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Liver cancer is a common malignant tumor with poor prognosis. Due to

the lack of specific clinical manifestations at early stages, most patients

are already at advanced stages of the disease by the time of diagnosis.

Identification of novel biomarkers for liver cancer may thus enable earlier

detection, improving outcome. MicroRNAs (miRNAs) are small endoge-

nous noncoding RNAs of 18–22 nucleotides in length, which have a regu-

latory role in the expression of target proteins. Increased evidence

suggests that miRNAs are abnormally expressed in a variety of cancer

malignancies. Here, we combined RNA sequencing data and clinical

information from The Cancer Genome Atlas Liver Hepatocellular Carci-

noma database for weighted gene coexpression network analysis to iden-

tify potential miRNA prognostic biomarkers. We constructed nine

coexpression modules, allowing us to identify that miR-105-5p, miR-767-

5p, miR-1266-5p, miR-4746-5p, miR-500a-3p, miR-1180-3p and miR-139-

5p are significantly associated with liver cancer prognosis. We found that

these miRNAs exhibit significant association with prognosis of patients

with liver cancer and confirmed the expression of these miRNAs in liver

cancer tissues. Multivariate Cox regression analysis showed that miR-105-

5p and miR-139-5p may be considered as independent factors. In sum-

mary, here we report that seven miRNAs have potential value as prog-

nostic biomarkers of liver cancer.

Liver cancer is one of the most common cancers

worldwide and the second leading cause of cancer-re-

lated deaths [1,2]. Despite much progress in diagnosis

and treatment, the prognosis of patients with liver can-

cer is still poor. Due to the lack of specific clinical

manifestations in the early stage, most patients are

already in advanced stages of symptoms and miss the

opportunity to undergo radical resection. Therefore,

identification of liver cancer pathogenesis contributes

to early diagnosis, choice of treatment methods,

determination of follow-up timetable, and prognosis

assessment, which can significantly prolong the sur-

vival time of patients with liver cancer [3].

Increased evidence suggests that microRNAs (miR-

NAs) are abnormally expressed in a variety of malig-

nancies and are closely related to the pathogenesis of

cancers, including liver cancer. miRNAs participate in

the development of liver cancer as tumor suppressor

genes or oncogenes. Therefore, further study of

miRNA expression patterns and effects can provide
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new diagnostic or therapeutic targets for liver cancer.

miRNAs are small endogenous noncoding RNAs, 18–
22 nucleotides in length, which have a regulatory role

in the expression of target proteins via inhibiting pro-

tein translation or enhancing down-regulation of

mRNA transcripts [4]. Long noncoding RNAs

(lncRNAs) are a class of noncoding RNA transcripts;

furthermore, their abnormal gene expressions promote

tumor formation, progression, and metastasis, includ-

ing liver cancer. In the cytoplasm, lncRNAs can regu-

late the expression of miRNA targets by competitively

binding miRNAs to act as competitive endogenous

RNA (ceRNAs) [5]. The ceRNA hypothesis shows

that in the lncRNA–miRNA–mRNA ceRNA network,

lncRNA competitively binds miRNA by sharing

miRNA response elements and indirectly regulates

mRNA expression levels [6]. At the same time, miR-

NAs negatively regulate gene expression at the post-

transcriptional level by binding to sequences (mostly

located in the 30 UTR) and are partially complemen-

tary on their target mRNA [7].

Weighted gene coexpression network analysis

(WGCNA) is one of the commonly used methods in

coexpression module correlation analysis, which is

widely applied in various biological processes (BP),

especially for the identification of candidate biomark-

ers or therapeutic targets for many malignant tumors

[8]. WGCNA is helpful to find associations between

genes in different coexpression modules. Herein, a

coexpression network was constructed through

WGCNA to analyze the liver cancer expression profile

dataset from The Cancer Genome Atlas (TCGA),

which was used to explore possible carcinogenic mech-

anisms and potential hub genes as prognostic biomark-

ers. Then, we constructed a ceRNA regulatory

network to understand the progress of liver cancer.

Finally, based on the hub miRNAs, we constructed

seven-miRNA modules. The seven miRNAs were con-

firmed between 22 pairs of hepatocellular carcinoma

tissues and adjacent normal tissues by reverse-tran-

scription quantitative PCR (RT-qPCR).

Materials and methods

Data collection and preprocessing

The level 3 RNA sequencing data of Liver Hepatocellular

Carcinoma (LIHC) were retrieved from TCGA data portal

(https://cancergenome.nih.gov/), containing 371 liver cancer

samples and 50 normal tissue samples. The mRNAs and

lncRNAs were identified after annotation using Refseq

transcript ID and Ensembl gene ID. A total of 335 liver

cancer samples with complete clinical information in

TCGA database were included in our study. The clinical

information of patients with liver cancer included TNM,

stage, grade, age and sex. The detail information of the

dataset is shown in Table 1.

We obtained the log2 (reads per million mapped reads

(RPM) + 1) miRNA expression profile from TCGA data-

base using the University of California Santa Cruz Xena

(http://xena.ucsc.edu/). All data were downloaded in

September 2017. The overall workflow of our study is

shown in Fig. 1.

Differential expression analysis

The raw data from TCGA–LIHC database were filtered

and normalized using the edgeR package in R 3.6.0 [9]. The

lncRNAs, miRNAs or mRNAs with adjusted P < 0.05 and

|logFC| > 1 between 371 liver cancer samples and 50 nor-

mal tissue samples were identified to be differentially

expressed via the edgeR package. The P value was adjusted

using the Benjamini-Hochberg (BH) method.

Table 1. The detail information of liver cancer samples from TCGA

database. SD, standard deviation.

Characteristics Overall (N = 335)

Sex, n (%)

Male 231 (69.0%)

Female 104 (31.0%)

Age (years), n (%)

Mean (SD) 59.2 (13.4)

Median [minimum, maximum] 61.0 [16.0, 90.0]

Status, n (%)

Alive 221 (66.0%)

Dead 114 (34.0%)

Grade, n (%)

G1 50 (14.9%)

G2 158 (47.2%)

G3 109 (32.5%)

Missing 18 (5.4%)

Stage, n (%)

I/II 234 (69.9%)

III/IV 80 (23.9%)

Missing 21 (6.3%)

T, n (%)

T1/T2 248 (74.0%)

T3/T4 84 (25.1%)

Missing 3 (0.9%)

N, n (%)

N0 234 (69.9%)

N1 3 (0.9%)

Missing 98 (29.3%)

M, n (%)

M0 243 (72.5%)

M1 3 (0.9%)

Missing 89 (26.6%)

2389FEBS Open Bio 10 (2020) 2388–2403 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

B. Shen et al. Modules and prognostic markers in liver cancer

https://cancergenome.nih.gov/
http://xena.ucsc.edu/


WGCNA

The coexpression network was constructed through

WGCNA package version 1.49 [10]. To build a coexpres-

sion module, we filtered the power values. As an important

parameter, power value could mainly affect the scale inde-

pendence and the mean connectivity degree of coexpression

modules. Scale independence and average connectivity anal-

ysis of modules with different power values from 1 to 30

were performed by gradient test. When the scale indepen-

dent value was equal to 0.85, the appropriate power value

was confirmed. After constructing coexpression modules,

the gene information in each module was extracted and

cluster analysis was performed at the appropriate threshold

value. The relationships among different coexpression mod-

ules were analyzed. The strength of the relationship was

performed using heatmap package (strong or weak degree).

Module–trait relationship analysis of liver cancer

Two methods were used to identify the module–trait rela-

tionships. Module–trait relationships were assessed by the

correlation between the module eigengene (ME) and clinical

traits. ME, as the major component for principal compo-

nent analysis of genes in a module with the same

expression pattern, may reflect the entire features of genes

in a module. The clinical traits included TNM, stage,

grade, age and sex. The correlation between ME and clini-

cal traits was analyzed by Pearson’s correlation tests, and

P < 0.05 was considered to be significantly correlated. The

module with the highest correlation coefficient and

P < 0.05 was considered as a meaningful module.

In the intramodular analysis, for each expression profile,

gene significance was calculated as the absolute value of the

correlation between the gene expression profile and each

clinical feature. Module Membership (MM) was defined as

the correlation of expression profile and each ME. MM of

a gene may be used to stand for the membership of the

gene with respect to the module. Therefore, genes with a

high significance for clinical traits and MM were identified.

Identification of interested module and function

enrichment analysis

The gene enrichment analysis of the genes in the meaning-

ful module was performed including Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway and Gene Ontol-

ogy (GO) through the clusterProfiler package (version

3.12.0; up to September 2017) [11]. KEGG helps to better

understand the advanced functions and utilities of

Fig. 1. The overall workflow in our study.
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biological systems, such as cells, organisms and ecosystems

[12]. GO terms contain BP, molecular function (MF), and

cellular component (CC). A P value < 0.05 after correction

was set as the cutoff criterion.

Univariate and multivariate Cox regression

analysis

Kaplan–Meier curves were drawn, and statistical assess-

ment was performed using the log rank test. The hazard

ratio (HR) and 95% confidence interval (CI) of the associa-

tion between the differentially expressed miRNA and over-

all survival were assessed by univariate Cox regression

analysis [13]. The differentially expressed miRNAs with

P < 0.01 were identified to be related with prognosis; multi-

variate Cox regression analysis was then performed.

According to the cutoff of expression value, we made sur-

vival analysis. Furthermore, an Akaike information crite-

rion (AIC)-based stepwise factor reduction was performed

to evaluate the goodness of fit of the model.

The ceRNA network construction

After identification of differentially expressed miRNAs

related with prognosis, the ceRNA network was built. The

miRNA–mRNA pairing relationship was extracted by

miRDB (http://www.mirdb.org) and miRTarBase (http://

mirtarbase.mbc.nctu.edu.tw) databases. The targeted

mRNAs were identified based on seven differentially

expressed miRNAs related with prognosis and differentially

expressed mRNAs in the blue coexpression module. Next,

the miRNA–lncRNA pairing relationship was extracted

from the miRcode (http://www.mircode.org) database, and

the targeted lncRNAs were identified based on the seven

miRNAs and the differentially expressed lncRNAs in the

blue coexpression module. Finally, the ceRNA network

was visualized using CYTOSCAPE (version 3.12.0).

RNA extraction and RT-qPCR

According to the manufacturer’s instructions, total RNA

was extracted from 22 pairs of hepatocellular carcinoma

tissues and adjacent normal tissues using TRIzol. To detect

miRNA expression, we synthesized cDNA with the miS-

cript Reverse Transcription Kit (Qiagen, Hilden, Germany).

Afterward, qPCR was carried out with the miScript SYBR

Green PCR Kit (Qiagen). Glyceraldehyde-3 phosphate

dehydrogenase (GAPDH) was used as an internal control.

The relative expression levels of miRNAs were calculated

with the 2�ΔΔCt method. The specific primers for miRNAs

are listed in Table 2. This study was approved by the

Ethics Committee of People’s Hospital of Yichun City

(2019002). All patients provided written informed consent.

This study was strictly in line with the standards set by the

Declaration of Helsinki.

Results

Identification of differentially expressed lncRNAs,

miRNAs and mRNAs

A total of 129 differentially expressed miRNAs (in-

cluding 90 down-regulated and 39 up-regulated miR-

NAs) were screened according to adjusted P < 0.05

and |logFC| > 1 using edgeR package (Table S1 and

Fig. 2A). Furthermore, differentially expressed

lncRNAs and mRNAs were identified between 371

liver cancer samples and 50 adjacent normal tissue

samples according to adjusted P < 0.05 and |
logFC| > 1 using edgeR package. The results showed

that there were 405 differentially expressed lncRNAs,

including 107 down-regulated and 298 up-regulated

lncRNAs (Table S2 and Fig. 2B). Furthermore, 2788

differentially expressed mRNAs, including 910 down-

regulated and 1878 up-regulated mRNAs, were identi-

fied (Table S3 and Fig. 2C).

Gene coexpression network construction

The outlier samples whose connectivity was less than

�2.5 were excluded. Finally, the cluster analysis of 291

liver cancer samples was performed via the hclust tools

package (Fig. 3A). After removing the outlier samples,

the power value was calculated (Fig. 3B). The coex-

pression module was built by hierarchical clustering

and dynamic branch cutting (Fig. 4). To explore the

interaction between these coexpression modules, we

calculated the connectivity of MEs and performed

clustering analysis. Of these modules, nine coexpres-

sion modules with similar MEs were merged (Fig. 4).

The gray module stands for the gene set that is not

Table 2. Primer information for RT-qPCR.

miRNAs Primer sequences (50–30)

miR-105-5p 50-TCGGCAGGTCAAATGCTCAGACTCC-30

50-CTCAACTGGTGTCGTGGA-30

miR-139-5p 50-CTCGAGATTTTTGTATTATTAACTGT-30

50-CTCAACTGGTGTCGTGGA-30

miR-500a-3p 50-TTGAACCAAGGTTCGTAAATACCAA-30

50-CTCAACTGGTGTCGTGGA-30

miR-767-5p 50-CTCAACTGGTGTCGTGGAGTCGGCAA-30

50-CTCAACTGGTGTCGTGGA-30

miR-1180-3p 50-TCGGCAGGTTTCCGGCTCGCGTGG-30

50-CTCAACTGGTGTCGTGGA-30

miR-1266-5p 50-GCCGAGCCTCAGGGCTGTAGAAC-30

50-CTCAACTGGTGTCGTGGA-30

miR-4746-5p 50-TCGGCAGGCCGGTCCCAGGAGAAC-30

50-CTCAACTGGTGTCGTGGA-30
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assigned to any module. The eigengene dendrogram

and heatmap were performed to identify modules of

correlated eigengenes, and the dendrogram suggested

that these modules were associated with liver cancer

clinical features (Fig. 5A,B).

Module–trait relationship construction

The relationships between nine coexpression modules

and clinical traits are shown in Fig. 5C. Among them,

the seven modules (turquoise, brown, green, blue,

pink, black and yellow) had significant associations

with liver cancer clinical traits, including event, TNM,

stage, grade, age and gender. We found that blue mod-

ule was associated with event (r = 0.3, P = 9e�6), T

(r = 0.2, P = 0.003), stage (r = 0.21, P = 0.002) and

grade (r = 0.25, P = 2e�4). Therefore, we further ana-

lyzed the genes in the blue module. A scatterplot of

Gene Significance versus MM in the blue module is

shown in Fig. 6A–H. There is a highly significant cor-

relation between gene significance (for event, TNM,

stage, grade and age) and MM in the blue module.

The genes in the blue module are listed in Table S4.

Function enrichment analysis of genes in

interested module

To further explore the function of differentially

expressed genes in blue module, we conducted function

enrichment analysis, including GO and KEGG analy-

sis. The top 10 GO terms, including MF, CC and BP,

were shown in Fig. 7A–C. We found that the differen-

tially expressed genes were mainly enriched in several

pathways, such as ATPase activity, chromosomal

region, organelle fission and so on. Also, these differ-

entially expressed genes were mainly enriched in

Fig. 2. Differentially expressed lncRNAs, miRNAs and mRNAs with the cutoff of P < 0.05 and |logFC| > 1 in liver cancer. Volcano plots

showed differentially expressed lncRNAs (including 107 down-regulated and 298 up-regulated lncRNAs), miRNAs (including 90 down-

regulated and 39 up-regulated miRNAs) and mRNAs (910 down-regulated and 1878 up-regulated mRNAs). Heatmap showed the top 50

differentially expressed lncRNAs, miRNAs and mRNAs according to P value. (A) miRNAs; (B) lncRNAs; (C) mRNAs. Tumor samples were

divided according to sex, age, grade, stage and TNM.
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Fig. 3. Sample clustering to detect outliers and analysis of network topology for different soft threshold powers. (A) Cluster analysis of liver

cancer samples. A total of 291 liver cancer samples were clustered via the hclust tools package. (B) Analysis of network topology for

different soft threshold powers on the scale independence and the mean connectivity degree.
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KEGG pathways, such as cell cycle, cellular senes-

cence, oocyte meiosis, DNA replication, Fanconi ane-

mia pathway, p53 signaling pathway and so on

(Fig. 7D). Therefore, the differentially expressed genes

in blue module could participate in the occurrence and

development of liver cancer.

Survival analysis and ceRNA network

construction

After extracting the differentially expressed genes in

blue module, we performed univariate Cox regression

analysis to identify differentially expressed miRNAs

related with prognosis, which were used to construct

the ceRNA network (P < 0.001). After matching

miRNA–mRNA and miRNA–lncRNA relationships,

the ceRNA network was built. There were 72 mRNAs,

3 lncRNAs and 7 miRNAs, all of which were closely

related with prognosis (Fig. 8A). The miRNA–mRNA

pairs are listed in Table S5. Univariate and multivari-

ate analyses of various prognostic parameters in

patients with liver cancer were performed. As shown

in Table 3, univariate analysis results showed that T

classification and M classification were closely corre-

lated with overall survival of patients with liver cancer.

Furthermore, T classification could become an inde-

pendent prognostic factor for liver cancer according to

multivariate analysis results. There were seven miR-

NAs closely related with liver cancer prognosis, includ-

ing miR-105-5p (P < 0.001, HR = 4.03, 95% CI: 2.01–
8.07), miR-767-5p (P < 0.001, HR = 4.18, 95% CI:

2.1–8.31), miR-1266-5p (P = 0.015, HR = 2.25, 95%

CI: 1.05–4.85), miR-4746-5p (P = 0.01, HR = 2.36,

95% CI: 1.17–4.79), miR-500a-3p (P = 0.008,

HR = 2.39, 95% CI: 1.18–4.85), miR-1180-3p

(P = 0.002, HR = 2.8, 95% CI: 1.33–5.88) and miR-

139-5p (P < 0.001, HR = 0.25, 95% CI: 0.13–0.48;
Fig. 8B–H). Multivariate Cox regression analysis

results revealed that miR-105-5p (P = 0.037,

HR = 2.39, 95% CI: 1.06–5.41) and miR-139-5p

(P = 0.037, HR = 0.67, 95% CI: 0.46–0.98) could be

considered as independent factors (Fig. 9A). The

seven-miRNA model was constructed, and survival

analysis demonstrated that the model could signifi-

cantly distinguish prognosis differences between high-

risk and low-risk groups (Fig. 9B). Furthermore, we

further validated the efficiency of the seven-miRNA

model for prediction of liver cancer prognosis. We first

calculated the score of each sample through the seven-

miRNA model. The linear regression model after inte-

grating various factors showed that the risk value was

significantly associated with prognosis (Table 4). The

AIC value of the risk score + stage integrated model

was the smallest through AIC, where risk score was

smaller than stage, reflecting the effectiveness of the

seven-miRNA model for liver cancer prognosis. The

median value of the model was used to differentiate

the samples into high- and low-risk groups, as shown

in Table 5. As expected, there were significant differ-

ences in several clinical subtypes. Thus, the seven-

miRNA model could become a better prediction model

related to liver cancer prognosis.

Validation of seven miRNAs using RT-qPCR

To further validate the seven miRNAs in liver cancer,

we performed RT-qPCR based on 22 pairs of hepato-

cellular carcinoma tissues and adjacent normal tissues.

Fig. 4. Clustering tree diagram by

hierarchical clustering based on gene-

based dissimilarity measures. Different

modules are identified by the dynamic tree

cutting method. According to the

relevance of the module, nine modules are

generated after the merge. Under the

tree, each color (turquoise, brown, red,

green, blue, pink, black, yellow and gray)

represents a module (MEturquoise,

MEbrown, MEred, MEgreen, MEblue,

MEpink, MEblack, MEyellow and MEgray,

respectively).
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Fig. 5. The construction of nine coexpression modules. (A) The correlation between the module and the clinical features by the eigengene

network, including the dendrogram and heatmap. Red suggests a positive correlation of high adjacency, while blue indicates a negative

correlation with low adjacency. (B) Network heatmap. Light colors (yellow) stand for low overlap, and red suggests high overlap. (C)

Module–trait relationship construction. Each row corresponds to one ME, and each column corresponds to one feature. Each cell includes

the corresponding correlation and P value. Pearson’s correlation test is used. The table is color coded by correlation based on the color

legend.
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Consistent with our bioinformatics analysis results,

RT-qPCR results showed that the expression levels of

miR-105-5p (P < 0.01), miR-500a-3p (P < 0.001),

miR-767-5p (P < 0.05), miR-1180-3p (P < 0.01), miR-

1266-5p (P < 0.01) and miR-4746-5p (P < 0.01) were

higher in liver cancer tissues than those in adjacent

normal tissues. Furthermore, the expression levels of

miR-139-5p (P < 0.01) were lower in liver cancer tis-

sues than that in adjacent normal tissues (Fig. 10).

Discussion

As molecular biomarkers continue to develop, prog-

nostic indicators will be promising clinical tools for

liver cancer [14]. WGCNA has been widely applied to

screen novel markers [15]. In the coexpression net-

works, genes with similar expression patterns are clus-

tered together in the same module, and these genes

may have similar regulatory functions [16]. In addi-

tion, to explore the genetic mechanisms behind clinical

features, the relationship between modules and clinical

features was identified. The link between clinical fea-

tures and genes in the module may help to understand

the pathogenesis of liver cancer and screen for poten-

tial biomarkers. The results showed that the blue mod-

ule is significantly related to event, T, stage and grade.

Function enrichment analysis demonstrated that the

differentially expressed genes were mainly enriched in

several KEGG pathways, such as cell cycle, cellular

senescence, oocyte meiosis, DNA replication, Fanconi

anemia pathway, p53 signaling pathway and so on.

Therefore, the differentially expressed genes in the blue

module could participate in the occurrence and devel-

opment of liver cancer.

Therefore, we further analyzed the genes in this

module. To further clarify biomarkers that can serve

as prognostic factors, we used univariate Cox regres-

sion analysis to identify miRNAs associated with prog-

nosis. The results revealed that seven differentially

expressed miRNAs were closely related with prognosis.

After matching miRNA–mRNA and miRNA–lncRNA

relationships, the ceRNA network was then con-

structed and the seven miRNAs were identified in the

network. The hub miRNAs represent the primary reg-

ulatory role of the blue module. To further confirm

the prognostic value of these seven miRNAs in liver

cancer, we presented multivariate Cox regression anal-

ysis. The results showed that the seven-miRNA model

has a high sensitivity in predicting the prognosis of

patients with liver cancer, and miR-105-5p and miR-

139-5p could be an independent prognostic factor

compared with other miRNAs. Survival analysis

revealed that the seven-miRNA module had significant

correlation with prognosis of liver cancer. More

importantly, RT-qPCR confirmed that miR-105-5p,

miR-500a-3p, miR-767-5p, miR-1180-3p, miR-1266-5p

and miR-4746-5p were up-regulated in liver cancer tis-

sues compared with normal tissues. Furthermore,

miR-139-5p was down-regulated in liver cancer tissues

compared with normal tissues.

Fig. 6. (A–H) Scatterplots of MM versus Gene Significance in the blue module.
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Human miR-105 is located in the intron region of

GABRA3A, which is located on the X chromosome

[17]. Compared with normal tissues, miR-105 is down-

regulated in many malignant tumors as a tumor sup-

pressor or oncogene, such as breast cancer, non-small

cell lung cancer, gliomas, colorectal cancer and so on

[18–21]. Increasing evidence suggests that miR-105 can

be used as a prognostic predictor, because its expres-

sion pattern is closely associated with prognosis of

these cancers. It has been confirmed that miR-105 is

down-regulated in hepatocellular cancer cell lines and

tissues, which promotes proliferation and tumorigenic-

ity of hepatocellular cancer cells in vitro and in vivo

[22]. Furthermore, miR-105 acts as a tumor suppressor

in hepatocellular carcinoma via inhibiting the phos-

phatidylinositol 3-kinase (PI3K)/AKT signaling path-

way. In our study, univariate and multivariate Cox

regression analysis showed that miR-105-5p could

become an independent prognostic factor for liver can-

cer. miR-767 is up-regulated in human melanoma tis-

sues and cell lines, which promote melanoma cell

proliferation, and miR-767 acts as a tumor promoter

Fig. 7. Function enrichment analysis of differentially expressed genes in the blue module. (A–C) The top 10 GO terms, including MF, CC

and BP. (D) The top 10 KEGG pathways.
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in human melanoma by targeting CYLD [23]. In addi-

tion, miR-767 could become a prognostic factor for

thyroid cancer [24]. It has been confirmed that miR-

1266 contributes to several cancers. For example, miR-

1266-5p is down-regulated in prostate cancer, which

regulates the apoptotic pathway by targeting the anti-

apoptotic genes BCL2 and BCL2L1 [25]. Human

telomerase reverse transcriptase (hTERT) is a catalytic

subunit of the telomerase complex, and its increased

expression is associated with the expansion and metas-

tasis of gastric cancer. miR-1266 is identified as a

hTERT inhibitor in gastric cancer, which interacts

with the 30 UTR of hTERT, whereas miR-1266 is sig-

nificantly reduced in gastric cancer tissues [26]. miR-

1266 is significantly elevated in pancreatic cancer,

which is associated with poor survival and chemother-

apy response in patients with pancreatic cancer [27].

miR-4746 is differentially expressed in several cancers

Fig. 8. Survival analysis and ceRNA network construction. (A) The ceRNA network for liver cancer prognosis. Rhombus: mRNAs; triangle:

lncRNAs; hexagon: miRNAs. (B–H) Survival analysis of seven differentially expressed miRNAs.
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Table 3. Univariate and multivariate analyses of various prognostic parameters in patients with liver cancer.

Characteristics

Univariate analysis Multivariate analysis

P value HR 95% CI P value HR 95% CI

Age 0.379 1.001 0.992–1.021 0.971 1 0.981–1.02

Sex 0.516 0.879 0.595–1.298 0.413 1.27 0.715–2.26

Grade 0.270 1.154 0.895–1.488 0.231 1.25 0.869–1.79

T <0.0001* 1.867 1.532–2.275 <0.0001* 2.02 1.53–2.66

N 0.215 2.442 0.595–10.020 0.101 3.36 0.789–14.3

M 0.01** 4.750 1.486–15.187 0.442 1.66 0.458–5.99

*P < 0.0001.; **P < 0.01.

Fig. 9. The seven-miRNA model for liver

cancer. (A) Multivariate Cox regression

analysis of seven miRNAs in liver cancer.

N = 109. HR and CI were calculated for

each miRNA. (B) Survival analysis of

seven-miRNA model.
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through pan-cancer analysis [28]. miR-500a-3p is

down-regulated in lung cancer, which is associated

with poor prognosis in patients with lung cancer [29].

In addition, miRNA-500a-3p suppresses cell prolifera-

tion and invasion in human non-small cell lung cancer

[30]. miR-500a-3p is highly expressed in hepatocellular

carcinoma tissues and cells, which is associated with

the prognosis of patients with hepatocellular carci-

noma. Moreover, miR-500a-3p promotes cancer stem

cell characteristics by activating the JAK/STAT3 sig-

naling pathway [31]. The expression of miR-1180 is

significantly increased in hepatocellular carcinoma cells

and tissues, which promotes cell proliferation of hepa-

tocellular carcinoma by targeting TNFAIP3 interacting

protein 2 (TNIP2) [32]. Apoptosis resistance in human

hepatocellular carcinoma is an important factor in car-

cinogenesis. The ectopic expression of miR-1180 has

an antiapoptotic effect in hepatocellular carcinoma

[33]. miR-139-5p plays a role in aerobic glycolysis, cell

proliferation, migration, invasion and metastasis

[34,35]. In addition, miR-139-5p is significantly associ-

ated with recurrence of hepatocellular carcinoma [36].

The earlier analysis revealed that the seven miRNAs

could contribute to the development of liver cancer.

Abnormal expression of these miRNAs could predict

prognosis of liver cancer. Several similar studies have

Table 4. Linear regression model for liver cancer data. Residual

standard error (SE): 0.4203 on 197 degrees of freedom. Multiple

R2: 0.2124, adjusted R2: 0.1604. F-statistic: 4.086 on 13 and 197

degrees of freedom, P value: 5.789e�6. NA, not applicable.

Characteristics Estimate SE t value Pr(>|t|)

(Intercept) �0.09333 0.18795 �0.497 0.62005

Risk 0.07877 0.02364 3.332 0.00103*

Age 0.002719 0.002428 1.12 0.26417

Sex

Male �0.02298 0.065533 �0.351 0.72624

Grade

G2 0.019481 0.100283 0.194 0.84618

G3 0.03957 0.100324 0.394 0.6937

Missing 0.193021 0.16169 1.194 0.234

Stage

II 0.667785 0.618218 1.08 0.28138

III �0.2558 0.635633 �0.402 0.6878

IV 0.221274 0.687636 0.322 0.74795

T

T2 �0.59862 0.611494 �0.979 0.32881

T3 0.560992 0.631476 0.888 0.37542

T4 0.553129 0.553129 0.86 0.39109

N

N1 0.68285 0.441278 1.547 0.12336

M

M1 NA NA NA NA

*P < 0.01.

Table 5. Clinical characteristics between high and low risks for

patients with liver cancer.

Characteristics

Total

(N = 211)

High risk

(n = 106)

Low risk

(n = 105)

Age, n (%)

<60 years 115 (54.5%) 63 (59.43%) 52 (49.52%)

≥60 years 96 (45.5%) 43 (40.57%) 53 (50.48%)

Sex, n (%)

Female 63 (29.86%) 37 (34.91%) 26 (24.76%)

Male 148 (70.14%) 69 (65.09%) 79 (75.24%)

Grade, n (%)

G1 24 (11.37%) 10 (9.43%) 14 (13.33%)

G2 92 (43.6%) 38 (35.85%) 54 (51.43%)

G3 85 (40.28%) 52 (49.06%) 33 (31.43%)

Missing 10 (4.74%) 6 (5.66%) 4 (3.81%)

Stage, n (%)

I 104 (49.29%) 48 (45.28%) 56 (53.33%)

II 44 (20.85%) 23 (21.7%) 21 (20%)

III 60 (28.44%) 33 (31.13%) 27 (25.71%)

IV 3 (1.42%) 2 (1.89%) 1 (0.95%)

T, n (%)

T1 105 (49.76%) 49 (46.23%) 56 (53.33%)

T2 45 (21.33%) 23 (21.7%) 22 (20.95%)

T3 52 (24.64%) 28 (26.42%) 24 (22.86%)

T4 9 (4.27%) 6 (5.66%) 3 (2.86%)

N, n (%)

N0 208 (98.58%) 104 (98.11%) 104 (99.05%)

N1 3 (1.42%) 2 (1.89%) 1 (0.95%)

M, n (%)

M0 208 (98.58%) 104 (98.11%) 104 (99.05%)

M1 3 (1.42%) 2 (1.89%) 1 (0.95%)

Fig. 10. Validation of seven miRNAs using RT-qPCR. N = 22. The

data were expressed as the mean � standard error of mean.

*P < 0.05; **P < 0.01; ***P < 0.001.
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the similar aims and objectives to identify the miRNA

using Gene Expression Omnibus and TCGA data-

bases. Wang et al. [37] identified several miRNAs that

could become potential prognostic biomarkers for liver

cancer by bioinformatics analysis. Li et al. [21] identi-

fied novel prognostic biomarkers for liver cancer by

constructing a coexpression network. Furthermore,

Zhang et al. [38] reported that lncRNAs had differen-

tial expression patterns and ceRNA potential in liver

cancer between 372 liver cancer tissues and 48 adjacent

normal tissues from TCGA and Gene Expression

Omnibus databases. However, these biomarkers were

not validated by basic experiments. In our study, we

first constructed nine coexpression modules by

WGCNA, and the blue module had a significant asso-

ciation with clinical traits of liver cancer. Furthermore,

the genes in the blue module could participate in many

signaling pathways. After identifying seven miRNAs

related with prognosis, the ceRNA network revealed

that the seven miRNAs had a complex regulatory net-

work. Moreover, the seven-miRNA module could pre-

dict prognosis of patients with liver cancer. In our

study, RT-qPCR results confirmed the expression pat-

terns of seven miRNAs in liver cancer tissues com-

pared with adjacent normal tissues. Therefore, the

function of the seven miRNAs in liver cancer are

worth more in-depth research.

Conclusion

In our study, we constructed gene coexpression mod-

ules related with clinical traits of liver cancer. Seven

miRNAs were identified as prognostic biomarkers by

univariate and multivariate Cox regression analysis.

Furthermore, the seven-miRNA module possesses

potential value to predict prognosis of liver cancer.

Therefore, our study constructed coexpression modules

by WGCNA and identified prognostic biomarkers for

liver cancer.
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