiting the possibility of mimicking bosons in superconducting 
circuits taking full advantage of the multimode spectrum of superconducting transmission lines37–41, and propose 
digital-analog quantum simulations of electron transfer and electronic transport in biomolecules42–44.

Results
Simulation of electronic Hamiltonians. The electronic structure is a quantum chemistry many-body 
problem that is usually difficult to solve due to the exponential growth of the Hilbert space with the size of the sys-
tem. Typically, the aim is to compute ground-state energies and their associated eigenvectors of these interacting 
electron systems in a fixed nuclear potential.

Among the variety of methods for simulating fermionic models with quantum technologies, one of the 
most studied approaches considers quantum algorithms using the second quantized formalism of electronic 
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systems17–23. The associated Hamiltonian may be represented in different bases, leading to different methods 
of encoding and scaling improvements in the number of qubits and gates required19,23. Furthermore, other 
approaches related to the Configuration Interaction (CI) matrix have been recently studied24.

The generic Hamiltonian describing a molecular electronic structure consists of the electron kinetic energy 
term, two-electron Coulomb interactions, and the electron-nuclei potential energy representing the electronic 
environment1,2. This Hamiltonian in second quantization may be written as
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where the operators †ci  and ci stand for the electrons and obey the fermionic anticommutation relations. 
Coefficients hij come from the single-electron integrals of the electron kinetic terms and electron-nuclei interac-
tions, and hijkl correspond to the two-electron integrals associated with the electron-electron Coulomb interac-
tion. That is, it is expressed in atomic units as
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where Rk are nuclear coordinates, r electronic coordinates, and Z the atomic number representing the nuclear 
charge. Here, {ϕi(r)} defines a set of spin orbitals, and r =  (r, σ) denotes the pair of spatial and spin parameters.

Optimal strategies of computation for quantum chemistry merge quantum simulation and classical numerical 
techniques. These methods, that we name as algorithmic quantum simulation45, allow us to employ quantum 
simulators for the computationally hard tasks, such as time evolution, on top of the classical algorithm, which 
provides flexibility for computing relevant observables. In the context of quantum chemistry, we have the example 
of ground state finding via a variational eigensolver11,14,46–48.

The simulation of the dynamics associated with the electronic Hamiltonian in equation (1) involves fermionic 
operators. Computations with fermionic degrees of freedom in superconducting circuits require the encoding 
of fermionic operators and their anticommutative algebra in the natural variables of this quantum platform. The 
Jordan-Wigner transformation49 maps the fermionic operators into spin-1/2 operators, which gives us the qubit 
representation of the Hamiltonian. In the case of a hydrogen molecule, considering four electronic orbitals, the 
relations can be written as
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After this mapping, the Hamiltonian of equation (1) for the H2 molecule is rewritten in terms of spin-1/2 
operators considering only the nonzero coefficients hij and hijkl, which are computed classically with polynomial 
resources18,
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In general, an analog quantum simulation of an arbitrary Hamiltonian evolution is a difficult problem50,51, 
since one cannot Straightforwardly map the dynamics of a given simulated system onto a given quantum plat-
form. The flexibility and universality of digital quantum simulations allows us to reproduce models that do not 
appear naturally in a quantum platform. This is done via an expansion of the quantum evolution into discrete 
steps of quantum gates52. An additional advantage of such digital quantum simulations, in the spirit of gate-based 
quantum algorithms, is their possible improvement with quantum error correction techniques53,54.

We consider the digital quantum simulation of the H2 molecule via the Trotter expansion, which consists in 
dividing the evolution time t into l time intervals of length t/l, and applying sequentially the evolution operator of 
each term of the Hamiltonian for each time interval8,33,52. The expression of this expansion for a Hamiltonian of 
the form = ∑H Hj j reads

∏≈
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for large l, where the dominating error component is ∑ > H H t l[ , ] /2i j i j
2 , which depends on the value of the com-

mutators and scales with t2/l.
In our case, we consider the evolution operators associated with the different summands of the Hamiltonian 

in equation (5), which corresponds to the sequence of gates in Fig. 1. We propose an algorithm based on the opti-
mised tunable CZφ gate, which allows one to perform efficiently ZZ interactions, or XX interactions in our basis28. 
In this sense, we arrange the gates and the simulated interactions such that it allows us to simplify the algorithm 
by eliminating some entangling gates and their inverses, as shown in Fig. 1. The single Trotter step depicted in this 
figure represents the approximated evolution for a time t/l of the complete Hamiltonian. Note that the third and 
fourth logical qubits correspond to the fourth and third physical qubits, respectively. We choose this notation due 
to the reduction of SWAP gates needed for the performance of the protocol. The optimized Trotter step contains 
24 XX two-qubit gates between nearest-neighbour qubits, 24 SWAP gates and 20 single-qubit rotations. In Fig. 2, 

Figure 1. Sequence of gates in a single Trotter step of the digital quantum simulation of the Hamiltonian in 
equation (5) describing the H2 molecule. Notice that, for the sake of optimising the number of gates, we swap 
the logic label of the third and fourth physical qubits. (a) Original protocol including Mølmer-Sørensen (MS) 
multiqubit gates (light green), = π( )MS i Sexp x8
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θ12 =  2hA, θ13 =  θ24 =  2hC −  hD, θ14 =  θ23 =  2hC, and θ34 =  2hB. (b) Trotter step with MS multiqubit gates decomposed  
into two-qubit gates (dark green). Here, σ σ= − π( )XX iexp i
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into two-qubit gates of the Mølmer-Sørensen gates involved in the simulation of a multiqubit interaction, a 
simplification of two-qubit gates (red) cancelling each other is shown.
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we show the efficiency of the digital protocol for different number of Trotter steps. Here, we analyze the loss of the 
state fidelity and the expected value of some operators performed in the simulation, considering simulated phases 
up to θ =  h11t =  2. We break down the Hamiltonian terms and plot the energies of each of them to observe sepa-
rately the Trotter error associated with the different kinds of interactions appearing in the algorithm. We observe 
that, for a single Trotter step, the energies related to single-qubit gates are similar to the exact evolution, while in 
the case of the four body terms the deviation is higher.

Symmetric Trotter expansions provide the improvement of the digital error at the expense of more gate exe-
cution. The Hamiltonian of equation (5) can be divided in two groups of interactions, H1, the sum of the first 
10 terms that commute among them, and H2, the sum of the last 4 terms that also commute among them. As 
commuting interactions do not generate digital error, the evolution of a symmetric Trotter step can be written as 
follows52,

.− − −e e e (8)iH t l iH t l iH t l/2 / /21 2 1

This protocol requires the implementation of the interactions of H1 one more time than in the regular dig-
ital protocol, thereby reducing the digital error. We introduce a fixed error for any two-qubit gate between 
nearest-neighbour qubits, without restricting ourselves to a specific setup or experimental source of error. 
Single-qubit gate errors are neglected due to their high fidelity with current technology. If the dominating error is 
the experimental one, then the aim is to reduce the number of gates and, consequently, the regular protocol gets 
better fidelities. In Fig. 3, we analyze the errors of both the regular Trotter protocol and the symmetric protocol, 
and we give an upper bound of the total error summing the digital and the experimental error considering a 
range of values for the two-qubit gate error employed. For fixed number of Trotter steps, l =  2, 3, 4, we observe 
crossing points between the errors associated with the symmetric protocol and the regular one whilst considering 
higher experimental gate error. On the left side of the crossing points, the experimental error is smaller and the 
symmetric protocol provides better results, whereas on the right side, as the experimental gate error grows, the 
regular protocol is more adequate. We also notice that, as the number of Trotter steps increases, the advantages 
of one protocol with respect to the other lessen. It is worthy to mention that the two-qubit gate errors are on the 
order of 10−2  in superconducting devices54.

Simulation of environmental effects. In this section, we propose a quantum simulation in supercon-
ducting circuits of generic system-environment interactions, which have long been recognised as fundamental in 
the description of electron transport in biomolecules.

Figure 2. Digital quantum simulation of the H2 molecule Hamiltonian for a phase of θ = h11t. Here, digital 
evolutions up to 3 Trotter steps are compared with the exact evolution for initial state ψ = =† †c c vac 11001 2 . 
(a) Fidelity loss of the digitally evolved states, with = Ψ ΨF t t( ) ( )l

2. Expectation values of the separated 
Hamiltonians, in atomic units, proportional to (b) σ z

1  and σ z
2 , (c) σ z

3  and σz
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Biological systems are not isolated, and one can consider minimal models for characterising the quantum 
baths and decoherence25,26, such as the spin-boson model, or the Caldeira-Leggett model. The former is a widely 
used model that describes the interaction between a two-level system and a bosonic bath, and the latter deals with 
the dynamics of a quantum particle coupled to a bosonic bath. Usually, the coupling of the quantum system to the 
bath degrees of freedom is completely specified by the spectral density ωJ ( ), which may be obtained from exper-
imental data, and allows us to explore different continuum models of the environment. Nevertheless, in certain 
limits of strong coupling, the evaluations are computationally hard, and the complete comprehension of the phys-
ics remains as an open problem.

In particular, we study a Hamiltonian describing the charge transfer in DNA wires42–44, where experiments 
show a wide range of results, from insulator to conductor behaviours55–61. When describing the dynamics of elec-
trons in these biomolecules, the influence of a dissipative medium determines substantially the transfer events. 
We consider a bosonic bath in which a variety of crucial factors are contained, such as the internal vibrations of 
the biomolecule and the environmental effects.

A generic effective charge-bath model that describes an electronic system coupled to a fluctuating environ-
ment, in this case a bosonic bath, is captured by the Hamiltonian44

∑ ∑
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with †f f( )j j , fermionic annihilation (creation) operators for electrons on different sites with energies εj. Vj,j+1 
characterises the electron hopping between nearest-neighbour sites. The bath is represented by the bosonic anni-
hilation (creation) operators †b b( )i i , and the coefficients λij indicate how the system and bath are coupled.

A minimal and particular case is the two-site model with j =  A, B, which comprises a donor (D) and an 
acceptor (A) site42,43. This reduced model can be mapped onto the spin-boson model, which has been studied in 
cQED62, for the particular case of one spinless electron in the system. We provide the patterns to treat in a cQED 
setup a more general situation where the spin degree-of-freedom or more electrons enter into the description. To 
this end, we consider equation (9) with j =  1, 2, 3, and Vj,j+1 =  V, which cannot be mapped onto the well-studied 
spin-boson model. For the sake of simplicity, we have chosen this truncation, but the techniques can be easily 
extrapolated to an arbitrary case.

Figure 3. Total upper bound of symmetric and regular expansions for the digital simulation of the 
hydrogen molecule as a function of the error of a two-qubit gate, considering l = 2, 3, 4 Trotter steps and 
a simulated phase of θ = h11t = 2. The total error is calculated as the sum of the experimental error of two-
qubit gates and the digital errors. This plot shows the crossing points between the symmetric and the regular 
protocols for the same number of Trotter steps. On the left hand side of the crossing points, the symmetric 
protocol provides better results than the regular one. On the right hand side, however, the considered 
experimental gate error is higher, and the regular protocol where a less number of gates is executed shows 
better performance.
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As previously shown, in order to simulate fermionic operators in superconducting circuits, we replace them 
by Pauli matrices via the Jordan-Wigner transformation, leading to
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where the first two terms correspond to the purely electronic subsystem, the third term is the free energy of the 
bosons in the bath, and the last term represents the interaction of the electrons with the environment.

The Hamiltonian is now suitable for a digital quantum simulation in superconducting circuits, in which the 
qubits are described by Pauli operators, and 3D cavities, multimode coplanar waveguides, or low-Q cavities play 
the role of bosonic baths. A first step in this direction, considering an open transmission line coupled to qubits 
in order to simulate fermionic systems interacting with a continuum of bosons was introduced in the context 
of quantum field theory35. While the basic protocol was already developed in this article, here we apply this for-
malism to the different context of electron transport in biomolecules, for a discrete set of coupled fermionic and 
bosonic modes. Recently, experimental realisations with a transmon qubit coupled to a multimode cavity in the 
strong coupling regime have been performed40. There, the feasibility of coupling a superconducting transmon 
qubit to a long coplanar resonator has been shown, achieving in this way the coupling of a qubit to a set of several 
bosonic modes at the same time. This multimode treatment is also needed to explain results in superconducting 
3D cavities or in transmission lines39,41, which allows us to propose a simulation exploiting the natural complexity 
that superconducting circuits reveal.

By coupling three tunable superconducting qubits63,64 to a multimode cavity as in Fig. 4, the Hamiltonian of 
equation (10) can be reproduced by using digital-analog methods, that is, introducing the fermionic interactions 
digitally and the bosonic ones in analog interaction blocks. We propose the emulation of a variety of 
system-environment dynamics on superconducting circuit technology. To this end, we consider the interaction 
term describing the jth qubit coupled to a multimode cavity,

∑β φ φ ω σ= +†H g b b( , ) ( ) ( ),
(11)i

j j
j i j

z
i iint ext ext

with †b b( )i i  the ith mode annihilation (creation) operator related with the cavity frequency ωi, couplings 
ω = +g g i( ) 1j i 0 , and g0 the coupling strength to the fundamental cavity mode ω0. We profit from the tunabil-

ity of the coupling between qubits and transmission lines via external magnetic fluxes φ j
ext and φ j

ext
35,63,64 to address 

a wider range of regimes and models, since the set of couplings β φ φ ωg( , ) ( )j j
j iext ext  mimic the coefficients λij that 

characterise the interaction with the environment in equation (10). Moreover, it has been shown experimentally 
how to engineer different shapes for the bath spectral function with a transmission line and partial reflectors62,65. 
Additionally, it can also be proven that a simple tunable Ohmic bath, as the one provided by a transmission line, 
equipped with a feedback protocol, can produce highly non-Markovian dynamics66. Growing in electronic com-
plexity in equation (9) implies adding more qubits coupled to the transmission line in Fig. 4. However, we can 

Figure 4. Scheme of the cQED setup and digital-analog protocol needed for mimicking the Hamiltonian in 
equation (10). We consider a multimode cavity (red), that is, either a long resonator, a 3D cavity or a 
transmission line, coupled to three tunable superconducting qubits (blue). The cavity simulates analogically the 
bosonic bath, whereas the electrons are encoded in the superconducting qubits. The coupling between the 
qubits and the cavity, β φ φ ωg( , ) ( )j j

j iext ext , must be tunable via external magnetic fluxes φ j
ext and φ j

ext to enable the 
digital-analog quantum simulation, in which each qubit is coupled sequentially with the cavity.
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take full advantage of the same multimode cavity by encoding the bath in a similar fashion. Hence, the cQED 
setup may be easily scaled up by coupling more qubits to the same transmission line.

Let us discuss how the Hamiltonian in equation (10) is decomposed into different digital and digital-analog 
blocks for the quantum simulation. As in the previous subsection, the purely electronic subsystem can be decom-
posed in Trotter steps and reproduced by single- and two-qubit gates. Since the bosonic operators do not enter in 
this part, we must decouple the tunable qubits from the transmission line to perform the required gates. The 
remaining terms are encoded in digital-analog blocks, where we divide the dynamics in different Trotter steps in 
which the multimode cavity enters in an analog way, providing the free energy of the bosons, and simulating the 
last term of equation (10). This last term is composed of purely bosonic interactions proportional to +†b b( )i i , 
which may be simulated through a microwave driving in the cavity. It also involves qubit-boson interactions, 
σ +†b b( )j

z
i i , which emerge from the coupling of each qubit with the multimode cavity, as in ref. 35. A future 

analysis of the error in this protocol may include not only the error of the two-qubit gates, but also the contribu-
tion of the imperfect decoupling of the qubits with the transmission line in the single-qubit gates in which we 
introduce the coupling with the bosonic degrees of freedom. The figure of merit in the simulation is the final state 
of the fermions, which may be extracted from the final state of the qubits. The quantum simulation may be per-
formed for different final times, thereby allowing us to reconstruct the electronic dynamics, such as transfer of 
excitations.

With this proposal, we have provided not only a way of extracting results illustrating different charge transport 
regimes in biomolecules, but also a way of testing different minimal models for describing molecules embedded 
in a bosonic environment. Superconducting circuits are a controllable quantum platform in which we can tune 
couplings between spins and bosons, and manipulate external conditions to engineer different baths. We analyse 
models of biological systems with a certain complexity and translate them to a controllable superconducting 
device that enjoys a similar complexity.

Discussion
We have proposed methods to perform feasible digital and digital-analog quantum simulations of molecular 
structures and biomolecules with the state-of-the-art of superconducting circuit technology. We analyse different 
quantum chemistry models by increasing gradually the complexity, moving from purely fermionic models of 
molecular structures to descriptions of charge transport in biomolecules embedded in a bosonic medium. We aim 
to profit from the unique features of cQED, such as the strong coupling of a two-level system to bosonic modes, 
in order to represent controllable scenarios in which quantum chemistry and quantum biology models may be 
studied. The proposal includes a purely digital quantum simulation protocol for fermionic models, for which we 
provide general methods of encoding and the sequence of gates needed for the particular case of simulation of the 
H2 molecule. The previous formalism is partially used for simulating biomolecules affected by their bosonic sur-
roundings, where we also add analog blocks with a multimode cavity playing the role of the bosonic bath, hence 
boosting the efficiency of quantum algorithms for quantum chemistry.
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