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Abstract

Defining appropriate policies for controlling the spread of fungal disease in agricultural landscapes requires appropriate
theoretical models. Most existing models for the fungicidal control of plant diseases do not explicitly include the dynamics
of the fungicide itself, nor do they consider the impact of infection occurring during the host growth phase. We introduce a
modelling framework for fungicide application that allows us to consider how ‘‘explicit’’ modelling of fungicide dynamics
affects the invasion and persistence of plant pathogens. Specifically, we show that ‘‘explicit’’ models exhibit bistability zones
for values of the basic reproductive number (R0) less than one within which the invasion and persistence threshold depends
on the initial infection levels. This is in contrast to classical models where invasion and persistence thresholds are solely
dependent on R0. In addition if initial infection occurs during the growth phase then an additional ‘‘invasion zone’’ can exist
for even smaller values of R0. Within this region the system will experience an epidemic that is not able to persist. We
further show that ideal fungicides with high levels of effectiveness, low rates of application and low rates of decay lead to
the existence of these bistability zones. The results are robust to the inclusion of demographic stochasticity.
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Introduction

Fungicide use is an essential aspect of disease management in

modern agriculture [1]. There are, however, increasing restrictions

upon the use of fungicides (and other forms of chemical control)

[2,3] and the trend is for reduced usage, to avoid undue release to

the environment or to minimise the risk of fungicide resistance.

Reduction in the availability and use of fungicides imposes greater

demands upon efficient use of the limited resources available. One

way to approach this is by the use of mathematical models to

investigate the effects of a given fungicide on the host crop and the

pathogen to aid the design of appropriate disease management

strategies [4–6]. The benefits of modelling diseases are well

acknowledged: it allows theoretical optimal control strategies to be

developed that minimise economic costs and maximise crop

returns [7–10], which can then be tested experimentally [11].

Furthermore the continued widespread use of fungicides is

threatened by the emergence of resistant pathogen strains, often

as a direct consequence of the application strategy itself [1,2,12]

and in order to implement effective resistance management

strategies it is often necessary to model those strategies first

[9,13–16].

Most models that include fungicides often account for fungicide

dynamics by simply modifying the parameters of the underlying

epidemiological models (i.e. reducing the infection rates and/or

increasing the host recovery rates) [9,14,17]. Much work has been

done to investigate the consequences of using different underlying

models for both the host population and pathogen dynamics (see

[6] for a review) but relatively little work has been carried out to

investigate the dynamics of the fungicides themselves and how the

timing of initial infection relative to host population growth affects

invasion and persistence in a chemically controlled system.

Generally, previous work has implicitly made one or more of

the following assumptions; that there is complete coverage by the

fungicide for either the entire host population or a fixed subset of

the host population [10,14,16,18,19]; that a generic, multi-

purpose, fungicide has been applied to the hosts (i.e. they have

not readily separated out the effects of different fungicide types

such as protectants, curatives or eradicants) [9,20,21]; or that the

fungicides are permanent (i.e. that the chemicals do not decay or

that their effects do not change over time) [18].

Here we propose a parsimonious model framework that is

designed to integrate epidemiological and fungicide dynamics.

Specifically we consider purely protectant fungicides, and we

distinguish the effects of the rate of application, the decay in

activity and the partial effectiveness of the fungicide on the

epidemic dynamics. We first use the framework to construct a

deterministic compartmental model that incorporates host growth

and explicitly allows for the dynamic application of a purely

protectant fungicide through the use of multiple susceptible host

classes. We compare this model with a conventional model that

implicitly incorporates the protectant fungicide dynamics through

modification of the underlying infection rates for a single

susceptible host class. For brevity, we refer to these two models

as the explicit and implicit models respectively. We then extend

the explicit model to include demographic stochasticity.
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Given that the application of fungicides is usually designed to

prevent invasion of a pathogen or to eliminate the pathogen, we

use the two models to ask the following questions:

N does the explicit inclusion of fungicide dynamics affect the

criteria for invasion and persistence?

N does the timing of initial infection affect the criteria for

invasion and persistence in a chemically controlled system?

N how are the differences manifested?

N does failure to account for fungicide dynamics lead to

erroneous predictions of control effectiveness in epidemiolog-

ical models?

N are there critical regions of parameter space concerned with

coverage, decay and effectiveness of fungicides for which these

differences are most exaggerated?

N are the differences maintained when allowance is made for

stochastic variability in the transmission of infection?

Methods

Deterministic Model Derivation
Consider a pathogen spreading through a population of hosts

such as a single field of a crop, in which the epidemiological host

unit is an amount of plant tissue i.e. a leaf, stem, or root [4] and

there is a simple density dependent growth of the host up to a

carrying capacity. In the absence of any form of chemical control

the population is divided into two classes, susceptible (ŜS) and

infected (ÎI ). We assume that infected host tissue consumes

resources but does not contribute to new host growth [22], that

infection is adequately described as a mass action process (this

assumption holds well for pathogens within areas smaller than

their average dispersal distance [23]) and that hosts cannot be re-

infected after they cease to be infectious, and are removed. We

investigate the effects of applying a purely protectant fungicide to

the system. Here we assume that a protectant fungicide affects

susceptible hosts, reducing their capacity to become infected.

We first consider a conventional model that only includes

implicit fungicide dynamics, we assume that all susceptible hosts

are protected. All factors affecting the effectiveness of the

protectant are subsumed into a single parameter (r) which

represents the average decrease in the infection rate for the host

population. The dynamics of this model are represented in Figure 1

and by the equations:

dŜS

d̂tt
~l̂lŜS 1{

ŜSzÎI

k̂k

 !
{

rb̂bŜSÎI

k̂k
, ð1Þ

dÎI

d̂tt
~

rb̂bŜSÎI

k̂k
{m̂mÎI : ð2Þ

Here, density dependent host growth is governed by the rate l̂l

and a carrying capacity k̂k. b̂b represents the infection rate in the

absence of chemical control. The parameter r (0ƒrƒ1) is a

measure of fungicide effectiveness. It reduces the infection rate and

represents the combined effects of the partial coverage, decay in

activity and incomplete effectiveness of the protectant fungicide

(possible expressions for r that reflect different combinations of

these effects are summarised in Table 1). Infected hosts are

removed at a per capita rate (m̂m).

We choose an expression for r that takes account of the

uninfected population being an aggregation of completely

unprotected and partially protected hosts. Given a protectant

application rate (p̂p) and a protectant decay rate (d̂d) the long term

Figure 1. Model transtion diagrams. (A) The conventional model
(the ‘implicit’ model) incorporates fungicide dynamics implicitly and
therefore assumes uniform, permanent coverage by the protectant. (B)
The model with explicit fungicide dynamics (the ‘explicit’ Model) allows
for partial coverage and decay in activity of the protectant as well as
different infection rates depending on whether the hosts have a
protectant fungicide applied or not. The variables and parameters are
explained in Table 2.
doi:10.1371/journal.pone.0040941.g001

Table 1. Expressions for r. Potential expressions for r, the reduction in infection rate in the implicit model, and their
interpretations in terms of assumptions made about the behaviour of the protectant.

Functional Form For r Interpretation

e 1. Complete coverage of hosts. 2. No decay of protectant. 3. Protectant is partially effective

1{p 1. Fixed proportion of hosts covered 2. No decay of protectant 3. Protectant is completely effective

dzep

dzp

� �
1. Fixed equilibrium proportion of hosts covered 2. Protectant is allowed to decay 3. Protectant is partially effective

doi:10.1371/journal.pone.0040941.t001
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proportions for unprotected and protected hosts are
d̂d

d̂dzp̂p
and

p̂p

d̂dzp̂p
respectively. In the absence of explicit treatment of fungicide

dynamics, we assume these proportions are maintained through-

out the infection process, and that the protected hosts are infected

at a reduced per capita rate (eb̂b, 0ƒeƒ1), where e is a measure of

the effectiveness the protectant fungicide (e~0 and e~1
correspond to completely effective and ineffective protectant

fungicides respectively). The total rate of infection is therefore

Infection rate of

unprotected proportion

� �
z

Infection rate of

protected proportion

� �

~b̂b
d̂d

d̂dzp̂p
ŜS

 !
ÎI

k
zeb̂b

p̂p

d̂dzp̂p
ŜS

� �
ÎI

k

~
d̂dzep̂p

d̂dzp̂p

 !
b̂bŜSÎI

k
:

As such we take r~
d̂dzep̂p

d̂dzp̂p
, which yields our conventional,

‘implicit’ model:

dŜS

d̂tt
~l̂lŜS 1{

ŜSzÎI

k̂k

 !
{

d̂dzep̂p

d̂dzp̂p

 !
b̂bŜSÎI

k̂k
, ð3Þ

dÎI

d̂tt
~

d̂dzep̂p

d̂dzp̂p

 !
b̂bŜSÎI

k̂k
{m̂mÎI : ð4Þ

In order to incorporate fungicide dynamics explicitly we

propose an alternative model with an additional protected host

class (P̂P). Here, the per capita protectant application rate (p̂p) and

the per capita protectant decay rate (d̂d) allow individuals to move

between the susceptible (ŜS) and protected (P̂P) states. The protected

state experiences reduced infection rates (eb̂b) whilst the unprotect-

ed susceptible state experiences normal infection rates (b̂b). New

host units are assumed to be unprotected which is consistent with a

non-systemic protectant fungicide. The dynamics of this model are

represented in Figure 1 and by the equations:

dŜS

d̂tt
~l̂l(ŜSzP̂P) 1{

ŜSzP̂PzÎI

k̂k

 !
{p̂pŜSzd̂dP̂P{

b̂bŜSÎI

k̂k
, ð5Þ

dP̂P

dt̂t
~p̂pŜS{d̂dP̂P{

eb̂bP̂PÎI

k̂k
, ð6Þ

dÎI

d̂tt
~

b̂bÎI(ŜSzeP̂P)

k̂k
{m̂mÎI : ð7Þ

Non-dimensionalisation. We introduce the dimensionless

variables

S~
ŜS

k̂k
, P~

P̂P

k̂k
, I~

ÎI

k̂k
, t~b̂b̂tt,

and parameters

l~
l̂l

b̂b
, p~

p̂p

b̂b
, d~

d̂d

b̂b
, m~

m̂m

b̂b
:

The conventional model equations (1) and (2) with implicit

fungicide dynamics become

dS

dt
~lS 1{(SzI)ð Þ{ dzep

dzp

� �
SI , ð8Þ

Implicit Model

dI

dt
~

dzep

dzp

� �
SI{mI , ð9Þ

and the alternative model equations (5), (6) and (7) with explicit

fungicide dynamics become

dS

dt
~l(SzP) 1{(SzPzI)ð Þ{pSzdP{SI , ð10Þ

dP

dt
~pS{dP{ePI , Explicit Model ð11Þ

dI

dt
~I(SzeP){mI : ð12Þ

Henceforth we refer to the conventional model as the implicit

model and the alternative model as the explicit model. The

parameters, their definitions, and typical values used for the

numerical simulations are summarised in Table 2. The default

values used hereafter are chosen primarily to highlight the

characteristic properties of the model system, however the

parameter ratios are consistent with those used in disease

management practices for both barley and wheat crops [24–27].

Stochastic Model
In order to demonstrate that existence of the bistability zone is

robust to demographic stochasticity and that it is not just a property

of the deterministic nature of the explicit model, a continuous-time

Markov process version of the explicit model is constructed.

Again ŜS, ÎI and P̂P represent the actual numbers of hosts in each

of the susceptible, infected and protected classes. Given a carrying

capacity, k̂k, the infinitesimal transition probabilities that describe

the Markov process are given in Table 3. For computational

efficiency a continuous-time Gillespie algorithm [28] is used to

generate the sequence of transition event times for each simulation

and thus obtain the trajectories for each class.

Modelling Fungicide Dynamics
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Results

Equilibrium Analyses
Both the implicit model and the explicit model have the same

basic reproductive number for the pathogen:

R0~
1

m

dzep

dzp

� �
, ð13Þ

with the disease free equilibria (S?:0,I?:0) and (S?:0,P?:0,I?:0)
for the models given by

(S?:0,I?:0)~(1,0) Implicit Model ð14Þ

(S?:0,P?:0,I?:0)~
d

dzp
,

p

dzp
,0

� �
Explicit Model ð15Þ

It is trivial to show that both disease free equilibria are stable for

R0v1 and unstable for R0w1. The implicit model only admits a

single endemic equilibrium (S?,I?), given by:

(S?,I?)~
1

R0
,

l

lzmR0

� �
1{

1

R0

� �� �
, ð16Þ

whereas the explicit model admits multiple endemic equilibria,

given by:

(S?,P?,I?)~ m
dzeI?

dzepzeI?

� �
,m

p

dzepzeI?

� �
,I?

� �
, ð17Þ

where I? is any root to the cubic equation:

e2 lz1ð ÞI3z

e( dzepð Þ lz2ð Þzl dzpð Þzel m{1ð Þ)I2z

( dzepð Þ2zl dzepð Þ pzd{eð Þ{el dzpð Þ 2m{1ð Þ)I{

l pzdð Þ( dzepð Þ{m dzpð Þ)~0,

ð18Þ

that satisfies I?[½0,1�.
It can be shown that the endemic equilibrium for the implicit

model is both biologically meaningful and stable only for R0w1.

This model gives rise to a classical epidemiological bifurcation

diagram (a graph of I? as a function of R0 showing a transcritical

bifurcation at R0~1) given by Figure 2 and we see a single

invasion threshold at R0~1 as expected.

Allowance for fungicide dynamics in the explicit model yields

zero, one, or two biologically realistic endemic equilibria

depending on the values of the model parameters e, p, d and l.

In the region where R0w1 there is only ever one single, stable,

endemic equilibrium. However, in the region where R0v1 the

other parameters affect the number of possible equilibria. Let

Table 2. Parameter Summary. Summary of dimensionless state variables, initial conditions, equilibria values and system
parameters for both the implicit and explicit models.

Variable Definition Description Default Value

S ŜSk̂k{1 Density of susceptible hosts -

P P̂Pk̂k{1 Density of protected hosts -

I ÎI k̂k{1 Density of infected hosts -

t b̂b̂tt Time -

S?:0 ŜS?:0k̂k{1 Disease free equilibrium density of susceptible hosts 0: _0009 _99

P?:0 P̂P?:0k̂k{1 Disease free equilibrium density of protected hosts 0: _9990 _00

S? ŜS?k̂k{1 Endemic equilibrium density of susceptible hosts varies

P? P̂P?k̂k{1 Endemic equilibrium density of protected hosts varies

I? ÎI?k̂k{1 Endemic Equilibrium density of infected hosts varies

S0 ŜS0k̂k{1 Initial density of susceptible hosts at infection varies

P0 P̂P0k̂k{1 Initial density of protected hosts at infection varies

I0 ÎI0k̂k{1 Initial density of infected hosts varies

l l̂lb̂b{1 Growth rate of hosts 0.5

m m̂mb̂b{1 Removal rate varies

p p̂pb̂b{1 Protectant application rate 0.1

d d̂db̂b{1 Protectant decay rate 0.001

e - Protectant effectiveness 0.1

r d̂dzep̂p

d̂dzp̂p

Reduction in infection rate (implicit model) 0.109

k̂k - Disease free carrying capacity 2000

R0 dzep

m dzpð Þ
Basic reproductive number varies

doi:10.1371/journal.pone.0040941.t002
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c~ lz1ð Þd2z l 1zeð Þz2eð Þpdze lzeð Þp2{ 1{eð Þelp: ð19Þ

If cw0 then there is no biologically meaningful (stable or

unstable) endemic equilibrium for R0v1. This again gives rise to a

classical epidemiological bifurcation diagram. If, however, cv0,

then a second threshold Rc exists and it is possible for the system to

have two endemic equilibria for R0 between Rc and 1 (Figure 2).

The lower branch of the endemic equilibrium curve is always

unstable and the upper branch stable [29]. It follows that failure to

account explicitly for fungicide dynamics can lead to an erroneous

understanding of the nature of the system. In particular, explicitly

accounting for fungicide dynamics means that for values of R0 less

than 1, it is still possible for infection to persist within the system.

The threshold c~0 can be interpreted as a surface in the

fungicide parameter (pde) space with l fixed (see Figure 3). Here

we note that if the fungicide parameters lie in the region below this

surface then the model exhibits bistability. The surface encloses

the region of fungicide parameter space near to the origin, i.e. low

values of the scaled parameters (p, d and e). It is a key result to note

that these values correspond to highly effective fungicides (low e),

with long lifespans (low d) that are applied infrequently (low p) and

so it follows that a move towards using fungicides with these

properties can have extremely undesirable consequences in terms

of effective control.

Invasion and Persistence Criteria
We now consider how invasion and persistence criteria depend

on the choice of model and on the host growth state of the system

at the time of initial infection. In particular we determine how

these criteria depend on both the basic reproductive ratio R0 and

the initial levels of infection (I0). Invasion is related to the

immediate behaviour of the system, and a pathogen is considered

to have invaded if there is an immediate increase in the initial

Table 3. Transition Probabilities. Infinitesimal transition probabilities for the stochastic Markov process version of the explicit
model.

Transition Event Infinitesimal Transition Probability

Net Birth

l ŜSzP̂P
� �

1{
ŜSzP̂PzÎI
� �

k̂k

0
@

1
ADt

Susceptible Infection ŜSÎI

k̂k
Dt

Protected Infection eP̂PÎI

k̂k
Dt

Protectant Application pŜSDt

Protectant Decay dP̂PDt

Removal mÎIDt

No Event Happens

1{ l ŜSzP̂P
� �

1{
ŜSzP̂PzÎI
� �

k̂k

0
@

1
Az

ŜSzeP̂P
� �

ÎI

k̂k
zpŜSzdP̂PzmÎI

2
4

3
5Dt

doi:10.1371/journal.pone.0040941.t003

Figure 2. Model bifurcation diagrams. Bifurcation diagrams for the
implicit and explicit models showing the effect of explicitly including
fungicide dynamics on the endemic equilibria of the system. (A) The
implicit model only admits bifurcation diagrams with a single invasion
threshold at R0~1. (B) The explicit model can additionally admit a
bistable invasion zone. Within this zone invasion depends upon the
initial level of infection (I0). The default parameters used for these plots
are given in Table 2.
doi:10.1371/journal.pone.0040941.g002

Figure 3. Critical fungicide properties required for bifurcation.
A contour plot for critical fungicide properties (efficacy, application rate
and decay rate) that defines the region where there is a bistable
invasion zone. For values of p, d and e that lie within this region, the
system exhibits a backwards bifurcation and a pathogen is able to
invade and persist for values of R0v1. For parameter values outside
this region the system exhibits a traditional bifurcation diagram and a
pathogen is only able to invade for R0w1. Inset is a 3D perspective plot
of the same surface. For these plots the growth rate of the host, l~0:5.
doi:10.1371/journal.pone.0040941.g003
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levels of infection. Persistence is related to the long term behaviour

of the system, and a pathogen is considered to persist if the

infection levels reach stable endemic equilibrium values.

Disease Free Host Growth. In the absence of infection the

implicit and explicit models become

dS

dt
~lS 1{Sð Þ: Implicit Model ð20Þ

dS

dt
~l(SzP) 1{(SzP)ð Þ{pSzdP,

Explicit Model ð21Þ

dP

dt
~pS{dP:

Both models assume the same logistic growth of uninfected hosts

up to a disease free equilibrium carrying capacity. However for the

explicit model the relative levels of susceptible and protected hosts

will vary during this growth phase (see Figure 4). Analytic solutions

exist to both of these sets of equations.

Infection Choice. For each value of I0 we must choose which

uninfected hosts become infected. For the implicit model there is a

single uninfected class and so the initial infected individuals must

come from this class. If, prior to infection, the system has Si

susceptible individuals, where 0vSiv1 then immediately post

infection the system must be in the state:

(S0,I0)~(Si{I0,I0) 0ƒI0ƒSi ð22Þ

For the explicit model, with two uninfected classes, a choice is

required. We assume that the proportion of I0 that comes from

each uninfected class is proportional to their relative susceptibil-

ities (i.e. more initial infections come from the susceptible class

than the protected class) and their relative densities. i.e. If, prior to

infection, the system is in state (Si,Pi,0) and immediately post

infection the system is in state (S0,P0,I0) then

proportion of I0 from susceptible class ~ Si{S0 ! 1|Si

proportion of I0 from protected class ~ Pi{P0 ! e|Pi

Consequently, for an initial level of infection, I0, the initial post

infection state (S0,P0,I0) is given by:

S0~
Si 1{

I0

SizePi

� �
0ƒI0ƒSizePi

0 SizePivI0vSizPi

8<
: ð23Þ

P0~
Pi 1{

eI0

SizePi

� �
0ƒI0ƒSizePi

SizPi{I0 SizePivI0vSizPi

8<
: ð24Þ

This gives us a method for moving from a pre-infection system

state (Si,0) or (Si,Pi,0) to an initial post-infection state (S0,I0) or

(S0,P0,I0) for the implicit and explicit models respectively.

Invasion and Persistence Thresholds. For a pathogen to

invade we require that the level of infection increases immediately

from the post-infection system state. For the implicit model this

requires

dI

dt
DD
D
I0

w0 [ I0(rS0{m)w0: ð25Þ

We use the relationship between pre-infection levels and post-

infection levels to create a threshold in R0{I0 parameter space for

each pre-infection susceptible host level Si. The threshold is given

by:

I0~Si{
1

R0
ð26Þ

This reduces to the classic invasion threshold if Si is taken to be

the disease free equilibrium level S?:0~1. However for the

explicit model we require:

dI

dt
DD
D
I0

w0 [ I0 (S0zeP0){mð Þw0: ð27Þ

This gives the following threshold in (R0{I0) parameter space

for each pre-infection host state (Si,Pi):

I0~

SizePið Þ2

Size2Pið Þ 1{
S?:0zeP?:0

SizePi

� �
1

R0

� �
0ƒI0ƒSizePi

SizePið Þ 1{
S?:0zeP?:0

SizePi

� �
1

R0

� �
SizePivI0vSizPi

8>>>><
>>>>:

ð28Þ

In the absence of analytical tractability persistence thresholds

for the two models were determined numerically for a range of

Figure 4. Disease-free growth dynamics. (A) A state space plot of
the relative densities of susceptible (S) and protected (P) hosts during
the disease free growth period for the explicit and implicit models. The
points Eex and Eim correspond to the disease-free equilibrium (DFEQ)
densities for the explicit and implicit models respectively, and the
points Gex and Gim correspond to non-equilibrium densities (i.e.
densities during the growth stage) of the disease-free states of the
explicit and implicit models. (B) The equivalent plot of the densities of
susceptible and protected hosts against time for the explicit model
along with the equivalent growth curve of susceptible host density for
the implicit model. The parameter values used here are given in Table 2.
doi:10.1371/journal.pone.0040941.g004
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pre-infection states. The parameter values used for the numerical

calculation are summarised in Table 2.

Using the results from the growth curves in section 0 and

Figure 4 we illustrate how both the invasion and persistence

thresholds depend upon the inclusion of fungicide dynamics for

two distinct pre-infection states: the disease free equilibrium (points

Eex and Eim in Figure 4) and a pre-infection state during where the

uninfected hosts are still growing (points Gex and Gim in Figure 4).

The thresholds obtained are shown in Figure 5. We conclude that

the explicit inclusion of fungicide dynamics leads to a zone of

bistability for values of R0 less than 1, and that this zone is not

simply an artefact of the equilibrium analysis but is robust to the

system’s transient dynamics. Furthermore we show that for pre-

infection states where the host population is still growing the zone

of bistability is extended and lower initial levels of infected hosts

(I0) are able to invade and persist within the same range of R0

values. In addition an extra invasion zone now exists for a range of

values of R0 below 1. Within this invasion zone, a pathogen is able

to invade but not persist (see Figure 5).

Deterministic Realisations. Invasion trajectories for both

models are shown in Figure 6. For initial conditions at point A

(R0~0:4, I0~0:06), a value of R0 is chosen so that RivR0vRc

for the explicit model lies within the invasion zone for a pre-

infection state with growing hosts. By considering the trajectories

that result from this point it can clearly be seen that for the implicit

model the choice of pre-infection state affects the pathogen’s

ability to invade. For initial conditions at points B (R0~0:8,

I0~0:06) and C (R0~0:8, I0~0:05), a value of R0 is chosen so

that RcvR0v1 for the explicit model parameters. By considering

the trajectories that result from these two points it can clearly be

seen that for the implicit model the choice of initial infection level

does not affect the ability of the pathogen to persist, whereas for

the explicit model the initial infection level does affect the ability of

the pathogen to persist. For initial conditions at point D (R0~1:8,

I0~0:05) we can see that both models predict invasion for R0w1,

but that they do not agree on the final endemic level of infection,

with the explicit model predicting higher levels.

Stochastic Realisations. Using a nominal carrying capacity

of 2000 (k̂k~2000), 5000 simulations are performed for every

initial condition in the I0{R0 parameter space (I0[ 0,0:01, . . . ,1½ �,
R0[ 0,0:05, . . . ,2:50½ �, starting from a disease-free equilibrium level

of uninfected hosts only) and the proportion of simulations that

result in pathogen persistence is recorded and shown in Figure 7.

The bistability zone still exists when allowance is made for

demographic stochasticity. Figure 8 shows probability density plots

obtained from the 5000 simulations for the initial conditions

corresponding to points B (I0~0:06, R0~0:8), C (I0~0:05,

R0~0:8) and D (I0~0:05, R0~1:8). It can be seen that for a

stochastic framework, starting at initial conditions near to the

deterministic threshold, individual trajectories may tend towards

either equilibrium (endemic or disease free) regardless of whether

the initial condition is above or below the deterministic persistence

threshold and so we see distinctly bimodal probability density

functions as a result. This is due to demographic stochastic effects

allowing individual trajectories to enter different basins of

attraction and so tend towards either equilibrium. Crucially, this

means that by creating a stochastic version of the explicit model

we have shown that not only is the bistability zone still present but

the range of initial infection levels that can lead to persistence is

extended. The robustness of the effects was tested for a range of

population sizes (k̂k[ 200, . . . ,20000½ �) and shown to be sustained.

Discussion

In this paper we develop a simple model to investigate the

effects of fungicide dynamics on pathogen invasion and persis-

tence. Specifically we incorporate protectant fungicide dynamics

into a conventional model in a way that separates out the effects of

partial coverage, incomplete effectiveness and decay in activity of a

protectant fungicide to create an alternative model that takes

Figure 5. Invasion and persistence plots. Here we show the effects of R0 and initial level of infection at invasion (I0) on invasion and persistence
of the pathogen. (A) Pathogen invades system at disease free equilibrium (points Eex and Eim in Figure 4): for given R0 and I0 values the plot shows
the long-term behaviour of both models in terms of the ability of a pathogen to invade and persist. For the implicit model R0 completely
characterises the long-term behaviour of the system (with R0~1 being the threshold). For the explicit model, the ability of a pathogen to invade and
persist is also determined by initial level of infection, I0 , for a range of R0 values (RcvR0v1). (B) Pathogen invades system during growth phase
(points Gex and Gim in Figure 4): For the implicit model R0 still completely characterises the long-term behaviour of the system. For the explicit model
the bistability zone is extended and lower initial levels of infected hosts (I0) are able to invade and persist within the same range of R0 values
(RcvR0v1). In addition, an extra invasion zone now exists for a range of values of R0 (RivR0v1) where here RivRc. Within this zone the
pathogen is able to invade but is not able to persist. Initial conditions for selected numerical simulations are shown. A:(R0~0:4, I0~0:06) is within
the invasion zone for the explicit model starting during the growth phase. B:(R0~0:8, I0~0:06) is just above the invasion and persistence threshold
for the explicit model staring from the disease free equilibrium. C:(R0~0:8, I0~0:05) is just below the same threshold. D:(R0~1:8, I0~0:05) is
significantly above the invasion and persistence thresholds for both models. The default parameter values are given in Table 2.
doi:10.1371/journal.pone.0040941.g005
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explicit account of the fungicide dynamics. Previous work has

utilised simple models of fungicide application to investigate a

number of issues e.g. fungicide resistance [9,13,19,30] and optimal

control strategies [8–10], but the models used have not incorpo-

rated explicit fungicide dynamics (as the convention is to take

implicit account of fungicide dynamics by mapping the effect onto

the transmission rate).

The allowance for explicit fungicide dynamics markedly

changes the inferences on both the invasion and persistence of

the pathogen. Both frameworks appear superficially to have the

same epidemiological properties and thresholds (R0 is identical for

both) but the explicit model exhibits a bistability zone for values of

R0 less than 1, a range that the implicit model considers

completely safe from invasion. Previous work on human and

animal vaccination models [29,31], re-infection models [32] and

models of sexually transmitted diseases (with high and low

transmissibility groups) [33] have exhibited similar bistability

properties, but this is the first time that this property has been

demonstrated for chemical control in agricultural systems. In

addition previous epidemiological research has only considered

the existence of a bistability zone for pathogens invading a system

already at equilibrium. The extension of this result to systems

where a pathogen invades a growing host state is a novel result

with some striking repercussions. Not only does the inclusion of

fungicide dynamics affect the criteria for invasion and persistence,

(increasing the risk of a pathogen successfully invading and

persisting) when compared with models that only implicitly include

fungicide dynamics, but if the initial infection occurs at a time

before the host population has reached its equilibrium state then

this risk is exacerbated. Now it is even more likely that a pathogen

will be able to invade and persist, and also there is an opportunity

for a pathogen to simply invade in the short term, causing an early

epidemic before eventually dying out.

The existence of both a bistability zone and an invasion zone

below the traditionally accepted invasion threshold has several

important implications both in the use of models to guide disease

control, and in the selection of fungicide traits to promote effective

disease control. Firstly, for a non-negligible, initial level of

infection, a pathogen may be able to invade a system with a

fungicidal control regime that an implicit model would predict to

be adequate. For example, protectant application rates, fungicide

efficacies and fungicide activity decay rates may be chosen to

reduce the R0 value of the system below 1 yet unknowingly still

remain above the critical thresholds R0~Rc, or R0~Ri. The

system lies either in the bistability zone and is at risk from invasion

by a high enough level of initial infection or it lies in the invasion

zone and is at risk from an invasion during the host growth phase.

The second implication is that for values of R0 just above 1, the

two models predict very different endemic levels of infection; for

the implicit model, having an R0 value just above 1 would always

result in an invading pathogen achieving a negligible endemic

equilibrium (see Figure 2) whereas for the explicit model an

equivalent R0 value will always lead to a much higher endemic

equilibrium (see Figure 2). Consequently it would be possible for a

system to experience sudden large invasions from small initial

infections as a result of a small change in value of R0 (from just

Figure 6. Deterministic realisations for the implicit and explicit
models. These plots correspond to the initial conditions in the I0-R0

parameter space shown in Figure 5. (A) For a trajectory starting at point
A (R0~0:4, I0~0:06) both models predict the long term extinction of
the pathogen but the explicit model predicts invasion of the pathogen
for a pre-infection state given by point Gex in Figure 4. (B) For a
trajectory starting at point B (R0~0:8, I0~0:06) the implicit model
predicts extinction, whereas the explicit model predicts persistence of
the pathogen for both pre-infection states. (C) Both models predict the
extinction of the pathogen for a system at disease-free equilibrium but
the explicit model predicts the long-term persistence of the pathogen
for a pre-infection state given by point Gex in Figure 4. (D) Both models
predict the persistence of the pathogen sarting from point D (R0~1:8,
I0~0:05), regardless of the pre-infection state. The default parameter
values are given in Table 2.
doi:10.1371/journal.pone.0040941.g006

Figure 7. Persistence plot for the stochastic version of the
explicit model. For given R0 and I0 values, the plot shows the
proportion of stochastic simulations that resulted in pathogen invasion
and persistence (500 simulations per point). It can be seen that
persistence is still determined by I0 for a range of R0 values
(RcvR0v1) and furthermore that simulations with initial conditions
below the deterministic threshold are still able to persist (see inset).
Initial conditions for selected numerical simulations are shown.
A:(R0~0:8, I0~0:06) is just above the deterministic invasion and
persistence threshold for the explicit model. B:(R0~0:8, I0~0:05) is just
below the same threshold. C:(R0~1:8, I0~0:05) is significantly above
the invasion and persistence thresholds for both models. The default
parameter values are given in Table 2.
doi:10.1371/journal.pone.0040941.g007
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below 1 to just above 1). Finally, in order to control an existing

outbreak, it is necessary to reduce R0 not just to below 1 but to

below the critical threshold value Rc. The predicted effort required

to eliminate an established pathogen from a system therefore

depends on the choice of model. A model without explicit

fungicide dynamics will underestimate the effort required and

consequently allow the pathogen to persist.

Of particular concern for disease management strategies is the

drive in the agrochemical industry to produce longer lasting, more

effective fungicides, which necessitate lower application rates.

These aspirational fungicide properties are exactly those that

correspond to the parameter region for the explicit model in which

bistability zones occur (Figure 3).

A continuous-time, Markov process version of the explicit

model is constructed and used to demonstrate that the bistability

result is not just a property of the deterministic models. The

simulations show that the probability distributions for the

stochastic model exhibit bimodal behaviour in the region of

bistability, with one mode at the endemic equilibrium and one at

the disease free equilibrium. It is clear that the effects of fungicide

dynamics on invasion and persistence criteria are still maintained

when allowance is made for stochastic variability in the various

transmission processes.

Taking all of this into account it is reasonable to conclude that

failure to account for fungicide dynamics naturally leads to

erroneous predictions of control effectiveness.
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Figure 8. Probability density plots from the stochastic model. Here we show 5000 stochastic realisations of the explicit model that
correspond to the initial condition points in the I0-R0 parameter space shown in Figure 7. Here the host carrying capacity, k̂k is 2000. The left hand

figures show the probability density plots for all classes with initial conditions given by Point A (ÎI0~120, R0~0:8) i.e. just above the deterministic

invasion threshold, the middle column shows the probability density plots for Point B (ÎI0~100, R0~0:8), just below the invasion threshold, and the

right hand column shows the probability density plots for Point C (ÎI0~100, R0~1:8), which is significantly above the invasion threshold. The
deterministic trajectory for the corresponding class and initial condition is overlaid on each plot. The numbers within each plot indicate the
proportion of realisations that reach those final distinct host levels. Note that the density scale is non-linear. The default parameter values are given in
Table 2.
doi:10.1371/journal.pone.0040941.g008
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