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Abstract
Background: Aspartyl protease inhibitors (PIs) used to treat HIV belong to an important group
of drugs that influence significantly endothelial cell functioning and angiogenic capacity, although
specific mechanisms are poorly understood. Recently, PIs, particularly Nelfinavir, were reported to
disrupt Notch signaling in the HIV-related endothelial cell neoplasm, Kaposi's sarcoma. Given the
importance of maintaining proper cerebral endothelial cell signaling at the blood brain barrier
during HIV infection, we considered potential signaling pathways such as Notch, that may be
vulnerable to dysregulation during exposure to PI-based anti-retroviral regimens. Notch processing
by γ-secretase results in cleavage of the notch intracellular domain that travels to the nucleus to
regulate expression of genes such as vascular endothelial cell growth factor and NFκB that are
critical in endothelial cell functioning. Since, the effects of HIV PIs on γ-secretase substrate pathways
in cerebral endothelial cell signaling have not been addressed, we sought to determine the effects
of HIV PIs on Notch and amyloid precursor protein.

Results: Exposure to reported physiological levels of Saquinavir, Indinavir, Nelfinavir and
Ritonavir, significantly increased reactive oxygen species in cerebral endothelial cells, but had no
effect on cell survival. Likewise, PIs decreased Notch 4-protein expression, but had no effect on
Notch 1 or amyloid precursor protein expression. On the other hand, only Nelfinavir increased
significantly Notch 4 processing, Notch4 intracellular domain nuclear localization and the
expression of notch intracellular domain targets NFκB, matrix metalloproteinase 2. Pre-treatment
with the antioxidant Vitamin E prevented PI-induced reactive oxygen species generation and
partially prevented Nelfinavir-induced changes in both Notch 4 processing, and cellular localization
patterns. Moreover, in support of increased expression of pro-angiogenic genes after Nelfinavir
treatment, Nelfinavir did not inhibit angiogenic capacity.

Conclusion: Nelfinavir affects Notch 4 processing that results in induction of expression of the
pro-angiogenic genes NFκB, matrix metalloproteinase 2 in cerebral endothelial cells.
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Background
As the first line of defense against substances attempting
to enter the CNS, cerebral endothelial cells (CEC) are con-
tinually exposed to a variety of blood-borne factors
including pathogens such as HIV, and/or pharmacologi-
cal agents used to treat infection. In fact, CEC activation
and compromise of the blood brain barrier occurs during
HIV infection of the CNS [1-3]. In addition, protease
inhibitors (PIs) used to treat HIV belong to an important
group of drugs reported to influence significantly ang-
iogenic capacity and endothelial cell functioning [4]. For
example, exposure of endothelial cells to some PIs has
been shown to increase oxidative stress, induce signaling
dysfunction, mitochondrial dysregulation and promote
formation of intercellular gaps [5,6]. Although adverse
effects on non-cerebral endothelial cells by HIV PIs are
well documented, the mechanisms responsible for dysreg-
ulation are poorly understood [4]. Recently, these aspartyl
PIs, particularly Nelfinavir (NFV), have been implicated
in disruption of the Notch pathway in the HIV-related
neoplasm, Kaposi's sarcoma [7]. Notch and amyloid pre-
cursor protein (APP) are substrates for the aspartyl pro-
tease γ-secretase and represent pathways known to
support numerous key points in endothelial cell fitness.
Therefore, constant exposure of CEC to PIs circulating in
the blood stream in the HIV patient likely affects normal
CEC signaling pathways [8,9], such as Notch since its sig-
naling is dependent on protease activity to maintain cell
fitness [10,11].

Expressed mainly on endothelial cells, Notch 4 is a mem-
ber of the transmembrane Notch family of receptors
[12,13]. Upon binding by its ligand, Delta4, the C-termi-
nal Notch intracellular domain (NICD) is cleaved by γ-
secretase and travels to the nucleus where it associates via
the CBF-1, Su(H), Lag-1 (CSL) family of DNA-binding
proteins to form transcription activator complexes,
[10,11] that regulate, among others vascular endothelial
cell growth factor (VEGF), NFκB and HES-1 expression
[14,15], all of which are crucial for endothelial cell fitness.
In addition, recent reports describe the phosphorylation
of NICD by GSK3-β with subsequent transcriptional regu-
lation of NICD target genes [16-18].

Thus, given the importance of maintaining proper
endothelial cell signaling at the blood brain barrier, we
hypothesized that Notch expression and processing may
become vulnerable to dysregulation in CEC during expo-
sure to PIs. Our results show that the HIV PI NFV signifi-
cantly affects Notch 4 expression and processing in a
vitamin E-sensitive manner that appears independent
from GSK3-β phosphorylation levels. NFV exposure also
increases Notch 4 NICD nuclear localization and the
expression of NICD target genes NFκB and matrix metal-
loproteinase 2 (MMP2). In support of increased expres-

sion of pro-angiogenic genes after NFV treatment, NFV
did not inhibit angiogenic capacity in CEC.

Increased understanding of crosstalk between PIs and
CEC is critical to improve treatment, predict complica-
tions and manage HIV-associated CNS complications in
the HIV patient adherent to a PI-containing anti-retroviral
regimen. In particular, understanding alterations in sign-
aling cascades relevant to endothelial cell fitness is of cru-
cial importance during viral rebound when anti-retroviral
drugs in the blood are accompanied by circulating HIV-
infected immune cells.

Methods
Cerebral endothelial cell culture and PI treatments
The effects of the HIV PIs SQV, INV, NFV, and RTV on cell
viability and signaling were investigated in human CEC
(ScienCell Research Laboratories, San Diego, CA and Cell
Systems, Kirkland, WA). CEC were maintained at no
greater than 70% confluence in endothelial cell medium
(ECM), which includes 5% fetal bovine serum (FBS), 1%
endothelial cell growth supplement, and 1% penicillin/
streptomycin solution (ScienCell Research Laboratories).
Cells were routinely grown in ECM, incubated at 37°C in
5% CO2, and the medium was replaced every three days.
To slow cell metabolism and bring the cells to a resting
state, CEC were pre-incubated in ECM containing 1% FBS
overnight prior to experimental treatments. CEC were
treated with 5 μM of the PIs SQV, INV, NFV, RTV or 5 μM
INV/1 μM RTV (NIH AIDS Research & Reference Reagent
Program, Germantown, MD) for varying lengths of time,
and untreated cells in 1% FBS were used as control. Stud-
ies have shown that plasma levels of PIs in patients taking
these drugs are approximately 5 μM [19]. A dose response
experiment determined 5 μM PI to be non-lethal to CEC
and was therefore used in the time course experiments. PI
treatments for 48, 72 and 96 h were refreshed daily by
replacing media containing drug to ensure a consistent PI
concentration throughout the time course [5]. For
LY29004 (Calbiochem, La Jolla, CA) treatment, CEC were
exposed to 10 μm inhibitor for 10 min followed by PIs.
After treatments, cells were rinsed with PBS and harvested
for assays.

Cell viability assays
Trypan blue exclusion assays were performed to deter-
mine the effects of time and drug concentration on cell
viability. PI concentrations included 0.5, 1, 5, and 25 μM,
in addition to untreated control. Cell viability was also
determined at the non-lethal dose of 5 μM PI over time
including 24, 48, 72, and 96 h. CEC from each dose and
time treatment were rinsed with PBS, detached using a
trypsin solution (Invitrogen, Carlsbad, CA), harvested by
gentle centrifugation, and resuspended in PBS/trypan
blue solution (1:1, vol:vol). Cell viability was determined
Page 2 of 18
(page number not for citation purposes)



BMC Neuroscience 2008, 9:27 http://www.biomedcentral.com/1471-2202/9/27
by counting stained (dead) versus non-stained (live) cells,
as previously described [20].

H2DCFDA Staining
H2DCFDA (2', 7'-dichlorodihydrofluorescein diacetate) is
a cell-permeable reactive oxygen species (ROS) indicator
that remains non-fluorescent until removal of acetate
groups by intracellular esterases and oxidation occurs
within the treated cells. H2DCFDA staining is widely used
for assessing overall oxidative stress.

CEC were grown on poly-L-lysine-coated thermanox plas-
tic coverslips (Thermo-Fisher, Pittsburgh, PA) and treated
for 1 and 48 h with PIs and/or Vitamin E acetate (Sigma-
Aldrich Co., St. Louis, MO). A dose response for protec-
tion against ROS generation was conducted using 25, 50,
100, 200, and 500 μM Vitamin E. Cells undergoing Vita-
min E treatment were pre-treated 1 h prior to PI treatment
and Vitamin E remained in the media throughout the
drug incubation. CEC were rinsed gently with PBS and
stained with 75 μM H2DCFDA in PBS for 15 min at 37°C.
The stain was rinsed off by gently dipping the coverslips in
PBS several times. Coverslips were mounted on glass
slides and cells were observed by fluorescence microscopy
using the Olympus BX41 microscope (Olympus, Melville,
NY). Images were captured for computer analysis using
Optronics MagnaFire SP software (Optronics, Goleta,
CA).

Immunocytochemical analyses
For immunocytochemical characterization of Notch 1,
Notch 4, APP and CD31 expression, CEC were plated
onto poly-L-lysine-coated coverslips for 24 h in ECM con-
taining 1% FBS and fixed for 20 min at room temperature
in 4% paraformaldehyde. Paraffin embedded samples of
human frontal cortex collected at autopsy from an HIV
sero-negative adult with no brain alterations were
obtained from the HIV Neurobehavioral Research Center
(University of California San Diego, San Diego, CA). CEC
and 40 μm vibratome tissue sections were incubated over-
night with the mouse monoclonal antibodies against
Notch 1 (1:50), Notch 4 (1:50), APP (1:500), NICD
(1:500, Santa Cruz Biotechnology, Inc, Santa Cruz, CA),
or the endothelial cell marker, CD31 (1:3000, Chemicon
International, Temecula, CA). For immunocytochemical
analyses, cells and tissue were single or double labeled
with the antibodies and detected with either fluorescein
isothiocyanate (FITC, Vector Laboratories Inc., Burlin-
game, CA) and/or the Tyramide Signal Amplification™-
Direct (Red) system (NEN Life Sciences, Boston, MA).
FITC analysis required 1 h incubation at room tempera-
ture with FITC-conjugated horse anti-mouse antibodies
(1:100), while Tyramide Red analysis required 1 h incuba-
tion with biotinylated anti-mouse or rabbit antibodies
(1:100) followed by Streptavidin HRP (1:500 dil) and

Tyramide Red (1:50 dil) labeling. Tissue sections and cells
were imaged with a Zeiss 63× (N.A. 1.4) objective on an
Axiovert 35 microscope (Zeiss, Germany) with an
attached MRC1024 laser scanning confocal microscope
(LSCM) system (BioRad, Wattford, UK).

For Notch 4 cellular localization, CEC plated onto poly-L-
lysine-coated coverslips in ECM containing 1% FBS were
untreated or treated with SQV, INV, NFV, RTV, Vitamin E,
or Vitamin E/NFV for 48 h, followed by fixation for 20
min at room temperature in 4% paraformaldehyde. Cells
were then double labeled with anti-Actin antibody
(1:200) (Chemicon, Temecula, CA) followed by incuba-
tion with Texas red secondary antibody (1:100, Vector
Labs) and anti-NICD antibody (1:100) (Abcam Inc, Cam-
bridge, MA) followed by incubation with FITC secondary
(1:100, Vector labs). Cells from at least ten random fields
of view and > 200 cells for each condition were analyzed
for NICD cytoplasmic and nuclear localization using the
Olympus BX41 microscope (Olympus, Melville, NY).
Images were captured for computer analysis using
Optronics MagnaFire SP software (Optronics, Goleta, CA)
and the percentage of cells positive for NICD nuclear
localization was determined. Baseline (untreated) levels
of detectable nuclear NICD for Notch 4 are relatively low
in CEC, thus comparisons were easily assessed.

Western Analyses
Total protein was isolated from control and treated cells.
Cells were washed with ice-cold PBS and solubilized on
ice for 45 min using lysis buffer (50 mM Tris Hal, pH 7.4;
5 mM EDTA; 150 mM NaCl; 1% Triton X-100; 0.4%
sodium cacodylate; Protease Inhibitor Cocktail III [Calbi-
ochem, San Diego, CA] and Phosphotase Inhibitor Cock-
tail I [Calbiochem]). Cell lysate was collected by scraping
each well and by sonication for 3 sec at low frequency to
ensure lysis (Fisher Scientific Model 100 Sonic Dismem-
brator, Tustin, CA). After a 10 min centrifugation at
12,000 rpm at 4°C, supernatant was collected for Western
analysis. Protein concentrations were determined using
the BCA Protein Assay kit (Pierce, Rockford, IL) following
the manufacturer's protocol. Twenty μg of total protein
was loaded per well onto a 4–12% Bis-Tris NuPage Gels
(Invitrogen, Carlsbad, CA) and separated by electrophore-
sis for 1 h at 200 V. Proteins were transferred onto Immo-
bilon-P PVDF membranes (Millipore, Bedford, MA) for
24 h at 10 V. Notch 1 (H-131, 1:500, Santa Cruz Biotech-
nology, Inc, Santa Cruz, CA), Notch 4 (H-225, 1:1000,
Santa Cruz Biotechnology, Inc, Santa Cruz, CA), APP (A4,
1:1000, Chemicon International, Temecula, CA), phos-
phorylated-GSK3-β (1:2500, Cell Signaling, Beverly, MA),
total-GSK3-β (0011-A, 1:2500, Santa Cruz Biotechnology,
Inc, Santa Cruz, CA), NFκ-B (1:200, Santa Cruz Biotech-
nology, Santa Cruz, CA), VEGF (1:1000, R&D Systems),
MMP2 (1:400, Abcam, Inc., Cambridge, MA) and HES-1
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(1:2500, BD Transduction Laboratories) primary antibod-
ies were used for immunolabeling followed by horserad-
ish peroxidase (HRP) tagged secondary antibodies
(1:5000, American Qualex, San Clemente, CA). Enhanced
chemiluminescence was detected with the Western Light-
ning Chemiluminescence Reagent Plus kit (PerkinElmer
Life Sciences, Boston MA) and recorded using the BioRad
VersaDoc Imaging System Model 3000 (BioRad, Hercules,
CA). To calculate levels of NICD in CEC, the percentage of
NICD compared to total Notch was determined in cells
treated with PIs as previously described (Shawber et al.,
2003; Curry et al., 2005). Briefly, the percentage of Notch
processed to NICD corresponding to Notch 1 (110 kDa)
and 4 (70 kDa) NICD was calculated by subtracting the
NICD band densities from the combined densities of full
length (Notch 1 207 kDa; Notch 4 220 kDa) plus proc-
essed products.

quantitative RT (qRT) PCR
Total RNA was purified from CEC treated with PIs for 1
and 48 h. Cells were washed with PBS, re-suspended in
PBS and nucleic acid was isolated with TRIzol LS (1 ml/
107 cells) and chloroform. After vigorous vortexing, cells
were incubated for 10 min, centrifuged at 12,000 × g for
15 min at 4°C, and the top aqueous layer was collected
and mixed with 1 μl glycogen and an equal volume of 2-
propanol. After 10 min of precipitation on ice, samples
were centrifuged at 12,000 × g for 15 min at 4°C and the
supernatant was discarded. Pellets were washed with 70%
ethanol, air dried for 10 min, resuspended in DEPC water
and heated to 60°C for 10 min before quantitation. The
StrataScript First-Strand Synthesis System was used to syn-
thesize (Stratagene, La Jolla, CA) cDNA following the
manufacturer's protocol. Briefly, 1 μg of total RNA was
combined with oligo (dT) primer and incubated at 65°C
for 5 min. The reactions were slowly cooled to room tem-
perature to allow the primers to anneal to the RNA and
the synthesis reaction was prepared by adding, in order,
10× first-strand buffer, RNase Block Ribonuclease Inhibi-
tor (40 U), 100 mM dNTPs, and StrataScript reverse tran-
scriptase (50 U). After 1 h incubation at 42°C for the
cDNA synthesis reaction, the samples were heated to
90°C for 5 min and the RNA was quantified. One μg
cDNA/sample was submitted to the Center for AIDS
Research Genomics Core at UCSD for qRT PCR of target
genes Notch 1, Notch 4, APP, HES-1, MMP2 and NFκB,
VEGF and Porphobilinogen deaminase, (PBGD) as the
reference gene. Primer sequences of target genes were
selected from Universal Probe Library (Roche Diagnostics,
Alameda, CA) and purchased from Sigma Proligo (Sigma-
Proligo, Boulder, CO). Primer specificity for the target
genes was confirmed by BLAST at GenBank: NOTCH1-
[GenBank: NM 017617]-left, 5'-TGC TGG AGG ACC TCA
TCA ACT-3', right, 5'-CAG TGC AGG GCG GAC TTG-3';
NOTCH4-[GenBank: NM 004557]-left, 5'-GGC GAG

GAC AGC ATT GGT-3', right, 5'-CAT CAC AAC TCC ATC
CTC ATC AA-3'; APP-[GenBank: NM 000484]-left, 5'-GGA
ATC TTT GGA ACA GGA AGC A-3', right, 5'-TCC ACT CTG
GCC ATG TGT GT-3'; HES-1-[GenBank: NM 005524]-left,
5'-ATG GAG AAA AAT TCC TCG TCC C-3', right, 5'-TTC
AGA GCA TCC AAA ATC AGT GT-3'; MMP2-[GenBank:
NM 004530]-left, 5'-CCG TCG CCC ATC ATC AAG TT-3',
right, 5'-CTG TCT GGG GCA GTC CAA AG-3'; NFκB-
[GenBank: NM 003998]-left, 5'-TGC CAA CAG ATG GCC
CAT AC, right, 5'-TGT TCT TTT CAC TAG AGG CAC CA-
3', VEGF-[GenBank: NM 003376]-left, 5'-CGC AAG AAA
TCC CGG TAT AA-3', right, 5'-AAA TGC TTT CTC CGC
TCT GA-3' and PBGD-[GenBank: NM 000190]-left, 5'-
AGC TAT GAA GGA TGG GCA AC-3', right, 5'-TTG TAT
GCT ATC TGA GCC GTC TA-3'.

Scratch Assay
The scratch assay is an in vitro assay used to determine the
capacity of endothelial cells to migrate into a simulated
wound administered by a single scratch with a pipette tip
across the diameter of a confluent monolayer of CEC to
remove cells from a roughly uniform area with in the well.
Cells were grown to confluence in six well plates in ECM
growth media. Prior to treatments, cells were placed into
ECM containing 1% FBS. Cells were then exposed to 5 μM
PI and/or 500 μM Vitamin E for 48 h. Cells undergoing
Vitamin E treatment were pre-treated 1 h before, and
throughout the PI treatment. Following scratching, media
with or without treatments was replaced to remove float-
ing cells and debris. The width and area of each scratch in
each condition was recorded in 10 random and separate
fields of view (phase contrast, 10×, Olympus, Melville,
NY) and cells were digitally photographed using a Micro-
Fire digital camera (Olympus, Melville, NY) and Optron-
ics PictureFrame 2.1 imaging software (Optronics, Goleta,
CA). Cells were incubated at 37°C in 5% CO2. Observa-
tions and photography were repeated 6 h later to monitor
cell migration into the clearing formed by the scratch. Cal-
culations of the area formed by the scratch at time 0 and
6 h were conducted using ImageJ 1.37v software (NIH,
Bethesda, MD).

Matrigel Angiogenesis Assay
The Matri-gel assay utilizes a soluble basement membrane
preparation to provide a physiologically relevant environ-
ment where endothelial cells can migrate, branch and
form ring-structures reminiscent of capillary tubules.
Untreated control and CEC treated with NFV, Vitamin E,
LY29004, Vitamin E/NFV or LY29004/NFV for 48 h were
then cultured with treatments onto Growth Factor
Reduced Matri-gel Matrix (BD Biosciences, Bedford, MA).
After 6–8 h, the three-dimensional organization of the
cells was examined microscopically (phase contrast, 10×,
Olympus, Melville, NY) and digitally photographed using
a MicroFire digital camera (Olympus) and Optronics Pic-
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tureFrame 2.1 imaging software (Optronics, Goleta, CA).
The average number of ring formations, cell extensions
and extension lengths from 10 randomly selected fields of
view from each treatment condition were photographed
and compared for statistical significance.

Statistical Analyses
Data were analyzed using Fischer's PLSD or one-way anal-
ysis of variance (ANOVA) with post hoc Dunnett's or
Tukey-Kramer using Graph Pad Prism Software, (Graph-
Pad Software Inc. San Diego, CA). All results are expressed
as mean ± SEM, n ≥ 3.

Results
HIV PIs do not significantly affect cell viability in CEC
To determine whether exposure to reported plasma con-
centrations of HIV PIs affected CEC viability [19], dose
and time course assays were performed. Treatment of CEC
with 5 μM PIs up to 96 h resulted in less than 8% cell
death compared to 4% for untreated controls (Figure 1).
Thus, doses of 5 μM individual PI or 5 μM INV/1 μM RTV
were used for all further experiments.

HIV PIs induce the generation of ROS in CEC
Reported plasma concentrations of PIs do not cause sig-
nificant CEC death in vitro, however studies show that PI
exposure compromises cell fitness and signaling by induc-
ing oxidative stress in non-cerebral endothelial cells [5,6].
Therefore, to determine whether PI exposure induced oxi-
dative stress in CEC, ROS levels were measured by
H2DCFDA staining in PI-treated cells. Treating CEC with
5 μM PIs or 5 μM INV/1 μM RTV resulted in significantly
increased ROS after only 1 h (p ≤ 0.05, Figure 2A). Com-
pared to untreated CEC, ROS levels in 1 h PI-treated CEC
ranged from a 2.29-fold increase with INV treatment to
1.66-fold increase with RTV treatment. A similar range
was observed in 48 h PI treated cells with a 2.03-fold
increase with INV treatment to a 1.44-fold increase with
NFV treatment (p ≤ 0.05) (Figure 2B). On the other hand,
1 h pre-treatment with the antioxidant, Vitamin E, pre-
vented the generation of PI-induced ROS in both the 1 h
and 48 h treated cells (p ≤ 0.001 and p ≤ 0.005, respec-
tively) (Figure 2). These results show that the PIs tested
induce significant levels of ROS in CEC, but Vitamin E
pre-treatment prevents PI-induced ROS generation.

HIV PIs do not affect cell viability in CECFigure 1
HIV PIs do not affect cell viability in CEC. Trypan blue staining for CEC viability was conducted after treatment with 
saquinavir (SQV), indinavir (INV), nelfinavir (NFV), or Ritonavir (RTV) for 24 h at 0, 0.5, 1, 5 and 25 μM dose concentrations. 
Trypan blue staining was conducted for CEC viability after treatment with 5 μM saquinavir (SQV), 5 μM indinavir (INV), 5 μM 
nelfinavir (NFV), 5 μM ritonavir (RTV), or 5 μM INV/1 μM RTV for 24, 48, 72 and 96 h. Percent cell death was calculated for 
each condition.
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PIs decrease Notch 4 protein expression in CEC
Because Notch is important to maintain CEC fitness and
Notch signaling is affected by ROS [21], we first assessed
baseline expression levels of the γ-secretase substrates
Notch 1, Notch 4, and APP in CEC. For comparison to
CEC, immunoreactivity of Notch 1, Notch 4, APP and
CD31 was assessed in tissue sections from human brain
frontal cortex. Immunological labeling showed that CEC
express Notch 1, Notch 4, and APP in patterns compara-
ble to those observed in the microvascular cells in human
brain tissue (Figure 3).

Exposure of CEC to PIs had no significant effects on total
Notch 1 expression or processing which is the percent of
total Notch represented by NICD (Figure 4A–D) or on

Notch 1 messenger RNA levels (Figure 4E). Likewise, PIs
had no significant effect on protein (Figure 5A) or mes-
senger RNA levels (Figure 5B) of APP. We were unable to
detect processed APP in CEC, thus, percent processed was
not addressed.

On the other hand, SQV, INV, NFV and RTV significantly
decreased total Notch 4 protein expression in CEC (p ≤
0.002) (Figure 6A–D). Interestingly, even though total
protein levels decreased, NFV and RTV increased the per-
centage of Notch 4 NICD. Through out the 96 h treatment
course, exposure of CEC to NFV and RTV increased Notch
4 NICD levels significantly by ≥ 2 fold compared to con-
trol (p ≤ 0.007, p ≤ 0.001, respectively, Figure 6C and 6D).
Only slight increases in Notch 4 NICD after SQV and INV

Vitamin E prevents HIV PI-induced oxidative stress in CECFigure 2
Vitamin E prevents HIV PI-induced oxidative stress in CEC. H2DCFDA staining was performed to determine the lev-
els of ROS in cells treated with 5 μM saquinavir (SQV), indinavir (INV), nelfinavir (NFV), ritonavir (RTV), or 5 μM INV/1 μM 
RTV, with and without 1 h pre-treatment with Vitamin E to PI exposure for A) 1 h and B) 48 h. Pixel intensity from fluorescent 
H2DCFDA staining was measured by fluorescence confocal microscopy and graphed. Original magnification was 62×. For 1 h PI 
treatments, *p ≤ 0.05 by one way ANOVA with Dunnett's post hoc test when comparing to untreated control, and ** p ≤ 
0.001 by Fisher's post hoc test when comparing PI treatment without Vitamin E to PIs with Vitamin E. For 48 h treatments, *p 
≤ 0.05 by one way ANOVA with Dunnett's post hoc test when comparing to untreated control, and ** p ≤ 0.005 by Fisher's 
post hoc test when comparing PI treatment without Vitamin E to PI with Vitamin E. Graphs reflect results from three or more 
separate experiments.
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treatment were observed, and increases did not reach sta-
tistical significance (Figure 6A and 6B). Importantly, since
PI treatments decreased the levels of Notch 4 total protein,
calculations were made to determine if the increase in
Notch 4 NICD observed in the PI-treated cells exceeded
the amount of NICD in control, untreated cells. Our
results clearly show that levels of NICD in PI-treated cells
are significantly higher than those in control cells relative
to the amount of unprocessed (full length) Notch 4. Mes-
senger RNA levels of Notch 4 were increased significantly
by NFV after 48 h, whereas, other PIs had no significant
effects (p < 0.001, Figure 6E).

Since Vitamin E blocked ROS induced by PIs (Figure 1),
and ROS is known to affect Notch expression and cleavage
to NICD, CEC were exposed to SQV, INV, NFV or RTV for
48 h with or without Vitamin E pre-treatment to deter-
mine if Vitamin E could block the PI-induced alterations.
Although Vitamin E pre-treatment prevented to some
degree PI-induced decreases in Notch 4 total protein, lev-

els remained significantly lower in PI-treated cells than in
untreated controls (p ≤ 0.005, Figure 7A). On the other
hand, Vitamin E blocked PI-induced increases in levels of
Notch 4 NICD (p ≤ 0.005, Figure 7B). Exposure of CEC to
other ROS inducers, cobalt chloride and H2O2 signifi-
cantly increased levels of ROS as reported by other studies,
but had no significant effects on Notch 4 expression or
NICD levels (data not shown). These results suggest that
induction of ROS by PIs may contribute to changes in
Notch 4 expression and NICD levels. Since the percentage
of Notch 4 that was detected as NICD in PI-treated cells
was increased (Figure 4), immunocytochemical localiza-
tion experiments using an antibody specific for processed
Notch 4 were conducted to determine NICD cellular
localization within PI-treated CEC.

Nelfinavir exposure increases NICD nuclear localization in 
CEC
CEC untreated, and treated with PIs and/or Vitamin E for
48 h were assessed for both cytosolic and nuclear NICD

Comparison of the expression of Notch 1, Notch 4, and APP in in vitro CEC and human brain frontal cortexFigure 3
Comparison of the expression of Notch 1, Notch 4, and APP in in vitro CEC and human brain frontal cortex. 
Notch 1, Notch 4, and APP expression and localization were assessed by immunocytochemical labeling of cerebral endothelial 
cells (CEC) (top panels) and paraffin embedded human frontal cortex tissue (lower panels). CD31 was used as an endothelial 
cell-specific marker. Baseline immunoreactivity was observed by fluorescent confocal microscopy. Original magnification is 
62×.
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immunoreactivity. Nuclear localization of NICD was
detected in 21% of untreated CEC, 22% with SQV, 19%
with INV and 26% with RTV (Figure 8). However, NFV-
treated CEC displayed the highest percentage (34%) of
cells positive for NICD nuclear localization (p ≤ 0.001)
(Figure 8B). On the other hand, Vitamin E treatment
alone resulted in decreased NICD nuclear localization
(15%), compared to control. As expected, Vitamin E pre-
treatment blocked the dramatic increase in nuclear NICD
caused by NFV, dropping the percent cells positive down
to 15.5% (Figure 8B). These results indicate that the NFV-
induced increases in levels of NICD (Figure 3C, D, 4B) are
accompanied by increased NICD localization to the
nucleus and that Vitamin E pre-treatment prevents NFV-
induced increased nuclear localization of NICD (Figure
8B).

NFV-induced changes in Notch 4 processing are 
independent of GSK-β phosphorylation levels
Since GSK3-β phosphorylation levels are reported to be
important in Notch signaling [18,22,23], the effects of
NFV on GSK3-β phosphorylation levels were determined
in CEC. Levels of phosphorylated GSK3-β followed a
cyclic pattern over the NFV treatment time course, increas-
ing significantly after 30 min and 48 h exposure to NFV (p
≤ 0.02) (Figure 9A). Total GSK3-β levels in NFV-treated
CEC decreased significantly in early time points compared
to control (p ≤ 0.002), but returned to control levels at 24
and 48 h (Figure 9A). Because, 48 h of NFV exposure
resulted in significant increases in GSK3-β phosphoryla-
tion levels and in ROS generation (Figure 2B), we sought
to determine the effects of GSK3-β phosphorylation on
Notch 4 expression and processing, by treating CEC with
NFV in the presence or absence of the PI3K inhibitor,

HIV PIs do not affect Notch 1 expression or processing in CECFigure 4
HIV PIs do not affect Notch 1 expression or processing in CEC. Western analyses of the expression of total Notch 1 
(dark bars) and the percentage of Notch 1 processing (NICD) (lighter bars) after 5 μM exposure to A) saquinavir (SQV), B) 
indinavir (INV), C) nelfinavir (NFV), and D) ritonavir (RTV) for various lengths of time (1, 24, 48 and 96 h). E) quantitative real-
time PCR analyses of Notch 1 mRNA levels after exposure to saquinavir (S), indinavir (I), nelfinavir (N), or ritonavir (R) for 1 
or 48 h. No statistically significant differences were calculated by one way ANOVA. Graphs reflect results from three or more 
separate experiments.
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LY29004 to prevent downstream AKT-mediated phospho-
rylation of GSK3-β. Treatment with the PI3K inhibitor
blocked the increase in GSK3-β phosphorylation levels
observed after NFV exposure, but had no effect on total
GSK3-β (Figure 9B). Vitamin E, on the other hand, pre-
vented changes in total and phospho-GSK3-β upon expo-
sure to NFV, but alone had no effect on either total or
phospho-GSK3-β (Figure 9B). However, blocking GSK3-β
phosphorylation had no affect on Notch 4 expression or
processing induced by NFV (Figure 9C). These results
show that changes in Notch 4 processing upon exposure
to NFV are independent of GSK3-β phosphorylation, but
rather are related to NFV-induced ROS generation.

NFV induces the expression of NICD regulated proteins
Genes regulated by NICD include, among others, the
NFκB whose expression is induced by Notch [4,10,11].
Therefore, we assessed whether NFV affected the expres-
sion of NFκB, and other Notch targets [10,11]. NFκB pro-
tein expression was increased significantly (p < 0.01) after
6, 24 and 48 h NFV treatment, whereas, other PIs had no
significant effects (Figure 10A). Vitamin E pre-treatment
also blocked NFV-induced increases in NFκB. No changes
were observed in NFκB messenger RNA after 1, 24 or 48 h
NFV treatment (data not shown). After 48 h exposure to
NFV significant increases were detected in MMP2 (p <
0.01, Figure 10B), an NICD target regulated by NFκB.

HIV PIs do not affect APP expression in CECFigure 5
HIV PIs do not affect APP expression in CEC. A) Western analyses of the expression of total APP after 5 μM exposure 
to A) saquinavir (SQV), indinavir (INV), nelfinavir (NFV), and ritonavir (RTV) for various lengths of time (1, 24, 48 and 96 h). B) 
quantitative real-time PCR analyses of APP mRNA levels after exposure to saquinavir (S), indinavir (I), nelfinavir (N), or ritona-
vir (R) for 1 or 48 h. No statistically significant differences were calculated by one way ANOVA. Graphs reflect results from 
three or more separate experiments.
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MMP2 messenger RNA levels were increased after expo-
sure to NFV (1 h, p < 0.01, Figure 10C), whereas, other PIs
induced no changes in MMP2 messenger RNA. Although
Vitamin E alone had no effect on NFκB and MMP2, pre-
treatment with Vitamin E blocked NFV induced increases
in (Figure 10A–C).

Increased VEGF protein was detected 1 h post-NFV treat-
ment, but levels did not reach statistical significance (data
not shown). Levels of VEGF protein returned to baseline
after 24 and 48 h NFV exposure. No changes in VEGF mes-
senger RNA levels were detected (data not shown). Nei-
ther message nor protein levels of HES-1 (Figure 10D) and
HIF-1α were significantly affected by NFV (not shown).

The effects of NFV on Notch 4 expression and processing,
NICD nuclear localization, and the expression of proteins
related directly to Notch 4 signaling, are important for
angiogenesis, thus CEC exposed to NFV were assayed for
angiogenic capacity.

NFV does not significantly hinder CEC angiogenic capacity
The scratch assay is an in vitro model for mechanical
endothelial cell injury used to measure angiogenic capac-
ity, proliferation and migration post-scratch. After 48 h
treatments and scratch (0 h), CEC were allowed to recover
for 6 h to assess capacity of cells to migrate to fill the area
devoid of cells. After 6 h post-scratch recovery, untreated
control cells (p < 0.001), cells treated with NFV (p =
0.017), and VEGF (p < 0.0001) showed significant
decreases in the scratched area (Figure 11) indicating

HIV PIs affect Notch 4 protein expression and processing in CECFigure 6
HIV PIs affect Notch 4 protein expression and processing in CEC. Western analyses of the expression of total Notch 
4 (dark bars) (*p ≤ 0.002) and the percentage of Notch 4 processing (NICD) (lighter bars) after 5 μM exposure to A) saquina-
vir (SQV), B) indinavir (INV), C) nelfinavir (NFV) (*p ≤ 0.007), and D) ritonavir (RTV) (*p ≤ 0.001) for various lengths of time 
(1, 24, 48 and 96 h). E) quantitative real-time PCR analyses of Notch4 mRNA levels after exposure to saquinavir (S), indinavir 
(I), nelfinavir (N), or ritonavir (R) for 1 or 48 h. *p ≤ 0.001 by one way ANOVA with Dunnett's post hoc test when compared 
to untreated control. Graphs reflect results from three or more separate experiments.
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migration capacity. As expected, INV treatment inhibited
cell migration into the denuded area. Vitamin E pre-treat-
ment hindered the recovery of CEC treated with NFV,
although levels of recovery in the Vitamin E/NFV CEC still
reached significance (p < 0.01). Likewise, angiogenesis
was blocked in cells treated with the inhibitor of GSK3-β
phosphorylation with or without NFV (Figure 11), indi-
cating that blocking GSK3-β phosphorylation inhibits
angiogenesis in the presence or absence of NFV.

To further characterize these findings, CEC were plated
into reduced growth factor matri-gel matrix to measure
three angiogenically relevant parameters (Figure 12A):
ring formation, number of branches and extension
lengths. Although fewer, the number of rings formed in
NFV treated CEC were not significantly different from
untreated control (Figure 12B). Vitamin E with (p <
0.0001) or without NFV (p < 0.001) exposure signifi-
cantly blocked ring formation compared to control and
NFV (Figure 9B). The numbers of branch points observed
in NFV-treated CEC were not significantly different from

control (Figure 9C); whereas, Vitamin E-treated CEC dis-
played significantly fewer branches than untreated or NFV
treated (p < 0.0001, Figure 12C). Interestingly, in the pres-
ence of NFV, VE pre-treatment was unable to inhibit
branching with numbers observed reflecting those in
untreated or NFV-treated CEC (Figure 9C). The third
parameter measured by the matri-gel assay, extension
length indicated no significant differences between con-
trol and NFV, whereas, Vitamin E, and VE/NFV extensions
were significantly shorter (p < 0.01) (Figure 9D). INV sig-
nificantly blocked ring formation and branching, and
shortened extension lengths in CEC (data not shown).
Our results indicate that NFV does not affect negatively in
vitro cell migration, ring formation or branching of CEC.

Together, the results from our study show that HIV-PIs
induce ROS in CEC, but have no adverse affect on cell sur-
vival. PIs decrease total Notch 4 protein expression inde-
pendently of ROS generation. All PIs tested increase
Notch 4 processing with NFV and RTV inducing signifi-
cant increases in NICD. Vitamin E pre-treatment blocks
NFV-induced increases in NICD and phosphorylation of
GSK3-β, but blocking GSK3-β phosphorylation has no
effect on Notch 4 processing. It remains to be determined
whether the effects of NFV on GSK3-β play a role in GSK3-
β mediated NICD phosphorylation. SQV, NFV and RTV
significantly increase the percentage of cells with NICD
nuclear localization. NFV affects expression of NICD tar-
get genes and does not appear to inhibit significantly ang-
iogenesis. Our results reflect previous findings that
different PIs exert variable effects on cerebral endothelial
cells, the consequences of which may be important during
states of CNS inflammation during viral rebound or in
HIV encephalitis. Given the importance of Notch 4 sign-
aling in endothelial cell fitness and the crucial role of
proper CEC functioning in maintaining blood brain bar-
rier integrity, increased understanding of the interactions
among antiretroviral medications and these signaling
pathways is warranted.

Discussion
Even though human protease enzymes are dissimilar from
the HIV protease [26], inhibition of the human aspartic
protease by HIV PIs is one of the many unpredicted effects
reported [24-26]. In this regard, Notch is a substrate of the
aspartyl protease, γ-secretase, that processes NICD for
translocation to the nucleus. In the nucleus, NICD associ-
ates with the CSL family of DNA-binding proteins to form
transcription activator complexes that regulate the expres-
sion of, among others, NFκB and VEGF [14,15]. Moreo-
ver, HIV PIs, particularly NFV, are implicated in
disruption of the Notch pathway in the HIV-related neo-
plasm, Kaposi's sarcoma [7]. Recently, HIV protease
inhibitors SQV and INV have been shown to induce
regression of Kaposi's sarcoma [6,27]. Based on these

Effects of Vitamin E on PI-induced changes in Notch 4 expression and processingFigure 7
Effects of Vitamin E on PI-induced changes in Notch 
4 expression and processing. Western analyses of CEC 
exposed to 5 μM saquinavir (SQV), indinavir (INV), nelfinavir 
(NFV), and ritonavir (RTV) for 48 h with or without Vitamin 
E pre-treatment (VitE). A) Expression levels of total Notch 4, 
B) percentage of total Notch 4 processed to NICD. * p ≤ 
0.005 by one way ANOVA with Dunnett's post hoc test 
when compared to untreated control. Graphs reflect results 
from three separate experiments.
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findings, we originally predicted that Notch and APP
would be affected by HIV-PIs in a similar manner. Like-
wise, previous studies show that the mechanisms by
which the γ-secretase complex acts are common among
these substrates [28], and our immunological data indi-
cate substantial levels of APP, Notch 1 and Notch 4 pro-
teins in CEC. Our results show however, that HIV PIs
induce significant changes in only Notch 4. On the other
hand, because Notch 4 is expressed predominantly by
endothelial cells, [13,12], it stands to reason that this sub-
strate would be affected most dramatically.

Importantly, all PIs tested in our study induced similar
trends in the expression and processing of Notch 4, in that
all PIs induced ROS, decreased total Notch 4 protein, and
increased the percentage of Notch 4 that was processed to
NICD. Likewise, the effects of Vitamin E on CEC treated
with all PIs tested were similar. For example, Vitamin E
blocked the production of ROS, and prevented the
increased processing to NICD. Moreover, Vitamin E was
able to block partially the decreases in total Notch 4 pro-
tein observed after PI treatment. The contribution of ROS
to these changes may involve its capacity as an anti-oxi-
dant sensitive second messenger in response to growth
factor and cytokine stimuli [29]. In support of this possi-

Nelfinavir increases NICD nuclear localizationFigure 8
Nelfinavir increases NICD nuclear localization. CEC exposed to saquinavir (SQV), indinavir (INV), nelfinavir (NFV), and 
ritonavir (RTV) for 48 h were assessed for nuclear localization of NICD (green) and double labeled with actin (red). The per-
centage of cells positive for NICD nuclear localization was calculated by counting at least 10 random fields of view and at least 
200 cells per condition. 60× magnification. *p ≤ 0.001 by one way ANOVA with Dunnett's post hoc tests when compared to 
control. **p ≤ 0.001 by one way ANOVA with Tukey-Kramer post hoc tests when compared to NFV treated cells.
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bility, both the Notch pathway and ROS-induced changes
in GSK3-β signaling are linked tightly to endothelial cell
angiogenic capacity [22,30-33].

Conversely, neither Vitamin E pre-treatment nor blocking
GSK3-β phosphorylation significantly affected PI-induced
decreases in total Notch 4 protein expression, suggesting
that the overall decrease in total Notch 4 protein may
occur by the many post-transcriptional modifications
required prior to NICD processing and localization to the
nucleus. Possible contributors may include the compo-
nents of accessory proteins, ligands and proteases with
which Notch 4 must interact prior to NICD release [34].

These processes include ubiquitination, endocytosis and
conformational changes that permit cleavage of Notch to
NICD [34,35].

The effects of PIs on Notch 4 in CEC follow similar trends,
but the significance level of CEC response to PIs differs
depending on the PI used. From our studies it appears that
all PIs affect Notch 4, but that NFV induces the most sig-
nificant changes in Notch 4 that follow through to cause
increased NICD nuclear localization. Although numerous
studies, including findings from our group, clearly show
that different PIs have diverse effects on signaling in a
given cell type [27,30-32], mechanisms for PI-specific

NFV-induced changes in Notch 4 processing are independent of GSK3-β phosphorylation levelsFigure 9
NFV-induced changes in Notch 4 processing are independent of GSK3-β phosphorylation levels. Western analy-
ses of A) CEC exposed to NFV for varying lengths of time. Phosphorylated GSK3-β (dark bars) (*p ≤ 0.02) and total GSK3-β 
(lighter bars) (*p ≤ 0.002), B) phospho- and total GSK3-β in NFV-treated CEC in the presence of Vitamin E (VE) or the PI3K 
inhibitor, LY29004 (LY) and C) Total and Processed Notch 4 in NFV-treated CEC in the presence of Vitamin E (VE) or the 
PI3K inhibitor, LY29004 (LY), *p ≤ 0.05 by one way ANOVA with Dunnett's post hoc test when compared to untreated con-
trol. Graphs reflect results from three separate experiments.
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effects are largely unknown. Furthermore, many studies
showing that HIV-PIs alter signaling in non-cerebral
endothelial cells [5,6,8,9] address the effects of only one
or two PIs. Our findings show that all PIs effect Notch4 in
a similar manner, but that NFV induces much more signif-
icant changes than the other PIs tested. On the other
hand, studies addressing unintended effects of PIs on cell
signaling show consistently that different PIs induce vari-
able cellular responses [8,32,36].

Potential contributors to the differential effects of PIs on
signaling in CEC may involve PI-specific substrate activa-
tion of the P-glycoprotein or multi-drug resistance protein
since numerous studies show that PIs differ significantly

in their substrate affinity and in their ability to activate
these efflux transporters [37-39]. The involvement of this
mechanism is attractive because both P-glycoprotein and
multi-drug resistant protein are involved not only in
efflux-dependent signaling but also in numerous path-
ways that contribute to diverse efflux-independent
endothelial cell functions including caveolar-regulated
intracellular trafficking and NFκB activation, cell survival,
differentiation and proliferation [40]. In addition, the
serum protein binding capacity among HIV PIs differs sig-
nificantly and influences greatly their anti-viral activity
and uptake into CEC [36,41].

NFV induces the expression of NICD gene targets in CECFigure 10
NFV induces the expression of NICD gene targets in CEC. Western analyses of A) NFκB (*p ≤ 0.005, ** p ≤ 0.05) after 
6, 24 and 48 h exposure to 5 μM saquinavir (S), indinavir (I), nelfinavir (N), ritonavir (R), Vitamin E (VE), or VE/N, B) MMP2 (*p 
≤ 0.01) and D) HES-1 protein levels after 48 h exposure to 5 μM saquinavir (S), indinavir (I), nelfinavir (N), ritonavir (R), with 
and without vitamin E (VE) pre-treatment. P values determined by one way ANOVA with Dunnett's post hoc tests when com-
pared to control. Graphs reflect results from three or more separate experiments.
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Even though both NFV and RTV increased cellular NICD,
only NFV increased NICD nuclear localization. Although
the mechanism for this result is unclear, several potential
contributors exist. For example, the degree of Notch lig-
and expression also can interfere, by an unknown mecha-
nism, with NICD translocation to the nucleus [42]. In this
regard, our preliminary data (not shown) thus far, show
that HIV PIs do not affect the Notch 4 ligand, Delta 4, but
studies are currently underway addressing potential lig-
and contributions. Another possible contributor to the
observed PI-specific effects on Notch 4 may involve regu-
lation of components of the transcription factor complex
of CSL DNA-binding proteins. NICD has no intrinsic

DNA binding activity without physical binding to CSL
family of DNA-binding proteins [43] thus, NFV may pro-
mote NICD localization indirectly by affecting one or
more components of the transcription factor complex.
Studies by Pore et al., report that in response to hypoxia,
NFV induces HIF-1α, decreases VEGF and inhibits angio-
genesis in glioblastoma cells via the AKT pathway, but has
no effect on normal astrocytes [31] showing that the
effects of NFV are dependent on cell type and on other fac-
tors such as oxygenation levels. Results from our study
clearly show that Notch expression, processing, localiza-
tion and signaling are affected significantly by exposure to
certain HIV PIs by mechanisms involving ROS generation.

Scratch assay showing that NFV does not interfere with CEC migrationFigure 11
Scratch assay showing that NFV does not interfere with CEC migration. Panels show representative images of 
untreated CEC (C), or cells treated with Nelfinavir (NFV), Indinavir (INV), VEGF, vitamin E (VE) or LY29004 (LY). Top left 
panel (Con) shows a representative image of untreated CEC immediately post-scratch (0 h). All other panels show CEC 6 h 
post scratch. The graph represents results from measurements of the area of the scratch from at least 10 separate and random 
fields of view from three separate experiments. * p ≤ 0.017 by one way ANOVA with Dunnett's post hoc test when compared 
to untreated control. ** p < 0.001. Bar = μm
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Thus, further investigation into the membrane bound
forms of Notch and its association with accessory proteins
involved in proteolysis during cleavage is warranted. Such
studies will help to elucidate the point in the Notch 4 sig-
naling cascade that is affected by HIV PIs.

It is well established that some PIs such as INV and SQV
inhibit angiogenesis as illustrated in an HIV-related
Kaposi sarcoma mouse model [6], however the potency
and effects of different PIs on endothelial cell functioning
are quite variable [44]. In agreement with previous stud-
ies, our results showed that INV inhibited significantly
angiogenesis in parallel scratch and matri-gel assays. Pre-

treatment with Vitamin E also inhibited significantly CEC
migration into the wound area and blocked partially
migration of CEC exposed to NFV. Interestingly, in the
presence of both Vitamin E and NFV, ring formation and
the number of branch points observed increased from
Vitamin E treated cells alone. Thus, as reported by Navarra
et al., Vitamin E does not alter angiogenesis in the pres-
ence of angiogenic stimuli; however, results of our study
suggest that NFV may induce signaling in CEC sufficient
to allow some aspects of angiogenesis even in the presence
of Vitamin E [45]. Another recent study reported that a
combination of radiation and NFV in a xenograft mouse
model increases time to tumor re-growth compared to

NFV does not interfere with angiogenic capacity in CEC grown in a collagen matrixFigure 12
NFV does not interfere with angiogenic capacity in CEC grown in a collagen matrix. A) Representative image 
of untreated CEC in matrigel forming aring structure and branching. B-D) Results from Matrigel angiogenesis assay 
showing key elements of angiogenic behavior in CEC treated with Nelfinavir (NFV), vitamin E (VE), NFV/VE, or untreated con-
trol, B) Number of rings formed, *p ≤ 0.0001, C) Number of branch points, *p ≤ 0.0001, D) Extension lengths, *p ≤ 0.01. 
Results are from at least 10 separate fields of view in three separate experiments. P value was calculated by one way ANOVA 
with Dunnett's post hoc test when compared to untreated control.
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radiation alone. However, NFV alone had little effect on
tumorogenesis [7,30]. Together these results suggest that
NFV affects differently specific aspects of angiogenesis
such as migration, ring formation, and branching. Thus,
our results support the finding that NFV has effects on
angiogenesis different from other PIs tested.

Conclusion
Recent studies have shown that among the HIV PIs pre-
scribed currently, NFV- and INV-containing HAART regi-
mens significantly increased ROS and leukocyte
recruitment [5] that in turn increases the likelihood of
viral entry across the BBB into the CNS. However, NFV but
not INV, has been linked to both clinical findings of
increased incidence of cardiovascular [46] and endothe-
lial cell dysfunction [5]. Moreover, Notch 4-mediated sig-
naling plays a major role in endothelial cell growth,
differentiation and angiogenesis [11]. Notch signaling is
important in maintaining angiogenic properties of
endothelial cells [11,47], and studies have shown that
Notch in human neuroblastoma and neuronal cells is
increased during conditions of increased ROS generation
[48,49].

Although questions remain as to the specific mechanisms
responsible for decreased Notch 4 protein upon exposure
to PIs and NFV-specific increases in NICD nuclear locali-
zation, NFκB and MMP2 expression, our results showing
that NFV effects significantly Notch 4 expression, process-
ing and NICD localization in CEC are important to better
understand potential signaling alterations among compo-
nents of the cerebrovascular unit in HIV patients.
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