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We  quantify  outbreak  risk  after  importations  of Middle  East  respiratory  syndrome  outside  the Arabian
Peninsula.  Data  from  31  importation  events  show  strong  statistical  support  for  lower  transmissibility
after  early  transmission  generations.  Our model  projects  the  risk  of  ≥10,  100,  and  500  transmissions  as
11%,  2%,  and  0.02%,  and  ≥1,  2, 3, and  4  generations  as 23%,  14%, 0.9%,  and  0.05%,  respectively.  Our  results
suggest  tempered  risk  of large,  long-lasting  outbreaks  with  appropriate  control  measures.
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. Introduction

Clusters of patients infected with Middle East respiratory
yndrome (MERS) coronavirus continue to occur in countries
hroughout the Middle East, where the virus is thought to be
ndemic in camels (Kayali and Peiris, 2015). While rare, countries
lsewhere in the world experience importations from infected indi-
iduals traveling from the endemic region (Carias et al., 2016). Most
dentified importations of MERS from travelers have not resulted
n documented transmissions in the destination country (Nishiura
t al., 2015); however, the recent large cluster of 186 infected
atients stemming from a single introduction in the Republic of
orea (ROK) (Korea Centers for Disease Control and Prevention,
015) demonstrated that explosive outbreaks are possible.

The ROK outbreak, combined with a non-negligible likelihood of
urther exportations of MERS from Middle Eastern countries (Carias

t al., 2016), is cause for continued concern for importation of MERS
o other countries. For public health officials requiring quantita-
ive assessment of the risk posed by incoming infected travelers,

∗ Corresponding author at: Division of Epidemiology, Department of Internal
edicine, University of Utah, Salt Lake City, UT, USA.
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it is important to have a nuanced understanding of the full spec-
trum of possible outcomes, especially when they are highly variable
(Fisman et al., 2014); modeling studies can play an important role
in this regard.

Recent studies (Nishiura et al., 2015; Kucharski and Althaus,
2015; Chowell et al., 2015) have quantified the variability implied
by different data sets of MERS cluster sizes resulting from importa-
tion of cases. These analyses found that the data are potentially
consistent with high transmission variability associated with
the occurrence of superspreading events, similar to what was
observed during severe acute respiratory syndrome (SARS) out-
breaks in 2003 (Lloyd-Smith et al., 2005). These studies quantified
transmission probabilities using a negative binomial offspring dis-
tribution within a branching process outbreak model, assuming
that every infected individual transmits with an average of R0
transmissions and dispersion parameter k, where k < 1 implies high
over-dispersion (Lloyd-Smith et al., 2005).

In this paper, we  extend the results of the above work to
allow the reproductive number R to vary across subsequent gen-
erations of transmissions during an outbreak. The ROK outbreak

consisted of a large number of transmissions from the initial trav-
eler and from a few patients in the next transmission generation.
Then, once local officials determined that a MERS outbreak was
occurring and implemented control measures in response, there
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Table 1
Cluster data from reported Middle East respiratory syndrome importations outside
the  Arabian Peninsula.

Country Cluster sizea Transmission generationsb

Algeria 1 0
Algeria 1 0
Austria 1 0
China 1 0
Egypt 1 0
France 2 1
Germany 1 0
Germany 1 0
Germany 1 0
Greece 1 0
Iran 7 3
Iran 2 1
Italy 3 1
Lebanon 1 0
Malaysia 1 0
Netherlands 1 0
Netherlands 1 0
Philippines 1 0
Philippines 1 0
Philippines 1 0
Republic of Korea 186 3
Spain 1 0
Thailand 1 0
Tunisia 2 1
Tunisia 1 0
Turkey 1 0
United Kingdom 3 1
United Kingdom 1 0
United States 2 1
United States 1 0
United States 1 0

Each row represents a unique individual infected traveler to the indicated country.
a Cluster size includes the initial infected traveler and any subsequent infected

persons epidemiologically linked to that traveler; a cluster of size 1 indicates no

 n, 0)

, j − n

−1

p�1
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as an extremely rapid decrease in transmissions such that the
ntire outbreak was extinguished after three total generations of
ransmission following the introduction (Korea Centers for Disease
ontrol and Prevention, 2015). This type of differential transmissi-
ility before vs. after implementation of control measures has also
een observed during localized outbreaks of SARS (Lloyd-Smith
t al., 2005; Wallinga and Teunis, 2004) and Ebola (Toth et al., 2015;
huaib et al., 2014).

A simple way to model a post-control change in average trans-
issibility is to use one parameter for the reproduction number

n early generations (R0) and another for later generations (Rc,
r post-control reproductive number), as assumed in several pre-
ious modeling studies of observed outbreaks and public health
esponse for different diseases (Lloyd-Smith et al., 2005; Wallinga
nd Teunis, 2004; Toth et al., 2015; Chowell et al., 2004). We
ypothesized that a model allowing this type of switch would pro-
uce a substantially better fit to the data from outbreak clusters
aused by MERS importations. Given results from our previous
ork assessing Ebola importation risk (Toth et al., 2015), we also
ypothesized that this model might produce substantially different
esults for the risk of a very large outbreak compared to a model
ssuming a single reproductive number across all transmission
enerations.

. Data

We  developed a data set of cluster sizes from MERS importations
o countries entirely outside of the Arabian Peninsula (Table 1); we
xcluded data from Jordan, the Kingdom of Saudi Arabia, Kuwait,
man, Qatar, the United Arab Emirates, and Yemen, countries
here it was not always clear whether the initial or subsequent

ases within clusters acquired infection from exposure to MERS
ases or animals (camels). The data were extracted from World
ealth Organization reports (World Health Organization, 2015) as
ell as published accounts of individual clusters (Yavarian et al.,

015; Puzelli et al., 2013; Abroug et al., 2014; The Health Protection
gency U. K. Novel Coronavirus Investigation team, 2013). Our data
et consists of 31 importation events, of which 23 resulted in no
onfirmed or suspected transmissions (clusters of size 1) and the
ther 8 resulted in clusters of size 2–186. Following Nishiura et al.
2015), we also recorded the total number of generations of trans-

ission that occurred after the introduction.

. Methods

q�(n, j, g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p�0
(n, 0),  

p�0
(n, j − n)p�1

(j −
j−n−1∑

x=1

p�0
(n, x)p�1

(x

j−n−2∑
x=1

[p�0
(n, x)

j−n−x∑
y=1
For each generation of transmission, we assumed a negative
inomial offspring distribution with parameter set �i = (Ri, ki),
here i is the generation of transmission (i = 0 from the initial trav-

ler). This assumption results in the following equations.
known transmission from the traveler in the destination country.
b Transmission generations are the maximum number of transmission links from

an  infected person in the cluster back to the initial traveler.

First, the probability that x independent cases in generation i
produce a total of y cases in generation i + 1 is

p�i
(x, y) = � (kix + y)

y!� (kix)

(
Ri

Ri + ki

)y( ki

Ri + ki

)kix

.

Next, given n independent introductions (generation 0), the
joint probability of a cluster of total size j consisting of exactly g gen-
erations of transmission, under parameter set � = (�0, �1, �2, �3), is

g = 0

,  g = 1

 − x)p�2
(j − n − x, 0),  g = 2

(x, y)p�2
(y, j − n − x − y)p�3

(j − n − x − y, 0)], g = 3.

We  used the above equations to evaluate ten different mod-
els. In Model 0, we assumed constant parameter values across all
generations of transmission, i.e.,�0 = �1 = �2 = �3 = (R, k). In Mod-
els 1a, 1b, and 1c, we  assumed the initial patient transmitted
with reproductive number R0 and dispersion parameter k0, and all
subsequent patients transmitted with a post-control reproductive

number Rc and dispersion parameter kc i.e., �0 = (R0, k0) ; �1 = �2 =
�3 = (Rc, kc). Because we found that allowing kc to range freely in
the optimization scheme resulted in wide uncertainty (due to few
multi-generation clusters in the data), we  chose to test three differ-
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nt assumptions for this parameter. In Model 1a, we assumed that
c = k0; in Model 1b, we assumed kc = 1, a special case in which the
egative binomial distribution reduces to the geometric distribu-
ion; and in Model 1c, we assumed infinite kc, another special case
n which the negative binomial distribution reduces to the Poisson
istribution.

In Models 2a, 2b, and 2c, we assumed that the reproductive num-
er and dispersion parameter switched from R0 to Rc and k0 to kc

fter two generations of transmission, i.e., �0 = �1 = (R0, k0) ; �2 =
3 = (Rc, kc), and made the same three assumptions regarding kc as
escribed above. In summary,

odel 0 : �0 = �1 = �2 = �3 = (R, k) .

odel 1a : �0 = (R0, k0) ; �1 = �2 = �3 = (Rc, k0) .

odel 1b : �0 = (R0, k0) ;  �1 = �2 = �3 = (Rc, 1) .

odel 1c : �0 = (R0, k0) ; �1 = �2 = �3 = (Rc, ∞) .

odel  2a : �0 = �1 = (R0, k0) ; �2 = �3 = (Rc, k0) .

odel 2b : �0 = �1 = (R0, k0) ; �2 = �3 = (Rc, 1) .

odel 2c : �0 = �1 = (R0, k0) ; �2 = �3 = (Rc, ∞) .

For each of these three parameterizations �, we quantified the
ikelihood of observing the 31 clusters of size jm extinguished after
m generations using the formula

 =
31∏

m=1

q� (1, jm, gm) .

We  compared the maximum likelihood fits under the three
odels using the Akaike information criterion (AIC), which eval-

ates model parsimony in determining statistical support for the
ypothesized difference in transmission across outbreak genera-
ions (Blumberg et al., 2014).

We also developed a model extension to test the robustness
f our results against the possibility that there were additional
ERS exportations outside the Arabian Peninsula causing clusters

hat were not detected. If undetected clusters exist, the data set
n Table 1 might be biased toward larger cluster sizes, as smaller
lusters presumably would be more likely to go undetected.

To quantify the implications of undetected clusters, we made
he following assumptions for this part of the analysis. Let N be
he number of undetected clusters, and u be the probability that
n individual infected patient outside the Arabian Peninsula goes
ndetected. We  assumed that if any one patient in a cluster was
etected with MERS, then the entire cluster was  detected, due to
he intensive contact tracing that would be initiated after the first
etection. Under those assumptions, the probability that a cluster
f size j would go undetected is uj . We  also assumed that transmis-
ion among patients in an undetected cluster was  governed by the
0, k0 parameters only, under every model, because the presumed
echanism for shifting to Rc, kc (implementation of transmission

ontrol measures) would only be relevant if detection occurred.

The new likelihood LN for a given test value of N undetected clus-

ers is comprised of the product of the joint probabilities that each
f the 31 clusters was of the given size and number of generations
nd was detected, times the probability that N clusters were unob-
cs 16 (2016) 27–32 29

served; this latter factor includes the probabilities for undetected
outbreaks of any size.

LN =
(

31∏
m=1

(1 − ujm ) q� (1, jm, gm)

)⎛⎝ ∞∑
j=1

ujp�0
(j, j − 1) /j

⎞
⎠

N

We estimated the infinite sum using a partial sum that had
converged to six decimal places. The likelihood was  maximized
for N = 31 and N = 93, representing scenarios where 50% and 75%
of importation clusters were undetected, respectively, over the
parameters u, R0, k0, and Rc if applicable, for Models 0, 1b, and 2b.

4. Results

Model 0 produced an MLE  of R = 0.87 (95% CI: 0.46–1.90)
and k = 0.035 (0.016–0.069). Model 1a, assuming a change in
the reproductive number after the first generation of transmis-
sion, produced an MLE  of R0 = 5.2 (1.7–29.9), Rc = 0.19 (0.05–0.53),
k0 = kc = 0.068 (0.031–0.14). Model 1b produced R0 = 5.5 (1.7–35.4),
Rc = 0.14 (0.05–0.29), and k0 = 0.061 (0.025–0.13). Model 1c pro-
duced R0 = 5.5 (1.7–35.7), Rc = 0.14 (0.05–0.27), and k0 = 0.061
(0.025–0.13).

Model 2a, assuming the change occurred after the second gen-
eration of transmission, resulted in estimates of R0 = 2.0 (1.0–6.7),
Rc = 0.064 (0.007–0.27), and k0 = kc = 0.078 (0.034–0.16). Model 2b
produced R0 = 2.2 (1.0–6.8), Rc = 0.060 (0.008–0.18), and k0 = 0.076
(0.032–0.16). Model 2c produced R0 = 2.2 (1.0–6.8), Rc = 0.060
(0.008–0.17), and k0 = 0.076 (0.032–0.16).

Each version of Models 1 and 2 produced an MLE  with sub-
stantially higher likelihood and lower AIC than Model 0, the
two-parameter (R, k) model previously implemented (Nishiura
et al., 2015; Kucharski and Althaus, 2015; Chowell et al., 2015). Of
these, models 2b and 2c produced the lowest AIC value (Table 2); we
chose Model 2b to represent an optimal model under this criterion.

We compared the risk assessment implications of the optimal
model against those of other models. The optimal model produces
a higher probability of smaller outbreaks across one or two  gener-
ations of transmission, but a much lower probability of very large
outbreaks or of outbreaks exceeding several transmission genera-
tions (Table 3).

The results under the assumption of undetected clusters
(Table 4) show that Model 2b is still optimal according to AIC,
although the change in AIC compared to Model 0 becomes smaller
as the number of assumed undetected clusters increases. Also, as
the number of assumed undetected clusters increases, the opti-
mal  model’s estimate of “worst-case” outbreak sizes at the 0.1% or
0.01% probability level move closer to those of the simpler Model
0 (Fig. 1 panels A, C, E). However, the optimal model still produces
much lower estimates of the probability of outbreaks lasting several
generations across all assumptions for undetected clusters (Fig. 1
panels B, D, F).

5. Discussion

We have considered a simple method to assess the statisti-
cal support for differential transmission in earlier versus later
generations after a new introduction of MERS, based only on out-
break data for the sizes of transmission clusters and total number
of transmission generations that produced them. This method
demonstrated strong statistical support for assuming a higher
reproductive number in earlier generations after a MERS introduc-

tion in a non-endemic area.

Projections from the optimal model have important implica-
tions for assessing the risk posed by new introductions of MERS.
Compared to previous assessments (Nishiura et al., 2015; Kucharski
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Table  2
Results of fitting models to the cluster data.

Control generation Parametersa log likelihoodb AIC valuec

Model 0 None (R, k) = (0.87, 0.035) −50.6 105.2
Model 1a 1 (R0, k0, Rc, kc) = (5.2, 0.068, 0.19, 0.068) −45.1 96.3
Model  1b 1 (R0, k0, Rc, kc) = (5.5, 0.061, 0.14, 1) −44.7 95.5
Model  1c 1 (R0, k0, Rc, kc) = (5.5, 0.061, 0.14, ∞)  −44.8 95.5
Model  2a 2 (R0, k0, Rc, kc) = (2.0, 0.078, 0.064, 0.078) −44.2 94.5
Model  2b 2 (R0, k0, Rc, kc) = (2.2, 0.076, 0.060, 1) −44.0 94.0
Model  2c 2 (R0, k0, Rc, kc) = (2.2, 0.076, 0.060, ∞)  −44.0 94.0

a For Model 0, the reproductive number R is the average number of transmissions from each individual regardless of the transmission generation; for Models 1a, 1b, and 1c,
the  initial reproductive number R0 and dispersion parameter k0, apply to the initial traveler only (generation 0), and the post-control reproductive number Rc and dispersion
parameter kc apply to any infected persons in generations ≥1; for Models 2a, 2b, and 2c, R0 and k0 apply for both generations 0 and 1, and Rc and kc apply for generations ≥2.

b Parameters were optimized according to the shown maximal log likelihood.
c AIC = Akaike information criterion, used to determine the optimal model (Model 2b represents an optimal model, with lowest AIC value).

Table 3
Risk assessment implications of each model.

Control generation Probability of >(10, 100, 500, 1000) total transmissions Probability of >(1, 2, 3, 4, 5) generations of transmission

Model 0 None (3.9%, 1.0%, 0.3%, 0.1%) (11%, 4.5%, 2.6%, 1.7%, 1.2%)
Model  1a 1 (12%, 1.5%, 0.007%, 0.00002%) (26%, 3.6%, 0.6%, 0.12%, 0.02%)
Model 1b 1 (11%, 1.6%, 0.011%, 0.00006%) (24%, 3.3%, 0.5%, 0.07%, 0.01%)
Model 1c 1 (11%, 1.6%, 0.011%, 0.00006%) (24%, 3.3%, 0.4%, 0.06%, 0.009%)
Model 2a 2 (11%, 1.6%, 0.008%, 0.00002%) (23%, 14%, 0.8%, 0.05%, 0.003%)
Model  2b 2 (11%, 2.0%, 0.018%, 0.00011%) (23%, 14%, 0.9%, 0.05%, 0.003%)
Model  2c 2 (11%, 2.0%, 0.018%, 0.00011%) (23%, 14%, 0.8%, 0.05%, 0.003%)

Probabilities of exceeding selected numbers of total transmissions/generations of transmission after a single importation of Middle East respiratory syndrome, under three
different models. Model 3 was  the optimal model given the data in Table 1, according to criterion summarized in Table 2.

Table  4
Sensitivity analysis – results of fitting models to the cluster data given that portion of importation clusters were undetected.

Undetected Fraction Model Control generation Parameters* log likelihood AIC value

50% Model 0 None (R, k, u) = (0.76, 0.028, 0.46) −91.9 189.8
Model  1a 1 (R0, k0, Rc, kc, u) = (2.5, 0.038, 0.23, 0.038, 0.46) −89.5 187.0
Model  1b 1 (R0, k0, Rc, kc, u) = (2.7, 0.032, 0.14, 1, 0.46) −88.7 185.3
Model  2a 2 (R0, k0, Rc, kc, u) = (0.96, 0.041, 0.078, 0.041, 0.44) −88.6 185.2
Model  2b 2 (R0, k0, Rc, kc, u) = (1.5, 0.042, 0.063, 1, 0.46) −87.7 183.5

75%  Model 0 None (R, k, p) = (0.62, 0.022, 0.22) −119.2 244.3
Model  1a 1 (R0, k0, Rc, kc, p) = (1.1, 0.024, 0.30, 0.024, 0.22) −118.6 245.2

, Rc, kc
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Model  1b 1 (R0, k0

Model  2a 2 (R0, k0

Model  2b 2 (R0, k0

nd Althaus, 2015; Chowell et al., 2015) that were similar to those
rom our Model 0, our optimal Model 2b suggests a higher proba-
ility of moderately sized outbreaks (e.g., on the order of 10 total
ransmissions) across one or two total generations of transmission,
ut a much lower probability of outbreaks significantly larger than
he one in ROK or of outbreaks of any size lasting several gener-
tions. These conclusions are robust to assuming that only 50%
f MERS importations outside the Arabian Peninsula have been
etected. If the non-detection rate is much higher than 50%, then
ur optimal model would produce closer estimates to previous
odels for the probability of very large outbreaks, but the conclu-

ion that outbreaks are less likely to last several generations than
revious predictions is robust to high rates of non-detection.

The results from all the models we fit to the data suggest very
igh transmission variability from the index patient (and perhaps
lso from subsequent patients, depending on the model), as the
LE  for the parameter k0 was less than 0.1 for each model, which

ndicates even higher over-dispersion than what was estimated
or SARS (Lloyd-Smith et al., 2005). The MLE  value of k0 was even
ower in the analyses assuming there were undetected clusters, as
ndetected clusters were likely small, making the ROK outbreak

ven more extreme compared to the average. The implications of
ery high initial variability are 1) a high probability of no trans-
issions from the index patient, even if R0 > 1; and 2) a relatively
, p) = (1.4, 0.019, 0.15, 1, 0.23) −117.4 242.7
, p) = (1.4, 0.028, 0.075, 0.028, 0.22) −117.1 243.0
, p) = (1.4, 0.026, 0.065, 1, 0.22) −116.9 241.8

high probability of a superspreading event, i.e., an unusually large
number of transmissions, if any do occur. For example, using the
MLE (R0, k0) from our optimal Model 2b (Table 2) there would be
77% chance of no transmissions from the initial traveler, but a 5%
chance of more than 12 transmissions and a 1% chance of more than
40 transmissions from the initial traveler.

For public health officials in countries anticipating further intro-
ductions of MERS-CoV from travelers, it is important to anticipate
the non-negligible possibility of an explosive outbreak in early
generations of transmission driven by superspreading. There are
several reasons that superspreading might occur from an infected
individual, including unusually high levels of viral shedding, long
length of infectious period, or high numbers of person-to-person
contacts, particularly when numerous contacts coincide with peak
timing of infectiousness and/or if contacts have unusual sus-
ceptibility, such as hospital patients. Investigations of the MERS
superspreading events in ROK suggest that patient symptoms (fre-
quent and vigorous coughing) during close proximity with many
others in crowded hospital areas contributed to unusually high
numbers of transmissions from certain individuals (Oh  et al., 2015).

While the potential for superspreading exists, our results also

suggest that a prompt public health response in the early stages of
a new outbreak, with efforts to prevent further transmission sim-
ilar to what has been implemented previously, would most likely
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Fig. 1. Projected outbreak risk from a single infected traveler outside the Arabian Peninsula. Model-derived probabilities of an outbreak exceeding a given total number
of  transmissions (A, C, E) or total number of transmission generations (B, D, F). Dashed = Model 0, assuming no change in transmission parameters (reproductive number
a nsmis
o ons o
n assum
i

r
l
o
o
R
i
R
b
u

k

nd  dispersion parameter) across generations; dotted = Model 1b, assuming the tra
ptimal model), assuming the transmission parameters change after two generati
o  undetected importation clusters beyond those listed in Table 1. Panels C and D 

mportation clusters were undetected.

educe the risk of a very large or long-lasting outbreak to negligible
evels. Compared to projections from our optimal model, previ-
usly published models extrapolate higher probability of MERS
utbreaks that are larger or longer-lasting than what occurred in
OK, but those models did not fully incorporate the rapid decline

n transmission rate that was achieved in later generations of the
OK outbreak once it had been identified. Nonetheless, any model-

ased extrapolation beyond the data is subject to potentially wide
ncertainty and should be interpreted with caution.

Regardless of the true risk posed by infected travelers, the
ey elements of a coordinated strategy to mitigate new out-
sion parameters change after one generation of transmission; solid = Model 2b (the
f transmission. Panels A and B use MLE  parameters derived assuming there were
ing 50% of importation clusters were undetected. Panels E and F assuming 75% of

breaks of MERS, as with any emerging infection, are continued
awareness, targeted surveillance strategies based on importation
risk from travelers, appropriately detailed travel histories of ill
patients, pre-positioned availability of laboratory diagnostics, and
a strong public health response once a potential case is suspected or
recognized.
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