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This paper investigates the acoustic superradiance of the density and phase fluctuations from the single vortex 
state of a Bose-Einstein condensate, by employing full time-domain and asymptotic frequency domain numerical 
calculations. The draining bathtub model of an incompressible barotropic fluid is adopted to describe the 
vortex. The propagation of the axisymmetric density and phase fluctuations in the condensate are governed 
by the massless scalar Klein-Gordon wave equation, which establishes the rotating black-hole analogy. Hence, 
the amplified scattering of these fluctuations from the vortex comprise the superradiance effect. A particular 
coordinate transformation is applied to reveal the event horizon and the ergosphere termwise in the metric and 
the respective asymptotic spectral solutions. A comparative analysis of the time domain and asymptotic frequency 
domain results are given for a range of rotational speed of the vortex and the frequency of the impinging 
fluctuations. The agreement at low rotational speeds of the vortex is shown to be very good, which starts to 
deteriorate at higher rotational speeds due to increasing constraint violations of the time-domain calculations. 
We further demonstrate an asymptotic upper bound for the superradiance as a function of vortex rotational 
speed, provided that the vortex remains stable.
1. Introduction

Analogies in physics enable us to observe a particular phenomenon 
with the same characteristic features in different systems pertaining to 
disparate mechanisms and space-time-energy scales. A particular exam-
ple is the analogy between a cosmic black hole and the microscopic vor-
tex state of a Bose-Einstein condensate, which casts the superradiance 
phenomenon of scalar waves from the black hole to the superradiance of 
acoustic waves from the liquid vortex. Superradiance allows for energy 
and angular momentum to be extracted from the vacuum, which coin-
cides with the initial wave to have a reflection coefficient greater than 
one. Superradiance phenomena in rotating black holes first discovered 
by Zel’dovich in 1971 [1]. He showed that the amplifications occurs at 
the level of event horizon when a certain condition is met. In addition, 
the phenomena rely on the rotating black hole, described by the Kerr 
metric, which exhibits two key features; event horizon, described as null 
surface which acts as a one-way membrane and the ergoregion, station-
ary limit surface [2]. Since observing a cosmic scale superradiance is 
not a feasible option [3], we currently rely on analogous systems that 
can be realized at the laboratory scale. In this case a 2 + 1 space-time 
geometry Kerr black hole [4, 5, 6].
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The analogy was initiated by Unruh’s calculations [7], who showed 
the equivalence between the background solution of velocity pertur-
bations on a perfect barotropic, irrotational Newtonian fluid and the 
Klein-Gordon field propagating in a 4-dimensional pseudo-Riemannian 
manifold, in which the speed of sound plays the role of speed of light. 
Because superradiance phenomenon occurs in the space-time back-
ground of rotating black holes, the analogy could be set for a rotating 
acoustic black-hole in a liquid [8, 9, 10, 11, 12]. Thus far, theoretical 
and computational investigation of the analogue superradiance have 
been reported for liquid systems [13, 14], relativistic fluids [15], shal-
low water systems [16] and optic systems [17, 18, 19, 20]. Within the 
context of BEC, superradiance stemming from the coherent light mat-
ter interaction [21, 22], as an analogue to the Dicke effect [23] and the 
amplification of matter waves as a manifestation of Raman superradi-
ant scattering were also reported theoretically [24]. In addition, various 
physical phenomena such as black hole lasers have been adapted to ana-
logue black hole systems [25, 26].

The experimental studies for that purpose emerged only within the 
last few years. Experimental realizations of horizons were reported in 
water channels [27], atomic Bose-Einstein condensates (BECs) [28]. 
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Recently, rotational superradiant scattering in a water vortex flow is 
reported [29, 30]. Acoustic black hole in a needle-shaped BEC of 87Rb 
is realized and recently spontaneous Hawking radiation, stimulated by 
quantum vacuum fluctuations, emanating from an analogue black hole 
in an atomic Bose-Einstein condensate is reported [31, 32, 33].

In the perspective of the existing literature, different studies provide 
theoretical models to study the superradiance in the time domain and in 
the frequency domain. The methodology for the time domain solution 
is described for the Kerr black holes [34] and charged black holes [35]
and modified for the draining-tub model of an acoustic black hole in ir-
rotational, barotropic and incompressible fluid systems [36, 37]. While 
in the frequency domain, the superradiance is mainly analyzed at the 
asymptotic with an appropriate coordinate transformation [13, 14, 38]. 
The present work aims to contribute in two aspects: Providing a consol-
idating study of the temporal and spatial features of the scattering from 
a BEC vortex with constant background density and characterization of 
the superradiance as a function of the rotational speed of the vortex. 
We primarily adopt the draining bathtub model (DBT) introduced by 
Visser [11], to describe the acoustic black-hole in BEC vortex flow. The 
time domain solutions are obtained by solving the Klein-Gordon equa-
tion for the propagation of acoustic waves, whereas the spectral analysis 
of the superradiance is conducted by asymptotic solutions of the waves 
at the event horizon and the spatial infinity. The time-domain solu-
tions are obtained by implementing the numerical techniques described 
mainly in Refs. [34, 37, 39]. Complementary to the cited works above, 
our study demonstrates very good agreement between the full time-
domain and asymptotic frequency domain solutions and reveal novel 
spectral features within the DBT model. In particular, an asymptotic 
upper bound for the maximum reflection coefficient with respect to 
rotational speed of the vortex is obtained. The paper is organized as fol-
lows: Section 2 describes briefly the BEC system and gives a theoretical 
formulation leading to the main (Klein-Gordon) equation. Section 2.2
and 3 are devoted to the implementation and computation of the time-
domain solutions. Section 3.1 presents the asymptotic solutions in the 
frequency domain. The last section discusses the main results and con-
cludes the paper.

2. Model

We begin by a brief description of the Bose-Einstein condensate as 
the physical system of interest. A quantum system of 𝑁 interacting 
bosons in which most of the bosons occupy the same single particle 
quantum state, the system can be described by a Hamiltonian of the 
form;

𝐻 = ∫ 𝑑𝑥Ψ̂†(𝑡, 𝑥)
[
− ℏ2

2𝑚
∇2 + 𝑉𝑒𝑥𝑡(𝑥)

]
Ψ̂(𝑡, 𝑥)

+ 1
2 ∫ 𝑑𝑥𝑑𝑥′Ψ̂†(𝑡, 𝑥)Ψ̂†(𝑡, 𝑥′)𝑉 (𝑥− 𝑥′)Ψ̂(𝑡, 𝑥′)Ψ̂(𝑡, 𝑥). (1)

Here 𝑉𝑒𝑥𝑡 is an external potential, 𝑉 (𝑥 − 𝑥′) is the interatomic two-body 
potential, 𝑚 is the mass of the bosons and Ψ̂†(𝑡, 𝑥) is the boson field 
operator which includes the classical contribution 𝜓(𝑡, 𝑥) plus excita-

tions �̂�, where 𝜓(𝑡, 𝑥) ≡ ⟨
Ψ̂†(𝑡, 𝑥)

⟩
known as the wave function of the 

Bose-Einstein condensate.
In the non relativistic limit, most of the atoms occupy the ground 

state and the classical wave function, 𝜓(𝑡, 𝑥) describes the system. 
The interatomic interaction is taken as 𝑉 (𝑥 − 𝑥′) = 𝑈0𝛿(𝑥 − 𝑥0), 𝑈0 =
4𝑎𝜋ℏ2∕𝑚, where the constant 𝑎 is the scattering length constant. Closed-
form equation for weakly interacting bosons, with the potential defined 
above leads to the time dependent Gross-Pitaevskii (GP) equation:

𝑖ℏ
𝜕𝜓

𝜕𝑡
=
(
− ℏ2

2𝑚
∇2 + 𝑉𝑒𝑥𝑡 +𝑈0 |𝜓|2)𝜓(𝑟, 𝑡). (2)

Here in hydrodynamic form the wave function can be written in terms 
of its magnitude and phase:
2

𝜓(𝑟, 𝑡) =
√

𝜌𝑒𝑖𝑆 . (3)

Then, the density of particles is given by 𝜌(𝑡, 𝑟) = |𝜓(𝑡, 𝑟)|2 and the back-
ground fluid velocity is defined as �⃗� = (ℏ∕𝑚)∇𝑆. A general review on 
BEC formulation can be found in [40, 41].

The Draining Bathtub Model introduced by Visser et al. [11] de-
scribes the single vortex state of the BEC, where the fluid velocity has 
tangential and radial components,

�⃗� = 𝜐�̂� + 𝜐�̂� =
−𝐴

𝑟
�̂�+ 𝐵

𝑟
�̂� (4)

with 𝐴 and 𝐵 are constants to be determined.
The density and phase fluctuations are introduced respectively as 

𝜌 = 𝜌0 +𝜌1 and 𝑆 = 𝑆0 +𝑆1, where 𝜌0 and 𝑆0 define the background. For 
small fluctuations, the GP equation can be linearized perturbatively, 
leading to the propagation equations of the fluctuations as follows:

𝜕𝜌1
𝜕𝑡

+ ℏ

𝑚
∇ ⋅ (𝜌0∇𝑆1) + ∇ ⋅ (𝜌1𝜐) = 0, (5)

𝜕𝑡𝑆1 = −𝜐 ⋅∇𝑆1 −
𝑈0
ℏ

𝜌1 +
ℏ

2𝑚
𝐷2𝜌1, (6)

where 𝐷2𝜌1 is given by

𝐷2𝜌1 =
1

2
√

𝜌0
∇2 𝜌1√

𝜌0
−

𝜌1

2𝜌3∕20

∇2√𝜌0. (7)

In the equation above Eq. (6), the pressure term 𝑈0𝜌1 is of the order 
𝑈0𝜌∕𝑅 while the quantum pressure term ℏ

2

2𝑚𝐷2𝜌1 is of the order ℏ2∕𝑚𝑅3, 
where 𝑅 is the spatial scale [42]. This implies that for

𝑅>>
ℏ√

2𝑚𝑈0𝜌
≡ 𝜉 (8)

the last term on the right-hand side of Eq. (6), is negligibly small. 
The right side of equation 8 thus introduces a characteristic length 
scale, known as the healing length. In the hydrodynamic approxima-
tion, equations (5) and (6) are combined to yield

𝜕

𝜕𝑡

[
𝜌0

𝑐2

(
𝜕𝑆1
𝜕𝑡

+ �⃗� ⋅∇𝑆1

])
−∇ ⋅

(
𝜌0∇𝑆1

)
+∇ ⋅

[
𝜌0

𝑐2

(
𝜕𝑆1
𝜕𝑡

+ �⃗� ⋅∇𝑆1

)]
= 0

(9)

where the speed of sound is defined by 𝑐 =
√

𝜌𝑈0∕𝑚. For a constant 
background density profile, the speed of sound, 𝑐, is constant. Equation 
(9) then becomes equivalent to the massless Klein Gordon equation, 
describing the propagation of linear density and phase fluctuations in 
the axially symmetric 2 + 1 space-time. The metric associated with this 
space-time will be

𝑑𝑠2 =
𝜌0
𝑐

[
−(𝑐2 − 𝐴2 +𝐵2

𝑟2
)𝑑𝑡2 + 2𝐴

𝑟
𝑑𝑡𝑑𝑟− 2𝐵𝑑𝑡𝑑𝜙+ 𝑑𝑟2 + 𝑟2𝑑𝜙2 + 𝑑𝑧2

]
.

(10)

2.1. Coordinate transformations

The coordinate transformation given below is particularly useful to 
minimize the number of off-diagonal components of the metric, leaving 
only one.

𝑑𝑡 = 𝑑𝑡∗ − 𝑔𝑑𝑟 𝑑𝜙 = 𝑑𝜙∗ − ℎ𝑑𝑟 𝑟 = 𝑟∗ 𝑧 = 𝑧∗, (11)

where ℎ = −(𝐴𝐵)∕(𝑟(𝐴2 − 𝑐2𝑟2)) and 𝑔 = −(𝐴𝑟)∕(𝐴2 − 𝑐2𝑟2). We drop the 
*-superscript in the following part of the formulation. The line equation 
takes the form

𝑑𝑠2 =
𝜌0
𝑐

[
−
(
1 − 𝐴2 +𝐵2

𝑐2𝑟2

)
𝑑𝑡2 +

(
1 − 𝐴2

𝑐2𝑟2

)−1
𝑑𝑟2 − 2𝐵𝑑𝜙𝑑𝑡

𝑐

+ 𝑟2𝑑𝜙2 + 𝑑𝑧2

]
. (12)
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The event horizon and the ergosphere can be identified termwise in 
the metric now. For a stationary and axisymmetric spacetime metric, 
the radius of the ergosphere is given by the vanishing of 𝑔00 and the 
coordinate singularity of the metric signifies the event horizon. From 
Eq. (12), they read as

𝑟𝑒𝑣𝑒𝑛𝑡 =𝐴∕𝑐, 𝑟𝑒𝑟𝑔𝑜 = (𝐴2 +𝐵2)1∕2∕𝑐 > 𝑟𝑒𝑣𝑒𝑛𝑡. (13)

We assign the event horizon to 𝑎 making, 𝐴 = 𝑎𝑐 and 𝐵 = Ω𝑎2 and 
scale radial coordinate by 𝑟∕𝑎 and time coordinate by 𝑡𝑐∕𝑎.

2.2. Numerical solution in the time domain

In order to solve the Eq. (9), first we write the line element in the 
form;

𝑑𝑠2 = −𝛼2𝑑𝑡2 + 𝛾𝑖𝑗 (𝑑𝑥𝑖 + 𝛽𝑖𝑑𝑡)(𝑑𝑥𝑗 + 𝛽𝑗𝑑𝑡), (14)

where 𝛼 = 𝑐, 𝛾𝑖𝑗 = 𝑑𝑖𝑎𝑔(1, 𝑟2, 1) and 𝛽𝑖 = (𝐴∕𝑟, −𝐵∕𝑟2, 0). From this point, 
we change the notation for 𝑆1(𝑥𝑖, 𝑡) to Ψ to simplify the equations below, 
i.e. Ψ = 𝑆1(𝑟, 𝑡). Equation (6) with the hydrodynamic approximation 
applied gives the density fluctuation as 𝜌1 = − ℏ

𝑈0
𝜕𝑡Ψ − ℏ

𝑈0
𝜐 ⋅ ∇Ψ. Sub-

stituting velocity from Eq. (4) and scaling by the background density 
and the healing length Eq. (8) gives

𝜌1

(
√
2𝜉)𝜌0

= −1
𝑐

𝜕Ψ
𝜕𝑡

+ 𝐴

𝑐𝑟

𝜕Ψ
𝜕𝑟

− 𝐵

𝑐𝑟2
𝜕Ψ
𝜕𝜙

. (15)

For numerical calculations two conjugate fields are introduced as fol-
lows

Φ= 𝜕Ψ
𝜕𝑥𝑖

Π= − 1
𝛼

(
𝜕Ψ
𝜕𝑡

− 𝛽𝑖Φ𝑖

)
, (16)

where Ψ = 𝜓1(𝑡, 𝑟)𝑒𝑖𝑚𝜙𝑒𝑖𝑘𝑧, Π = 𝜋1(𝑡, 𝑟)𝑒𝑖𝑚𝜙𝑒𝑖𝑘𝑧 and Φ = 𝜙1(𝑡, 𝑟)𝑒𝑖𝑚𝜙𝑒𝑖𝑘𝑧 and 
(𝑚, 𝑘) are the axial and azimuthal wave numbers, respectively [34, 43]. 
In this work, in accordance with the BEC vortex stability conditions, 
we consider the azimuthal wave numbers of 𝑚 = 0 and 1 only [44, 
45]. Using the conjugate fields, we obtain a hyperbolic system of three 
coupled first order partial differential equations.

𝜕𝑡𝜋1 + 𝑐𝜕𝑟𝜙1 −
𝐴

𝑟
𝜕𝑟𝜋1 = −𝑖𝑚𝐵𝜋1∕𝑟2 + 𝑐(𝑘2 +𝑚2∕𝑟2)𝜓1 − 𝑐𝜙1∕𝑟 (17)

𝜕𝑡𝜓1 −
𝐴

𝑟
𝜕𝑟𝜓1 = −𝑖𝑚𝐵𝜓1∕𝑟2 − 𝑐𝜋1 (18)

𝜕𝑡𝜙1 + 𝑐𝜕𝑟𝜋1 −
𝐴

𝑟
𝜕𝑟𝜙1 = 2𝑖𝑚𝐵𝜓1∕𝑟3 − (𝐴+ 𝑖𝑚𝐵)𝜙1∕𝑟2. (19)

3. Results & Discussion

We first describe briefly the implementation numerical black-hole 
excision adopted from Refs. [46] and [37], to solve Eqs. (17)-(19). 
In this technique, a numerical boundary is placed beyond the event 
horizon (an “apparent horizon”) which excises its interior from the 
computational domain, thereby removing the singularity. Since no in-
formation can leave the interior of the black hole, the excision should 
have no effect on the physics outside. This translates to the numerical 
implementation as a constrained evolution in which the constraint vi-
olations occurring beyond the event horizon has to be monitored and 
kept below a tolerance. Consequently, the time-domain calculations are 
limited by a time scale until the constraint violations start to interfere 
with the physical computation domain beyond a tolerance. This time 
scale decreases with increasing rotational speed of the vortex and thus 
affects adversely the global settings of the time-domain calculations.

This main section is organized as follows: We first calculate the time 
evolution of the perturbations of the velocity potential by solving the 
equation set (17)-(19) and check the consistency of the numerical result 
at event horizon and the outer boundary. Second, the energy of the per-
turbations is calculated showing the superradiant and non-superradiant 
cases based on the ranges of the model parameters Ω and 𝜔.
3

Fig. 1. Incident wave at 𝑡 = 0 (left) and the reflected wave at 𝑡 = 100𝑎∕𝑐 for the 
superradiance case, amplified (dashed blue line) and non superradiant case (red 
line). The parameters used are 𝑟0 = 50𝑎 and 𝑏 = 10𝑎 with 𝜔 = 0.7𝑐∕𝑎, Ω = 1.4𝑐∕𝑎.

From the fields Π, Φ and 𝜓 , we construct outgoing and incoming 
fields along the null ray

𝑢+ ∝ Π+Φ 𝑢− ∝ Π−Φ. (20)

At large distances purely outgoing wave is implemented such that 
𝑢− = 0, 𝜋1 = 𝜙1. We terminate the numerical simulation before the fluc-
tuations reach to the outer boundary so that it has no effect in the 
obtained results. For calculating the scattering amplitude the outgoing 
wave is recorded at a specified location before the outer boundary. For 
the numerical boundary beyond the event horizon, free-end boundary 
conditions are applied, such that waves are free to propagate without 
any constraints. We remind that the relevant condition to be monitored 
is not this boundary but the constraint conditions evaluated at the ex-
cision horizon, in this case the event horizon. The positioning of the 
numerical boundary beyond the event horizon is subject to two crite-
ria: It must be far from the 𝑟 = 0 singularity to reduce the amplification 
of the constraint violations beyond the event horizon and also far from 
the actual event horizon so that the constraint violations cannot propa-
gate to the physical domain in a short time to interfere with the actual 
wave.

The computational spatial (radial) and time domain are set as 0.2 <
𝑟∕𝑎 < 150, 0 < 𝑡𝑐∕𝑎 < 150, with discretization steps of Δ𝑟 = 0.05, Δ𝑡 =
0.05, respectively.

𝜓1(0, 𝑟) =𝑁𝑒𝑥𝑝
[
−(𝑟− 𝑟0 + 𝑐𝑡)2∕𝑏2 − 𝑖𝜔(𝑟− 𝑟0 + 𝑐𝑡)∕𝑐

]
. (21)

The incident wave is chosen as an axisymmetric imploding Gaussian 
pulse modulated by a monochromatic wave, centered at 𝑟0 = 50𝑎 with a 
width of 𝑏 = 10𝑎 and azimuthal wavenumber 𝑘 = 0 [43]. Here, 𝑐 is the 
propagation speed of sound in the condensate and 𝑎 is the location of 
the event horizon. Both parameters are scaled to unity and the ampli-
tude 𝑁 is calculated by the normalization of the incident wave on the 
radial domain.

We note that the location of the incident wave should be chosen 
numerically far enough so that the scattering outcome is independent 
from the location of the incident wave. The angular speed of the vortex 
is Ω. In the present calculations, we consider values of Ω = 1.4𝑐∕𝑎 up to 
Ω = 4.2𝑐∕𝑎. The frequency of the incident wave is 𝜔 =Ω∕2.

Fig. 1 shows the snapshots of the initial cylindrical Gaussian 
wavepacket at 𝑡 = 0 and 𝑡 = 100𝑎∕𝑐 for both superradiant (𝑚 = 1) 
and non-superradiant (𝑚 = 0) cases. The perturbation for the non-
superradiant case is close to zero while in the superradiant case it gets 
amplified. We monitor the constraint value 𝐶 , from the definition of Φ, 
Eq. (16)

𝐶 = ||𝜕𝑟𝜓1 − 𝜙1|| . (22)

To analyze the reflection, we put a monitor at 𝑟∕𝑎 = 70 and record the 
outgoing wave at this location. Fig. 2 shows the constraint violations at 



B. Demirkaya et al. Heliyon 5 (2019) e02497

Fig. 2. Constraint violations at event horizon (a) and outer boundary (𝑟 = 70𝑎) (b) for superradiance (𝑚 = 1). The parameters used are in Fig. 1. Dotted lines signify 
the time frames (𝑡𝑐∕𝑎 = 40, 110), when the wave reaches the horizon and the outer boundary.

Fig. 3. Constraint violations at event horizon (a) and outer boundary (𝑟 = 70𝑎) (b) for non-superradiance (𝑚 = 0). The parameters used are in Fig. 1.
the event horizon (left panels) and at the recording monitor’s position 
(𝑟∕𝑎 = 70) (right panels) for the superradiant case (𝑚 = 1). Evidently, 
the violations are large when the wave passes from the respective loca-
tion. For 40 < 𝑡𝑐∕𝑎 < 70 note how the constraint violations at the outer 
boundary are also enhanced while the wave interacts with the event 
horizon. However, we observe that the overall magnitude of the con-
straint violations are about an order of magnitude higher at the event 
horizon compared to the outgoing wave monitor location (𝑟∕𝑎 = 70).

Similarly, Fig. 3 shows the constraint violations for the non-radiant 
case (𝑚 = 0). Fig. 3(a) exemplifies nicely the numerical problem asso-
ciated with the excision technique: After the physical wave interacted 
with the event horizon (30 < 𝑡𝑐∕𝑎 < 70) the instabilities induced at the 
numerical boundary beyond the event horizon start to propagate out 
and reach to the event horizon around 𝑡𝑐∕𝑎 = 100. Note that by this 
time the physical wave has reached almost to the outer boundary and is 
not affected by these instabilities. If the simulation had been allowed to 
continue further, these amplified instabilities would propagate further 
and render the results obsolete. The constraint violations depend on the 
rotational speed of the vortex (Ω) and the relative center frequency of 
the impinging wavepacket (𝜔∕Ω). In general, high values of Ω and 𝜔∕Ω
increases the overall magnitude of the constraint violation at the event 
horizon. Also the energy associated with the superfluid flow, energy of 
wave packet, is given as

𝐸(𝑡) = ∫ 𝜕3𝑟
1
2
𝑀𝜌�⃗�2 = (𝜌ℏ2∕2𝑀)

2𝜋

∫
0

𝑑𝜙

𝐻

∫
0

𝑑𝑧

𝑟𝑚𝑎𝑥

∫
1

(∇𝜓1)2𝑟𝑑𝑟, (23)

which is calculated, normalized by the energy of the initial wave and 
plotted in Fig. 4 for the non-radiant (dashed blue curve) and superra-
diant (solid red curve) cases respectively. The incident wave arrives to 
the event horizon approximately at 𝑡 = 40𝑎∕𝑐.

The time evolution of the density fluctuations associated with the 
acoustic wave propagation are plotted in Fig. 5 for superradiant and 
4

Fig. 4. Time evolution of the energy gain of the wave packet, superradiant 𝑚 = 1
case and non-superradiant 𝑚 = 0 case. The parameters used are in Fig. 1.

non-radiant cases which shows the detailed view of the propagation 
of fluctuations near the event-horizon. Sudden increase in the density 
fluctuations for the superradiance case, stays inside the event horizon, 
𝑟 = 1𝑎.

The amplification of energy as a function of the relative cen-
ter frequency of the wave 𝜔∕Ω is plotted in Fig. 6, for values Ω =
1.4𝑐∕𝑎, 2.8𝑐∕𝑎, 4𝑐∕𝑎. The amplification gradually increases with a maxi-
mum typically in the range 0.6 < 𝜔∕Ω < 0.8 beyond which it decreases 
rapidly. The amplification curve shifts up with increasing Ω.

3.1. Numerical model in the frequency domain

In this section we analyze the Klein Gordon equation (Eq. (9)) in the 
frequency domain. Using separation of variables, the formal solution of 
the KG is expressed as

𝜓 = 𝑒−𝑖𝜔𝑡𝑒𝑖𝑚𝜙𝑒𝑖𝑘𝑧𝑃 (𝑟), (24)
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Fig. 5. Density fluctuations, 𝜌1 in 𝑟-𝑡 plane for superradiance case, 𝑚 = 1 (a) and non-superradiance case 𝑚 = 0 (b).
Fig. 6. The energy calculated according to Eq. (23) normalized to its initial 
value 𝐸(𝑡 = 0) as a function of 𝜔∕Ω where 0 < 𝜔 < Ω𝑖 . The parameters used in 
the calculations are Ω𝑖 = Ω̃𝑐∕𝑎 = 1.4𝑐∕𝑎, 2.8𝑐∕𝑎, 4𝑐∕𝑎, 𝑟0 = 50𝑎, 𝑏 = 10𝑎. Energy 
values recorded when the outgoing wave reached the monitor boundary at 𝑟∕𝑎 =
50.

where 𝑘 and 𝑚 are the axial and azimuthal wave numbers, respectively. 
To avoid polydromy problems [37], that is to make 𝜓 single valued, 
𝑚 should be taken as an integer and 𝑘 a real number defined by the 
boundary conditions along the 𝑧 axis.

By inserting (24) into (9), we obtain a second order ODE for the 
radial part:

𝑑2𝑃

𝑑𝑟2
+
(

𝐴2 + 𝑟2𝑐2 + 2𝑖𝐴(𝐵𝑚− 𝑟2𝜔)
𝑟(𝑟2𝑐2 −𝐴2)

)
𝑑𝑃

𝑑𝑟

+
(
2𝑖𝐴𝐵𝑚−𝐵2𝑚2 + 𝑐2𝑚2𝑟2 + 2𝐵𝑚𝜔𝑟2 − 𝑟4𝜔2 + 𝑐2𝑘2𝑟4

𝑟2(𝑟2𝑐2 −𝐴2)

)
𝑃 = 0.

(25)

We substitute 𝑃 =𝑅(𝑟)𝐻(𝑟∗) with a Regge-Wheeler tortoise coordinate, 
𝑟∗, which will map 𝑟 ∈ [𝑟𝐻 , ∞] to 𝑟∗ ∈ [−∞, +∞]:

𝑟∗ = ∫
𝑟2

𝑟2 −𝐴2∕𝑐2
𝑑𝑟. (26)

Introducing 𝑟∗ into Eq. (25) yields the final form of the equations for 
𝑅(𝑟) and 𝐻(𝑟∗)

𝑑𝑅(𝑟)
𝑑𝑟

+ 𝐴(2𝑖(𝐵𝑚− 𝑟2𝜔2) −𝐴) + 𝑟2𝑐2

2𝑟(𝑟2𝑐2 −𝐴2)
= 0, (27)

𝑑2𝐻(𝑟∗)
𝑑𝑟∗

2 +
(

𝜔2

𝑐2
− 𝑉 (𝑟)

)
𝐻(𝑟∗) = 0, (28)

where

𝑉 = 𝑘2(1 − 𝐴2

𝑟2𝑐2
) − 5𝐴4

4𝑐4𝑟6
−

𝐴2 (𝑚2 − 3∕2
)
+𝐵2𝑚2

𝑐2𝑟4

− 1 (
𝑐2 − 4𝑚2𝑐2 − 8𝐵𝜔

)
. (29)
4𝑟2𝑐2

5

Near the event horizon and at the far field (𝑟 → +∞), the asymptotic 
solutions are given by the harmonic functions,

𝐻(𝑟∗) = 𝑒
𝑖𝜔+𝑟∗

𝑐 +e
−𝑖𝜔+𝑟∗

𝑐 , 𝑟∗ → +∞ (30)

𝐻(𝑟∗) =  𝑒
−𝑖(𝜔−Ω𝑚)𝑟∗

𝑐 , 𝑟∗ → −∞ (31)

where 𝜔2
+ = 𝜔2 − 𝑘2𝑐2 and 𝐵 = Ω𝐴2∕𝑐2 and ( ) are the amplitudes 

of the reflected (transmitted) waves, respectively. Here, in to achieve 
scattering states 𝜔+ should be positive.

The equality of the Wronskian of these solution at asymptotics gives

1 − ||2 =(
𝜔−𝑚Ω

𝜔+

)||| 2||| (32)

It shows that when the superresonance condition, 𝜔 < 𝑚Ω, is satis-
fied, reflection coefficient has a magnitude larger than unity [47, 48]. 
Eq. (32) reveals the superradiance condition clearly (i.e. 𝜔 < 𝑚Ω) and 
gives the full spectral behavior of the reflection coefficient. Thus, we 
can obtain the reflection coefficient through the Fourier components of 
the asymptotic far field solution, which is obtained through Eq. (26)
and Eq. (28).

Fig. 7(a) shows the variation of the reflection coefficient in the 
Ω-𝜔∕Ω plane and 7(b) shows expanded slices at different Ω values (the 
horizontal axis spans multiple ranges). These calculations employ the 
model parameters (𝑚, 𝑎, 𝑐, 𝑘, 𝐴, 𝐵) with the same values used in the time-
domain calculations of section 3.

Fig. 8 shows the maximum value of the reflection coefficient as a 
function of rotational speed of the vortex. Interestingly, the frequency 
domain calculations predict an upper bound for the maximum super-
radiance, which might be connected to entropy bound as stated in 
[49]. We stress however that at large rotational speeds, the stability 
of the vortex and hence this outcome becomes arguable. Fig. 9 the com-
pares reflection coefficient calculated in the time-domain (section 3) 
and frequency domain (section 3.1), respectively for different values 
of Ω. As noted before, the time-domain calculations are susceptible 
to large values of Ω due to numerical instabilities, whereas the fre-
quency domain is immune. The comparison justifies this observation: 
The agreement between the time-domain and frequency domain is very 
good at Ω𝑎∕𝑐 = 1.4 and in the intermediate range of 𝜔∕Ω values.

4. Conclusion

In this work, we investigated the amplified scattering of acous-
tic waves propagating in a BEC, from a vortex state with a constant 
background density, by obtaining both time-domain and asymptotic fre-
quency domain solutions numerically. Time-domain study amounts for 
solving the Klein-Gordon equation which governs the radial propaga-
tion of sound waves in the presence of vortex, in analogy to scalar field 
propagation in the curved space-time of a black-hole. It is worth to note 
that the classical (macroscopic) wave function of the BEC represents 
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Fig. 7. a) Reflection coefficient values between 1 < Ω𝑎∕𝑐 < 4.2 and Ω∕15 < 𝜔 < Ω. b) Reflection coefficients as a function of 𝜔, calculated in the range 0 < 𝜔 < 𝑚Ω𝑖. 
Parameters are 𝑚 = 1, and Ω̃ = Ω𝑖𝑎∕𝑐 = 1, 1.75, 2.5, 3.25, 4.
Fig. 8. Maximum reflection coefficient behavior with respect to Ω between 
1 <Ω𝑎∕𝑐 < 16.

Fig. 9. Dependence of the reflection coefficient to the frequency of the incident 
acoustic perturbation, scaled by the vortex frequency. Upper (lower) pair of 
curves are for Ω𝑎∕𝑐 = 2.8(= 1.4). Solid curves are obtained from direct time-
domain calculations. Dash-dotted lines are obtained from asymptotic frequency 
domain calculations.

the classical space-time of General Relativity only when probed at long-
enough wavelengths such that it behaves purely hydrodynamically. The 
frequency domain calculations are performed at the radial part of the 
solution transformed to the (-infinity, + infinity) range, and by intro-
ducing Fourier components of the asymptotic incoming and outgoing 
fields. The amplitudes of these fields yield the transmission and reflec-
tion coefficients at each frequency component.

The major outcomes of the study are as follows: The comparison of 
full time-domain solutions and asymptotic solutions in the frequency 
domain show that their agreement is good near the characteristic rota-
tional speed of the vortex Ω. As Ω increases, the constraint equations 
introduced by the excision technique in the time-domain calculations 
become increasingly violated, rendering the results with large error 
margins. The frequency domain asymptotic solutions do not suffer from 
numerical instabilities and the scattering coefficient can be calculated 
6

for arbitrarily large values of Ω. This formulation predicts an upper 
bound of ||2𝑚𝑎𝑥 ≈ 2 against the rotational speed of the vortex, although 
the stability of the vortex at high rotational speeds is not taken into 
account.

As a final note, the methods presented in this work are suitable 
to employ non-constant background density profiles. Since the sound 
propagation speed will also vary, it is possible to explore novel fea-
tures of the superradiance phenomenon from the BEC vortex beyond 
the constant-density approximation. This will be pursued in subsequent 
studies.
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