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Recent breakthroughs in deep learning have revolutionized protein sequence and structure prediction. These 
advancements are built on decades of protein design efforts, and are overcoming traditional time and cost 
limitations. Diffusion models, at the forefront of these innovations, significantly enhance design efficiency 
by automating knowledge acquisition. In the field of de novo protein design, the goal is to create entirely 
novel proteins with predetermined structures. Given the arbitrary positions of proteins in 3-D space, graph 
representations and their properties are widely used in protein generation studies. A critical requirement 
in protein modelling is maintaining spatial relationships under transformations (rotations, translations, and 
reflections). This property, known as equivariance, ensures that predicted protein characteristics adapt 
seamlessly to changes in orientation or position. Equivariant graph neural networks offer a solution to this 
challenge. By incorporating equivariant graph neural networks to learn the score of the probability density 
function in diffusion models, one can generate proteins with robust 3-D structural representations. This review 
examines the latest deep learning advancements, specifically focusing on frameworks that combine diffusion 
models with equivariant graph neural networks for protein generation.
1. Introduction

Proteins are biological macromolecules that assume crucial roles in 
cellular processes. The interaction between a protein’s backbone, side 
chains, and surrounding environment collectively shapes its 3-D struc-
ture, dictating its biological role [1]. Protein generation, the process 
of creating new proteins, is crucial in fields ranging from medicine to 
biotechnology [2,3]. The prospect of computationally generating new, 
physically foldable protein structures presents an exciting opportunity 
for exploring novel pathways within cellular mechanisms and poten-
tially devising treatments for presently untreatable diseases. Traditional 
methods typically rely on heuristics to reconstruct fragments from ex-
perimentally characterized proteins [4,5]. However, these methods are 
constrained by cost, existing knowledge, and available data [6]. The 
sheer number of possible protein sequences poses a challenge to dis-
covering novel proteins with desired properties such as high binding 
affinity and manufacturability [7,8]. This is further complicated by the 
multitude of potential conformations of the peptide backbone, along 
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with the need to ensure accuracy in the geometry of chemical bonds 
and interactions.

The primary structure of a protein, characterized by its unique se-
quence of amino acids, dictates the identity and position of each residue 
side chain in the protein backbone. The backbone can be viewed as the 
result of intramolecular interactions occurring along the linear chain, 
directing the folding process towards a distinct 3-D conformation [1,9]. 
Accurately describing a protein’s structure relies on precisely determin-
ing the 3-D coordinates for both the alpha carbon (C𝛼), the first carbon 
in the residue as depicted in Fig. 1, and the atoms in the side chain. 
These coordinates are influenced by various factors related to the struc-
tural characteristics and interactions within the protein. These factors 
limit how atoms can be spatially arranged, and include steric hindrance, 
chemical properties, secondary structure propensities, hydrogen bond-
ing patterns, hydrophobic interactions, and evolutionary conservation 
[10]. By incorporating these factors into computational models, we can 
improve the accuracy and reliability of protein structure prediction, 
ensuring that the predicted structures closely follow the fundamental 
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Fig. 1. The protein backbone of chain A in PDB: 1bxl. This image highlights three residues, each consisting of an alpha carbon (C𝛼) linked to an amino group (NH2) 
and a carboxyl group (COOH), with the backbone and its angles magnified for clarity [13].
principles guiding protein folding and stability [11]. Given that the 
overall geometric attributes of proteins are predominantly determined 
by their backbones, the process of generating protein structures can be 
simplified to the generation of backbones, often sourced from either a 
natural or artificially created protein (i.e. de novo design). Subsequently, 
one must find a sequence of amino acids that will fold into the estab-
lished backbone structure [12].

Recent advancements in deep learning [14] methods have found 
a wide range of applications in computational biology and bioinfor-
matics, such as protein structure prediction [11,15–21], protein design 
[22,23], unsupervised protein design [24,25], binding site prediction 
[26–28], and predicting protein–protein and protein–ligand interac-
tion [9,29–36]. Despite the significant progress made in sequence de-
sign [37,38], generating protein backbones remains a challenge. Owing 
to the success of deep generative models in addressing similar high-
dimensional modelling and inference challenges in various other do-
mains, a notable example being the generation of photorealistic images 
from text [39–41], substantial efforts have been devoted to developing 
generative models of protein space [12,24,38,42–50], such as unsuper-
vised sequence generation and representation learning using language 
models [24,47].

Diffusion models, a class of generative models based on deep learn-
ing [51–54], have exhibited superior performance, generating highly 
realistic data across various domains. Notable applications are found in 
image generation [2,41,55–60], image inpainting [61,62], speech syn-
thesis [63], natural language processing [64–68], temporal data mod-
elling [69–73], and multimodal modelling [39,41,55,74]. Diffusion-
based generative models offer distinct advantages over other genera-
tive approaches, such as autoregressive models [75], normalizing flows 
[76], energy-based models [77], variational auto-encoders (VAEs) [78], 
and generative adversarial networks (GANs) [79]. Diffusion models 
are capable of learning complex data distributions, handling high-
dimensional data, and generating diverse outputs [64,80–84].

Score-based generative modelling with stochastic differential equa-
tions (SDEs) combines the strengths of score-based and diffusion prob-
abilistic models. It views the traditional stepwise addition of noise in 
score-based models as a continuous-time process described by an SDE 
[54,85,86]. This allows for efficient reversal, enabling the model to start 
with noise and progressively remove it to generate high-quality data, 
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while also offering functionalities like exact likelihood calculation and 
controllable generation through manipulation of the starting noise. This 
SDE framework provides a more powerful and flexible approach to data 
generation [54,85,86].

Normalizing flows [76], for instance, construct flexible probability 
distributions by applying a series of invertible and differentiable trans-
formations to a simple base distribution (e.g. a multivariate Gaussian). 
These transformations, often parameterized by neural networks, enable 
tractable density estimation and efficient sampling, enabling normal-
izing flows to model intricate, multimodal distributions and capture 
complex dependencies within real-world data. VAEs [78], on the other 
hand, learn to represent complex data distributions using probabilistic 
latent spaces. They employ an encoder–decoder architecture: the en-
coder compresses input data into a continuous latent space, learning to 
model the data as probability distributions. This probabilistic represen-
tation captures uncertainty and variability within the data. The decoder 
then samples from these learned distributions, aiming to reconstruct the 
original input. GANs [79], meanwhile, are unsupervised deep learning 
frameworks composed of two competing neural networks: a generator 
and a discriminator. The generator learns to produce synthetic data 
that mimic the distribution of a real dataset, while the discriminator 
attempts to distinguish between real samples and the generator’s arti-
ficial outputs. This adversarial game drives both networks to improve 
iteratively.

In recent years, diffusion models have found application in computa-
tional biology, including protein design and generation [6,38,42,44,86–
90], drug and small molecule design [84,91–96], and protein–ligand in-
teraction modelling [97–100]. Notably, diffusion models can effectively 
handle high-dimensional data with diverse and scalable properties [2].

Generative adversarial networks (GANs), variational autoencoders 
(VAEs), and diffusion models each offer distinct advantages and face 
unique challenges in generative modelling. GANs are renowned for their 
ability to produce high-quality, realistic samples quickly after training 
[101,102]. This characteristic makes them particularly suitable for ap-
plications in which speed and visual fidelity are crucial. However, GANs 
often encounter a significant problem known as mode collapse, in which 
the model generates a limited variety of outputs. Moreover, their train-
ing process requires careful balancing to maintain stability [103].

In contrast, VAEs provide a more stable training framework and 
offer a structured latent space, enabling users to manipulate the gener-

ated data in meaningful ways [104,105]. This makes VAEs an excellent 

https://www.rcsb.org/structure/1BXL


Computational and Structural Biotechnology Journal 23 (2024) 2779–2797F. Soleymani, E. Paquet, H.L. Viktor et al.

Table 1

Comparative Trade-Offs Among Generative Model Schemes: GANs, VAEs, and Diffusion Models.
Feature GANs VAEs Diffusion Models
Sample Quality High Moderate (less detailed) Very High
Training Stability Challenging Stable Moderate
Mode Collapse Yes No No
Sampling Time Fast Fast Slow
Latent Space Unstructured Structured Not typically used
Complexity High (due to the adversarial structure) Moderate High
choice for tasks that require interpretability and control over the gener-
ation process. However, the trade-off for this stability and control is that 
VAE-generated samples may lack the detail and complexity of real data, 
as the model prioritizes efficient data compression over capturing nu-
ance [79,106]. Diffusion models represent a significant advancement in 
generative modelling capabilities. They achieve state-of-the-art sample 
quality and diversity while inherently avoiding mode collapse. These 
attributes make diffusion models a powerful tool for generating highly 
realistic and diverse data [2,107]. However, a major drawback is their 
lengthy sampling times [108]. Unlike GANs and VAEs, which can gen-
erate an image in a single step, diffusion models require a multi-step de-
noising process, making them computationally expensive. Additionally, 
training diffusion models can be complex [109,110]. Table 1 presents a 
summary of the trade-offs of these generative models.

Despite significant efforts over the past three decades to automate 
the design of proteins [111,112], the majority of de novo designs have 
yet to achieve the complexity and diversity observed in natural macro-
molecules. Several factors contribute to this disparity. Modelling the 
complex relationship between sequence and structure poses a signifi-
cant challenge [113]. Moreover, most computational design method-
ologies rely on iterative search and sampling processes, resembling evo-
lution [114]. Although computational techniques have been developed 
to facilitate searching [112] and accurately predicting natural protein 
structures [11], effectively exploring the domain of designable protein 
structures within the vast space of potential proteins remains an ongo-
ing challenge [115]. The objective of protein backbone generation is to 
create novel structures using information derived from real data distri-
butions. To achieve this objective, one must establish a link between 
known distributions, such as Gaussian distributions, and the intricate, 
high-dimensional, and sparse distributions of real data.

Over the past decade, structure-based protein design has emerged as 
a potent approach to addressing complex challenges, including enzyme 
catalysis, viral inhibition, and de novo structural generation [116–120]. 
The Rosetta framework [37] has been instrumental in achieving suc-
cessful protein designs, typically following a two-step process: gener-
ating a protein backbone and designing a sequence aimed at minimiz-
ing the folded-state energy of the generated backbone. With existing 
methodologies predominantly limited to the generation of either small 
molecules [121] or large proteins under highly constrained conditions, 
often restricted to a single domain topology [122], 3-D molecular struc-
ture generation remains a challenge.

In this review, we investigate recent advancements aimed at gener-
ating protein 3-D structures and, in certain cases, protein sequences, 
with a particular focus on diffusion models and equivariant graph 
neural networks (EGNNs). We explore the mathematics of two diffu-
sion architectures, namely, the denoising diffusion probabilistic models 
(DDPMs) and the denoising diffusion implicit models (DDIMs), and 
comprehensively discuss the significance of equivariance in protein gen-
eration, highlighting EGNNs as a solution to this challenge.

The remainder of this review is organized as follows. The concept 
of protein generation is explained in Section 2. Section 3 outlines the 
diffusion models. Section 4 explains graph neural networks (GNNs) and 
EGNNs. Related studies addressing the protein generation problem are 
explored in Section 5. The datasets commonly used in these studies are 
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presented in Section 6. Section 7 concludes the work.
2. Protein representation

A protein is characterized by a distinct linear arrangement of amino 
acids known as its primary structure, which acts as the blueprint for its 
folded configuration and ultimately its 3-D structure [123]. These linear 
chains fold due to intramolecular interactions guided by the sequence. 
This intricate folding process is primarily driven by the hydrophobic ef-
fect, in which hydrophobic amino acid side chains cluster together to 
minimize unfavourable interactions with the surrounding aqueous en-
vironment, ultimately leading to the formation of the protein’s unique 
and functionally relevant 3-D structure [124]. The polypeptide back-
bone refers to the continuous sequence of atoms that forms the central 
structural element of the polypeptide chain, as illustrated in Fig. 1
[125]. The global geometric structures of proteins are predominantly 
determined by their backbones [126]. The protein backbone’s specific 
folding pattern, driven by the minimization of free energy [125], guides 
the positioning of side chains, contributing to the formation of the pro-
tein’s binding sites [11], thus enabling it to perform its tasks [125,127]. 
The extensive array of potential configurations of the peptide backbone, 
coupled with the desirable chemical bonding geometry and interac-
tions, presents a challenge in protein structure modelling [128].

A protein backbone spans from the N-terminus to the C-terminus 
with four heavy atoms connected covalently. This arrangement symbol-
ized as N–C𝛼–C–O, guides the sequential folding from the N-terminus to 
the C-terminus, with the C𝛼 atom situated centrally. Developing novel 
protein backbones with desired properties presents a significant chal-
lenge due to the inherent complexity of the structure–sequence relation-
ship [90]. The physical and chemical constraints dictate the permissible 
atomic arrangements within protein structures, while simultaneously 
demanding “designability” – the existence of an amino acid sequence 
capable of folding into the specified structure [90].

In the past decade, deep learning has had a substantial impact 
on protein biology, leading to breakthroughs ranging from sequence 
embeddings to structure and function prediction. Among these tech-
niques, convolutional neural networks (CNNs) have gained much at-
tention for their ability to extract features directly from protein se-
quences and structures [17,129–131]. In predicting protein interac-
tions, most sequence-based methods employ 1-D CNNs to capture the 
sequential patterns in the protein’s primary structure [33,132], whereas 
3-D CNNs offer similar benefits for structural data, although processing 
high-resolution representations can be computationally expensive and 
inefficient as protein structures only occupy a small fraction of the sur-
rounding 3-D space [132].

Unlike CNNs, which are well suited for grid-like data, graph neu-
ral networks (GNNs) offer a unique advantage in deep learning, espe-
cially for data representations that lack a regular grid structure (i.e. 
non-Euclidean data structures) [133–136]. GNNs efficiently process in-
formation propagating across the complex connections within a graph, 
making them ideal for analyzing complex networks like protein struc-
tures.

These graphs consist of nodes, which represent entities, connected 
by edges, which represent relationships. This makes GNNs a perfect fit 
for protein analysis, as protein structures can be naturally represented 
as graphs, with amino acids modelled as nodes and the bonds between 
them as edges. GNNs efficiently process information propagating across 

these complex networks, enabling them to capture the essential geo-
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metric relationships between amino acids [137]. This allows GNNs to 
achieve remarkable results in diverse prediction tasks, ranging from 
drug activity to protein–protein interaction. By learning hidden patterns 
in protein structures, GNNs can estimate the conformational energy, 
predict protein binding, and facilitate drug discovery [138], offering 
valuable insights into protein stability and folding [139,140].

GNNs handle complex graph structures effectively due to their abil-
ity to propagate information across connections [137,141]. Geometric 
deep learning [142,143], particularly graph convolutional networks 
(GCNs) [133], circumvents the limitations of explicit 3-D models by 
generalizing convolutional operations on efficient graph-like molecu-
lar representations. They have achieved success in tasks spanning from 
drug activity [144] to protein interface prediction [145]. To this end, 
one can represent the 3-D structure of a protein in the form of a graph, 
using [𝐶𝑥, 𝐶𝑦, 𝐶𝑧] to denote the 3-D coordinates of the C𝛼 in the back-
bone and 𝐴𝑖 for the 𝑖th amino acid among the 20 standard amino acids 
[9,33]:

 = {([𝐶𝑥,𝐶𝑦,𝐶𝑧],𝐴𝑖)} (1)

There exists a variety of GNNs including graph convolutional net-
works (GCNs) [133], graph attention networks (GATs) [146], graph 
recurrent networks (GRNs) [147], and graph autoencoders [148]. In 
general, these models extend operations from Euclidean data with grid 
or sequential structures to graph data. For instance, a node represen-
tation is constructed using GCNs by aggregating the features of its 
neighbors within the graph, effectively expanding the receptive field of 
the corresponding neuron [136,148]. Within protein structures, GCNs 
analyze interactions between residues, considering both geometric and 
biochemical information [145,149,150]. This allows them to achieve 
success in tasks like protein design [22], function prediction [151], and 
binding prediction [152].

3. Diffusion models

Diffusion probabilistic models have emerged as pivotal tools in com-
putational biology, specifically in the field of de novo protein design and 
protein sequence and backbone generation, owing to their multifaceted 
capabilities [2,6,44,153,154]. First, diffusion probabilistic models ex-
cel in processing high-dimensional data, which is vital in capturing 
the complex dependencies intrinsic to protein structures [155]. Second, 
they adeptly capture the structural variability of proteins, facilitating 
the generation of a broad spectrum of biologically relevant confor-
mations. Third, their probabilistic framework enables the generation 
of probability distributions of potential structures, effectively accom-
modating the inherent uncertainty prevalent in molecular structures 
[38,89]. These features have led to many innovative applications in 
protein engineering, drug discovery, and synthetic biology, including 
accurate structure prediction, de novo protein design, and dynamic pro-
tein simulation.

This section explores the potential of diffusion models in protein 
generation, leveraging the representation of proteins as graphs. Addi-
tionally, it reviews equivariant graph neural networks (EGNNs), which 
are crucial for handling dataset transformations and ensuring robust-
ness, interpretability, and generalization across different datasets and 
transformations. These considerations ultimately lead to improved per-
formance and new insights in protein-related research.

Inspired by principles from non-equilibrium statistical physics [51], 
diffusion models address a core challenge in machine learning: effec-
tively modelling complex datasets using adaptable probability distri-
butions while maintaining computational tractability. Fundamentally, 
diffusion models operate by incrementally introducing noise to a dataset 
through an iterative process known as forward diffusion. Following 
this phase, a reverse process is employed to reconstruct the original 
structure of the data, resulting in a flexible and tractable generative 
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model. Expanding on this principle, denoising diffusion probabilistic 
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Fig. 2. Forward diffusion process [52]. The initial input is progressively trans-
formed, resulting in a Markov chain that eventually converges to a state of pure 
Gaussian noise.

models (DDPMs) [52] show the potential to achieve performance com-
parable to or exceeding that of other generative models, such as de-
coders, energy-based models, and GANs, in image and video generation 
[75,80,156–158].

Fundamentally, diffusion models involve two processes: the forward 
process iteratively introduces noise to perturb the original data step-
wise from 𝒙0 to 𝒙𝑇 (Fig. 2), while during the reverse process, a trained 
neural network recovers the original data from 𝒙𝑇 using a denois-
ing process (Fig. 3). This trained diffusion model acts as a generative 
tool, wherein the generation of data involves passing randomly sam-
pled noise through the learned denoising process. A DDPM is a latent 
variable model that employs a fixed Markov chain to establish a map-
ping to the latent space. This Markov chain, comprising latent variables 
𝒙1, … , 𝒙𝑇 , maintains a temporal dependence solely on the previous 
time step. Gradually introducing noise to the data within this chain 
facilitates the approximation of the posterior distribution 𝑞(𝒙1∶𝑇 |𝒙0), 
where (𝒙1, … , 𝒙𝑇 ) denote latent variables sharing the same dimension-
ality as 𝒙0 [52].

One may differentiate DDPMs from other latent variable models 
[159] by their fixed approximate posterior 𝑞(𝒙1∶𝑇 |𝒙0), known as the 
forward diffusion process. This process operates as a Markov chain, 
gradually introducing Gaussian noise to the data following a specified 
variance schedule 𝛽1, … , 𝛽𝑇 . Moreover, the latent variables in DDPMs 
have relatively high dimensionality. For instance, Ho et al. [52] ex-
amined a Markov chain characterized by Gaussian transitions, with 
parameters defined by a decreasing sequence 𝛼1∶𝑇 ∈ (0, 1]𝑇 [53]. Dur-
ing the forward process, the transitions within the sampling chain can 
be configured as conditional Gaussian distributions, especially when the 
noise amplitude remains sufficiently low. This observation, combined 
with the Markov assumption, results in a parameterization of the for-
ward process:

𝑞(𝒙1∶𝑇 |𝒙0) ∶= 𝑇∏
𝑡=1

𝑞(𝒙𝑡|𝒙𝑡−1) ∶= 𝑇∏
𝑡=1

 (𝒙𝑡;
√
1 − 𝛽𝑡𝒙𝑡−1, 𝛽𝑡𝑰) (2)

where 𝛽1, … , 𝛽𝑇 denote a variance schedule, which can either be 
learned or predetermined. This schedule, if appropriately designed, en-
sures that for sufficiently large 𝑇 , the latent variable 𝒙𝑇 approximates 
an isotropic Gaussian distribution. The variance schedule dictates the 
magnitude of the noise introduced at each temporal step. Visualizing 
it as a map, time serves as the key, while the associated value indi-
cates the degree of noising desired. Using the notation 𝛼𝑡 ∶= 1 − 𝛽𝑡 and 
�̄�𝑡 ∶=

∏𝑡
𝑠=1 𝛼𝑠, the following distribution may be used to generate a 

sample 𝒙𝑡 [52]:

𝑞(𝒙𝑡|𝒙0) ∶= (𝒙𝑡;
√
�̄�𝑡𝒙0, (1 − �̄�𝑡)𝑰) (3)

Eq. (3) may be rewritten as 𝒙𝑡 =
√
�̄�𝑡𝒙0+

√
1 − �̄�𝑡𝝐 for 𝝐 ∈ (𝟎, 𝑰) [52].

As 𝑇 →∞, the latent variable 𝒙𝑇 approaches an isotropic Gaussian 
distribution under the diffusion process Eq. (3). This property allows 
efficient generation of novel data points from the original distribu-
tion if the reverse distribution 𝑞(𝒙𝑡−1|𝒙𝑡) can be learned. By sampling 
𝒙𝑇 ∼ (𝟎, 𝑰) and iteratively applying the reverse process, a sample 𝒙0
is obtained, corresponding to a novel data point. However, estimating 
𝑞(𝒙𝑡−1|𝒙𝑡) involves intractable computations requiring the original data 
distribution [53]. Thus, 𝑞(𝒙𝑡−1|𝒙𝑡) is approximated by a neural network, 
𝑝𝜃 . Since, for small 𝛽𝑡, 𝑞(𝒙𝑡−1|𝒙𝑡) is approximately Gaussian, 𝑝𝜃 can be 

chosen to be Gaussian,
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Fig. 3. Reverse diffusion process [52]. The noise component is systematically restored into a sample originating from the target distribution, reversing the transfor-
mation. The principal objective in training a diffusion model is to master this reverse process, specifically training 𝑝𝜃(𝒙𝑡−1|𝒙𝑡). Upon retracing our steps along this 
sequential progression, novel data can be generated.
𝑝𝜃(𝒙𝑡−1|𝒙𝑡) ∶= (𝒙𝑡−1;𝝁𝜃(𝒙𝑡, 𝑡),𝚺𝜃(𝒙𝑡, 𝑡)) (4)

where 𝝁𝜃(𝒙𝑡, 𝑡) =
(
𝒙𝑡 − 𝛽𝑡𝝐𝜃(𝒙𝑡, 𝑡)∕

√
1 − �̄�𝑡

)
∕
√
𝛼𝑡. To simulate the re-

verse process, one must choose the architecture for the neural network 
𝝐𝜃(𝒙𝑡, 𝑡). One architecture commonly used in previous studies [52,53]
is U-Net [160]. Then, the reverse process (generative process) 𝒙𝑇 → 𝒙0
is defined as follows [52]:

𝑝𝜃(𝒙0∶𝑇 ) ∶= 𝑝(𝒙𝑇 )
𝑇∏
𝑡=1

𝑝𝜃(𝒙𝑡−1|𝒙𝑡) (5)

where 𝑝(𝒙𝑇 ) = (𝒙𝑇 ; 𝟎, 𝑰). During the training process, data points 𝒙𝑡
are sampled from a distribution 𝑞(𝒙𝑡|𝒙0). Then, following the forward 
process 𝒙𝑡 =

√
�̄�𝑡𝒙0 +

√
1 − �̄�𝑡𝝐, the aim is to minimize an objective 

function 𝑇 −1∑𝑇
𝑡=1 𝔼𝑞(𝒙0 ,𝒙𝑡)[‖𝝐 − 𝝐𝜃(𝒙𝑡, 𝑡)‖2], which measures the aver-

age squared difference between the true noise 𝝐 and the noise approx-
imated with a neural network (e.g. U-Net or EGNN), 𝝐𝜃(𝒙𝑡, 𝑡), using 
stochastic optimization techniques [52]. By simulating the reverse pro-
cess, one can generate new samples from 𝑝𝜃(𝒙0). This is achieved by 
initially sampling noise from 𝒙𝑇 ∼ (𝟎, 𝑰) and then iteratively denois-
ing samples for 𝑡 = 𝑇 − 1, … , 0 as 𝒙𝑡 ∼ 𝑝𝜃(𝒙𝑡|𝒙𝑡+1) [44].

As mentioned in Section 2, given that proteins occupy arbitrary 
positions in 3-D space, graph structures provide a more effective rep-
resentation, and thus one can employ a graph-based neural network 
to learn 𝝐𝜃(𝒙𝑡, 𝑡). For geometric systems such as molecules, in which 
atomic forces and dipoles are linked to spatial arrangement, it is nec-
essary for models to maintain this relationship under transformations. 
This property, known as equivariance, ensures that predicted values 
adapt seamlessly when the molecule’s orientation or position changes 
[161].

Invariance and equivariance are crucial properties for deep learning 
models, especially when dealing with data that exhibit certain natural 
or geometric structures, as is the case for a protein backbone. Invari-
ance describes a model’s ability to recognize the same object even when 
certain transformations (e.g. rotation, scaling) are applied to the in-
put. This improves model generalizability to unseen data with slight 
variations. For instance, an image recognition model should be able to 
recognize a dog regardless of its pose. Equivariance refers to a prop-
erty in which the output of a model remains consistent or transforms 
predictably with respect to transformations applied to the input. This 
ensures consistency and reduces the need for learning redundant fea-
tures across different variations.

Achieving invariance and equivariance is a key objective in deep 
learning, resulting in more interpretable and physically plausible pre-
dictions and reducing the parameters to be learned while preserving 
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representational capabilities [162]. Incorporating equivariance princi-
ples is vital for successful protein generation as it reduces the protein 
design space [153]. For example, if a binding site undergoes rotation 
or translation, a corresponding transformation is expected in the gener-
ated molecules [163]. A special case of equivariance is “invariance”, in 
which identical outputs are generated for scalar values like distance or 
energy [164].

Although graph neural networks (GNNs) are permutation equivari-
ant, they cannot naturally retain symmetries present in 3-D space, so 
they fail to capture the impacts of invariance and equivariance to ro-
tations, reflections, and translations [165,166]. For instance, given an 
amino acid in the protein structure shown in Fig. 1, the locations of 
four backbone atoms (carbon, nitrogen, and oxygen) determine a local 
skeleton, and different residues interact with each other by performing 
specific rotations between their local frames, with important impacts on 
the protein structure and its function [167]. It is, therefore, necessary 
to incorporate invariance-aware components such as EGNNs.

The expressions E(3), SE(3), O(3), and SO(3) are used to refer to 
different types of transformations in 3-D space commonly considered 
in robotics, computer graphics, computational biology, and computer 
vision. Here, we explain them in detail [168]:

1. O(3) denotes the orthogonal group in three dimensions. It com-
prises transformations that preserve distance in 3-D space, namely 
rotations, reflections, and combinations of these operations [169,
170]. They are represented using 3 × 3 orthogonal matrices:

O(3) = {𝑹 ∶ℝ3×3|𝑹𝑇𝑹 = 𝐼} (6)

2. SO(3) (a subgroup of O(3)) is the special orthogonal group in three 
dimensions, which represents rotations in 3-D space that preserve 
distances, angles, and orientation. Unlike O(3), SO(3) transforma-
tions do not involve reflections [169,170]. They are characterized 
by 3 × 3 orthogonal matrices with a determinant of +1:

SO(3) = {𝑹 ∈ℝ3×3 ∶𝑹𝑇𝑹 = 𝐼 =𝑹𝑹𝑇 ,det(𝑹) = 1} (7)

3. E(3) is the group of 3-D Euclidean transformations. These trans-
formations include translation, rotation, and reflection, so E(3) is 
similar to O(3) but also includes translations [169,170]. They are 
represented using 4 × 4 matrices, in which the upper-left 3 × 3 sub-
matrix represents rotation, and the rightmost column represents 
translation:

E(3) = {𝑻 ∈ℝ4×4|𝑻 =
[

𝑹 𝒕

0 0 0 1

]
∶𝑹 ∈ O(3), 𝒕 ∈ℝ3} (8)

4. SE(3) (a subgroup of E(3)) is the special Euclidean group in three 

dimensions, which includes both translations and rotations (i.e. 
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SO(3) together with translations), similar to the Euclidean transfor-
mations but excluding reflections [169,170]. SE(3) transformations 
are represented by 4 × 4 matrices, with the rotation part in the 
upper-left 3 × 3 sub-matrix and the translation part in the right-
most column:

SE(3) = {𝑻 ∈ℝ4×4|𝑻 =
[

𝑹 𝒕

0 0 0 1

]
∶𝑹 ∈ SO(3), 𝒕 ∈ℝ3} (9)

Consider chirality, the ability of a molecule to exist in two asym-
metrical forms, known as enantiomers, that are mirror images of each 
other, with identical atomic composition, connections, and bond or-
ders [171]. One cannot superimpose these enantiomers (identified as 
left-handed and right-handed), since there always exists at least one 
substituent linked to the chiral atom that defies superimposition [171]. 
Due to the chirality of amino acids, proteins, being constructed from 
these molecules, inherently possess chirality as well [172]. Proteins 
predominantly exhibit right-handed alpha helices; left-handed helices 
are not commonly observed in stable forms within natural proteins 
[44,153]. The network should be capable of discerning these charac-
teristics, requiring a framework that is sensitive to reflection (i.e. that 
is non-equivariant to reflection) [173].

E(3)-equivariant EGNNs [174] offer invariance to translation, rota-
tion, and reflection in 3-D space. They can scale to higher dimensions 
and maintain permutation equivariance. Conversely, SE(3)-equivariant 
models do not commute with input reflections. Therefore, they are 
particularly well suited for molecular data, for which the chirality 
of molecules is crucial, especially in proteins. SE(3)-equivariant net-
works ensure that reflections do not produce biologically inaccurate 
left-handed structures, thus preserving the inherent chirality of the pro-
tein data [153].

Recent years have seen a surge in interest in geometry-aware neu-
ral networks specifically designed to generate protein 3-D structures. 
These studies have explored the power of 3-D rigid transformations, 
leading to the development of networks that remain unchanged or be-
have consistently under various transformation groups, including E(3) 
[44,166,175,176], SE(3) [90], and SO(3) [38,177,178].

Ongoing research endeavors aim to refine the architecture and train-
ing methodologies of diffusion models to achieve further performance 
enhancements. Notably, denoising diffusion implicit models (DDIMs) 
exhibit enhanced sampling speed, further improving the capabilities of 
diffusion models. The following section provides additional insights into 
the architecture of DDIMs, which integrate a non-Markovian inference 
model.

3.1. Denoising diffusion implicit models (DDIMs)

Denoising diffusion probabilistic models (DDPMs) have shown 
promise, but their speed is a limiting factor. This section introduces 
denoising diffusion implicit models (DDIMs), which offer significant 
improvements. Despite sharing a common objective function, DDIMs 
outperform DDPMs in sample generation quality, particularly when the 
sampling is accelerated by 10–100 times [53,179]. DDIMs accelerate 
the reverse process of diffusion models by employing a non-Markovian 
sampling process that allows for a less restrictive step schedule than 
in Markovian DDPMs. Consequently, DDIMs can achieve high-quality 
sample generation in substantially fewer steps than DDPMs, resulting 
in a significant computational speed-up. Additionally, unlike DDPMs, 
DDIM samples exhibit a unique property called “consistency”, meaning 
they maintain high-level structural and semantic similarity even when 
generated using different sampling chain lengths [53]. This consistency 
is evident when generating multiple samples using Markov chains of 
different lengths, and facilitates semantically meaningful interpolation. 
Unlike DDPMs, which have inherent randomness, DDIMs allow pre-
cise control over the initial state by manipulating the latent variable. 
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This manipulation directly influences the outcome within the model’s 
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Fig. 4. Accelerated sampling process (DDIM).

latent space, facilitating smooth and controlled transitions between dif-
ferent concepts. This ability for controlled manipulation significantly 
enhances the expressive power and versatility of DDIMs, making them 
well suited for various applications requiring controlled manipulation 
within a defined space.

The forward diffusion process in DDIMs shares similarities with that 
used in DDPMs [51,52], with both methods gradually introducing Gaus-
sian noise to the latent variables:

𝑞(𝒙1∶𝑇 |𝒙0) ∶= 𝑇∏
𝑡=1

𝑞(𝒙𝑡|𝒙𝑡−1) ∶= 𝑇∏
𝑡=1

 (𝒙𝑡;
√
1 − 𝛽𝑡𝒙𝑡−1, 𝛽𝑡𝑰) (10)

The variance schedule in DDIMs, denoted by 𝛽𝑡, can be reformulated 
using the following notation: 𝛼𝑡 ∶= 1 −𝛽𝑡 and �̄�𝑡 ∶=

∏𝑡
𝑠=1 𝛼𝑠. This allows 

us to rewrite Eq. (10) as follows [52]:

𝑞(𝒙𝑡|𝒙0) = (𝒙𝑡;
√
�̄�𝑡𝒙0, (1 − �̄�𝑡)𝑰) (11)

The reverse diffusion process is defined as

𝑝𝜃(𝒙0∶𝑇 ) ∶= 𝑝𝜃(𝒙𝑇 )
𝑇∏
𝑡=1

𝑝𝜃(𝒙𝑡−1|𝒙𝑡) (12)

where

𝑝𝜃(𝒙𝑇 ) = (𝒙𝑇 ;𝟎,𝑰) (13)

𝑝𝜃(𝒙𝑡−1|𝒙𝑡) = 𝑞𝜎(𝒙𝑡−1|𝒙𝑡,𝒙0) (14)

Given 𝒙0 ∼ 𝑞(𝒙0) and 𝝐𝑡 ∼  (𝟎, 𝑰), the latent variable 𝒙𝑡 can be 
computed using Eq. (16). The model 𝝐(𝑡)

𝜃
(𝒙𝑡) is then employed to pre-

dict 𝝐𝑡 based solely on the information contained in 𝒙𝑡, without any 
knowledge of 𝒙0. Consequently, using Eq. (16), one can predict the de-
noised observation 𝒙0 given 𝒙𝑡. This denoising process originates from 
the inference distribution 𝑞𝜎 and involves substituting the true value of 
𝒙0 with an estimated value, as described by Zhang et al. [180],

𝒙0 = 𝑓 (𝑡)
𝜃

∶=
𝒙𝑡 −

√
1 − 𝛼𝑡.𝝐

(𝑡)
𝜃
(𝒙𝑡)√

𝛼𝑡
(15)

which is produced by a (reparameterized) neural network that pre-
dicts 𝒙0 from 𝒙𝑡 by minimizing the mean squared error [180]. Eq. (15)
provides a way of estimating the final generation as a deterministic 
function of 𝒙𝑡. The latent variable 𝒙𝑡 can be defined as

𝒙𝑡 =
√
𝛼𝑡𝒙0 +

√
1 − 𝛼𝑡𝝐 (16)

As shown in Fig. 4, DDIMs use a non-Markovian inference model for 
the reverse diffusion process. This process involves an additional infer-
ence distribution 𝑞𝜎 , which is designed to have conditional distributions 
for each latent variable, closely resembling the desired distribution 𝑞:

𝑞𝜎(𝒙1∶𝑇 |𝒙0) = 𝑞𝜎(𝒙𝑇 |𝒙0) 𝑡=2∏
𝑇

𝑞𝜎(𝒙𝑡−1|𝒙𝑡,𝒙0) (17)

where

𝑞𝜎(𝒙𝑇 |𝒙0) = (𝒙𝑇 ;
√
�̄�𝑇 𝒙0, (1 − �̄�𝑇 )𝑰) (18)

𝑞𝜎(𝒙𝑡−1|𝒙𝑡,𝒙0) = (𝒙𝑡−1;𝜇𝑡, 𝜎2𝑰) (19)
and 𝜇𝑡 is defined as



Computational and Structural Biotechnology Journal 23 (2024) 2779–2797F. Soleymani, E. Paquet, H.L. Viktor et al.

Fig. 5. Protein backbone generation using a diffusion model and graph embeddings.
𝜇𝑡 =
√
�̄�𝑡−1𝒙0 +

√
1 − �̄�𝑡−1 − 𝜎2𝑡

𝒙𝑡 −
√
�̄�𝑡𝒙0√

1 − �̄�𝑡
(20)

The generative process with fixed prior may be defined as 𝑝𝜃(𝒙𝑇 ) =
 (𝟎, 𝑰) and

𝑝𝜃(𝒙𝑡−1|𝒙𝑡) ={
 (𝑓 1

𝜃
(𝒙1, 𝜎21𝑰) if 𝑡 = 1

𝑞𝜎(𝒙𝑡−1|𝒙𝑡, 𝑓 𝑡
𝜃
(𝒙𝑡)) otherwise,

(21)

Following Eq. (21), a sample 𝒙𝑡−1 can be generated using 𝒙𝑡:

𝒙𝑡−1 =
√
𝛼𝑡−1

(
𝒙𝑡 −

√
1 − 𝛼𝑡𝝐

(𝑡)
𝜃
(𝒙𝑡)√

𝛼𝑡

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Predicted 𝒙0

+
√

1 − 𝛼𝑡−1 − 𝜎2𝑡 𝝐
(𝑡)
𝜃
(𝒙𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Direction pointing to 𝒙𝑡

+ 𝜎𝑡𝝐𝑡
⏟⏟⏟

Random noise

(22)

The initial step, denoted by 𝛼0 ∶= 1, corresponds to the initial step in 
the diffusion process, when no noise has been added, and 𝝐𝑡 ∼ (𝟎, 𝑰)
defines the standard Gaussian noise added at each step, which remains 
independent of the latent variable 𝒙𝑡. The mean of the noisy model at 
step 𝑡 is given by 

(
𝒙𝑡 − (1 − 𝛼𝑡)𝝐𝜃(𝒙𝑡, 𝑡)∕

√
1 − �̄�𝑡

)
∕
√
𝛼𝑡 [181].

The distinct choices of 𝜎 values introduce diverse generative 
processes while using the same model 𝝐𝜃 , negating the need for 
model re-training. Specifically, when we set 𝜎𝑡 =

√
(1 − 𝛼𝑡−1)∕(1 − 𝛼𝑡) ×√

(1 − 𝛼𝑡)∕𝛼𝑡−1 for all 𝑡, the forward process is Markovian, and the gen-
erative process aligns with the characteristics of a denoising diffusion 
probabilistic model (DDPM). Alternatively, in the event that 𝜎𝑡 = 0 for 
all 𝑡, the forward process becomes deterministic, given 𝒙𝑡−1 and 𝒙0, ex-
cept at 𝑡 = 1. Consequently, in the generative process, the coefficient 
preceding the random noise 𝝐𝑡 becomes zero. In this case, the resulting 
model takes the form of an implicit probabilistic model [179], wherein 
samples are generated from latent variables through a predetermined 
procedure, spanning from 𝒙𝑇 to 𝒙0.

To generate instances, one can control the sampling rate 𝜏 and 𝜎 to 
interpolate between a deterministic DDIM and a stochastic DDPM [53]:√

1 − 𝛼𝜏𝑖−1

√
1 − 𝛼𝜏𝑖
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𝜎𝜏𝑖 (𝜂) = 𝜂
1 − 𝛼𝜏𝑖 𝛼𝜏𝑖−1

(23)
where 𝜂 ∈ ℝ≥0 is a hyperparameter that can be directly controlled. 
The trainable generative process is denoted by 𝑝𝜃(𝒙0∶𝑇 ), where each 
𝑝𝜃(𝒙𝑡−1|𝒙𝑡) leverages knowledge of 𝑞𝜎(𝒙𝑡−1|𝒙𝑡, 𝒙0). Given a perturbed 
observation 𝒙𝑡, the preliminary procedure entails constructing a predic-
tive approximation for 𝒙0. Subsequently, one may obtain a sample 𝒙𝑡−1
through the reverse conditional distribution 𝑞𝜎 (𝒙𝑡−1|𝒙𝑡):
𝑞𝜎(𝒙𝑡−1|𝒙𝑡,𝒙0) =

(√
𝛼𝑡−1𝒙0 +

√
1 − 𝛼𝑡−1 − 𝜎2𝑡 .

𝒙𝑡 −
√
𝛼𝑡𝒙0√

1 − 𝛼𝑡
, 𝜎2𝑡 𝑰

)
(24)

4. Equivariant graph neural networks (EGNNs)

In 3-D space, proteins adopt complex and arbitrary structures that 
can be effectively represented using graphs. However, traditional graph 
neural networks (GNNs) struggle to maintain geometric symmetries (ge-
ometric equivariance). Proteins do not possess an invariant representa-
tion due to their arbitrary poses, which include variations in translation 
and rotation. To apply GNNs to proteins, one must extract translation-
and rotation-invariant features, such as the distance matrix. Equivariant 
graph neural networks (EGNNs) [174] are a type of GNN designed to 
process such data while maintaining geometric equivariance [177,182]. 
This is crucial when modelling molecules, and especially proteins, for 
which outcomes should remain consistent and predictable despite rota-
tions and translations [182]. EGNNs excel at accurately representing 
the irregular, non-grid structures of proteins, enabling precise mod-
elling of their geometric properties, symmetries, and transformations 
[183]. In contrast, 3-D convolutional neural networks (3DCNNs) [184]
struggle with these complexities due to their reliance on localized con-
volutions, which prevents them from accurately capturing intramolec-
ular contacts, internal chemistry, and long-range dependencies within 
protein structures [177,182,185,186]. By integrating EGNNs into diffu-
sion models for protein generation, researchers can effectively capture 
all pairwise interactions between residues along the protein backbone. 
Additionally, this approach enables learning of the probability density 
function score for the denoising process [161,174].

A protein’s representation can include the 3-D coordinates of the C𝛼

atoms in the backbone, resembling point clouds. EGNNs exhibit equiv-
ariance with respect to rotation and translation of the protein model 

[187]. Fig. 5 outlines the procedure of embedding a protein backbone 
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using an EGNN, relying on its C𝛼 coordinates, and subsequently training 
a diffusion model capable of generating a novel protein backbone.

Equivariance of a function 𝑓 under a group 𝐺 is formally expressed 
as

𝑇𝑔(𝑓 (𝒙)) = 𝑓 (𝑆𝑔(𝒙)), ∀𝑔 ∈𝐺 (25)

where 𝑆𝑔 and 𝑇𝑔 are transformations associated with the group element 
𝑔. Put simply, transforming 𝒙 with 𝑆𝑔 , and then applying 𝑓 , yields the 
same result as applying 𝑓 directly to 𝒙 and transforming the result with 
𝑇𝑔 [174,188]. For a point cloud 𝒙 = (𝒙1, … , 𝒙𝑁 ) ∈ ℝ𝑁×3 embedded in 
a 3-D space, a function 𝑓 is considered equivariant to rotation (and 
reflection) if, for 𝒛 = 𝑓 (𝒙), the relationship 𝑹𝒛 = 𝑓 (𝑹𝒙) holds, where 
𝑹𝒙 = (𝑹𝒙1, … , 𝑹𝒙𝑁 ) [174,188]. Similarly, 𝑓 is translation equivariant 
if

𝒛+ 𝒕 = 𝑓 (𝒙+ 𝒕) (26)

where 𝒙+ 𝒕 represents (𝒙1 + 𝒕, … , 𝒙𝑁 + 𝒕).
We define a protein backbone as a graph  = ( , ). The graph 

consists of nodes representing individual amino acids, indexed by 𝑛 =
1, … , 𝑁 for a backbone comprising 𝑁 amino acids. Each node stores 
data, denoted by  = (𝒙, 𝒉). Here, 𝒙𝑛 ∈ ℝ3 represents the 3-D coordi-
nates of the C𝛼 atom in the 𝑛th amino acid, and 𝒉𝑛 ∈ ℝ𝑚 represents a 
set of 𝑚 features attributed to the 𝑛th node. As an example of integrat-
ing an EGNN into a diffusion model, Trippe et al. [44] used sinusoidal 
positional encoding to incorporate both the sequence position and the 
diffusion time step into the node features 𝒉𝑛:

𝒉𝑛(𝑡) =
⎡⎢⎢⎣
𝜑(𝑛,1)

⋮
𝜑(𝑛,𝑚)

⎤⎥⎥⎦+𝑯

⎡⎢⎢⎣
𝜑(𝑡,1)

⋮
𝜑(𝑡,𝑚)

⎤⎥⎥⎦ (27)

where 𝜑(𝑥, 𝑘) =

{
sin(𝑥𝜋∕𝑁 (2𝑘∕𝑚)), 𝑘 mod 2 = 0
cos(𝑥𝜋∕𝑁 (2(𝑘−1)∕𝑚)), 𝑘 mod 2 = 1

and 𝑯 is a ran-

dom 𝑚 ×𝑚 orthogonal matrix which transforms the temporal encoding 
to become orthogonal to the positional encoding [44].

Continuing the approach outlined by Trippe et al. [44] in incorpo-
rating EGNN within the diffusion model, the interconnections between 
nodes are defined by edges, with each edge characterized by edge fea-
tures 𝒆𝑛𝑛′ ∈ ℝ𝑚, containing pairwise relationships. Similarly, Trippe et 
al. [44] represented edge features using sinusoidal positional encoding 
features:

𝒆𝑛𝑛′ =
⎡⎢⎢⎣
𝜑(𝑛− 𝑛′,1)

⋮
𝜑(𝑛− 𝑛′,𝑚)

⎤⎥⎥⎦ (28)

While an E(n) transformation affects 𝒙, the node features 𝒉 remain 
invariant under these transformations [188]. To sum up, E(3) equiv-
ariance ensures that a given function 𝑓 ∶ 𝒙, 𝒉→ 𝒛𝑥, 𝒛ℎ behaves consis-
tently under transformations involving all orthogonal matrices 𝑹 and 
translations 𝒕 [174,188]:

𝑹𝒛𝑥 + 𝒕, 𝒛ℎ = 𝑓 (𝑹𝒙+ 𝒕,𝒉) (29)

The construction of the EGNN involves stacking 𝐿 equivariant graph 
convolutional layers (EGCLs) [44,84,161]. The first layer receives ini-
tial coordinates and features (𝒙0, 𝒉0) = (𝒙, 𝒉) as an input. The up-
dates performed in each layer 𝑙 = 1, … , 𝐿 are expressed as (𝒙𝑙 , 𝒉𝑙) =
𝐸𝐺𝐶𝐿[𝒙𝑙−1, 𝒉𝑙−1], where for each node 𝑛,

𝒙𝑙+1𝑛 = 𝒙𝑙𝑛 +
∑
𝑛′≠𝑛

�⃗�𝑛𝑛′ .𝜙𝑥(𝒉𝑙𝑛,𝒉
𝑙
𝑛′
, 𝑑𝑛𝑛′ , 𝑒𝑛𝑛′ ) (30a)

𝒉𝑙+1𝑛 = 𝜙ℎ(𝒉𝑙𝑛,
∑
𝑛′≠𝑛

𝑒𝑛𝑛′𝒎𝑛𝑛′ ) (30b)
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�⃗�𝑛𝑛′ =
𝒙𝑙𝑛 − 𝒙𝑙

𝑛′√
𝑑𝑛𝑛′ + 𝛾

(31a)

𝒎𝑛𝑛′ =
∑
𝑛′≠𝑛

𝜙𝑒(𝒉𝑙𝑛,𝒉
𝑙
𝑛′
, 𝑑𝑛𝑛′ , 𝑒𝑛𝑛′ ) (31b)

𝑒𝑛𝑛′ = 𝜙inf(𝒎𝑛𝑛′ ) (31c)

𝑑𝑛𝑛′ = ‖𝒙𝑙𝑛 − 𝒙𝑙
𝑛′
‖22 (31d)

and 𝜙𝒙, 𝜙ℎ, 𝜙𝑒 and 𝜙inf denote fully connected neural networks, while √
𝑑𝑛𝑛′ + 𝛾 normalizes 𝒙𝑙𝑛 − 𝒙𝑙

𝑛′
with 𝛾 serving as a small positive con-

stant introduced to uphold numerical stability [84,188]. Operating as 
an attention mechanism, 𝑒𝑛𝑛′ offers a soft estimation of the edges, 
with 𝜙inf ∶ℝ𝑚 → [0, 1] [188]. Following 𝐿 EGCLs, the EGNN yields co-
ordinate and feature embeddings through non-linear transformations, 
denoted by �̂�, ̂𝒉 = 𝐸𝐺𝑁𝑁[𝒙0, 𝒉0], adhering to the equivariance prop-
erty as per Eq. (29) [84,174].

Algorithm 1 Equivariant graph neural network (EGNN).
 = ( , ) represents the protein backbone.
Input: (𝒙0, 𝒉0): initial coordinates and features.
Output: updated node embeddings �̂�, ̂𝒉.
Data: 𝑣𝑛 ∈  : residue (node) 𝑛.
Initialization:

fully connected neural networks 𝜙𝒙, 𝜙ℎ, 𝜙𝑒 and 𝜙inf .
For 𝑙 = 1, … , 𝐿:

• Calculate the normalized difference of two nodes’ coordinates using 
Eq. (31a).

• Calculate the message passing between nodes using Eq. (31b).
• Obtain a soft estimate of the edges between nodes using Eq. (31c).
• Calculate the distance between two nodes using Eq. (31d).
• Update node coordinates 𝒙𝑙

𝑛 → 𝒙𝑙+1
𝑛 using Eq. (30a).

• Update node features 𝒉𝑙
𝑛 → 𝒉𝑙+1

𝑛 using Eq. (30b).

End

Return �̂�, ̂𝒉 =𝐸𝐺𝑁𝑁[𝒙0, 𝒉0].

Algorithm 1 outlines the architecture of the EGNN, whose output is 
used to approximate (learn) 𝝐𝜃(𝒙𝑡, 𝑡) = �̂�− 𝒙𝑡 [44].

5. A review of generative models in bioinformatics

This section explores recent advances in using equivariant diffusion 
models to design and generate small molecules, proteins, and protein–
ligand interactions. In the past decade, protein structures have been 
widely studied [189], with the majority of the research focusing on 
optimization and aiming to enhance the sampling capabilities of Monte 
Carlo or molecular dynamics methods. These studies frequently strive to 
expand the structural space under physiological conditions [189]. Ad-
dressing this challenging task, most studies leverage prior knowledge, 
such as physical models or structural data, to guide search algorithms 
and sample relevant areas within the vast structure space [190–192]. 
Presumably, for a given application, there is an a priori “plausible” pro-
tein space that consists of proteins with predefined desired functions. 
This motivates the development of sampling methods that explore such 
spaces.

One of the main challenges in 3-D deep learning pertains to the 
absence of rotational and translational invariance in 3-D coordinates, 
making generalizable feature learning and generation difficult. This 
problem has been addressed by Anand and Huang [12] using a genera-
tive adversarial network (GAN) [79] that generated 64-residue peptide 
backbones. Their approach employed a distance matrix representation, 
effectively preserving crucial invariances in the protein structure. Sub-
sequent steps involved the reconstruction of 3-D coordinates through 
a convex optimization algorithm [12] and, later, a learned coordinate 

recovery module [193].



F. Soleymani, E. Paquet, H.L. Viktor et al.

However, GANs are not without their limitations, including the 
generation of distance matrices that are not Euclidean valid and the 
degradation of torsion distributions due to the redundancy within the 
distance matrix representation under reflection [49]. Consequently, at-
tempts at protein structure generation, such as distance-based GANs, 
often result in unrealistic structures due to chemical inconsistencies 
[194]. While other methods are capable of generating protein contacts 
[12,193,195,196], they rely on external tools for the construction or re-
covery of 3-D coordinates, which may introduce errors. To address these 
problems, Eguchi et al. [49] proposed a torsion- and distance-aware ap-
proach based on a variational autoencoder (VAE) [197], which directly 
generates 3-D coordinates for full-atom protein backbones, eliminating 
the need to recover the distance matrix and avoiding the problem of 
invalid matrices [198].

Traditional approaches to graph generation rely heavily on prede-
fined graph statistics such as degree distribution and clustering coef-
ficients, often requiring engineered features or the learning of specific 
kernel functions to capture structural information [199]. In contrast, 
recent progress in deep neural networks (DNNs) has paved the way for 
advanced deep generative models. Examples include VAEs [197], GANs 
[200,201], and normalizing flows [202,203], which have significantly 
enhanced the performance of graph generation for graph-structured 
data. Deep generative methods such as GraphVAE [197] and MolGAN 
[200] have shown promise in estimating the graph distribution and gen-
erating molecules, respectively. GraphVAE employs two graph neural 
networks for encoding and decoding, while MolGAN uses a GAN-based 
framework combined with reinforcement learning for molecular gener-
ation. However, despite their success, these methods still have certain 
limitations. While effective for small graphs, GraphVAE may become 
computationally expensive for larger ones due to increased memory de-
mands and 𝑂(𝑘2) parameter counts, with only a minor quality impact 
at higher 𝑘 values. A critical challenge in the MolGAN [200] approach 
is mode collapse, owing to the joint training of a GAN and reinforce-
ment learning objectives, which may result in the generated molecules 
being restricted to a narrow subset.

GANs had long been the dominant approach to generative tasks. 
However, a new era began with the seminal work by Sohl-Dickstein et 
al., [51] which introduced the concept of diffusion models. Building on 
this foundation, Ho et al. [52] proposed the denoising diffusion prob-
abilistic models (DDPMs), showcasing the ability of diffusion models 
to achieve performance comparable with other state-of-the-art genera-
tive models in image generation tasks. The diffusion-based generative 
models have recently achieved considerable popularity across various 
domains. This surge in interest may be attributed to their ability to 
seamlessly learn complex distributions, handle high-dimensional data, 
and generate highly diverse outputs [80,82,83].

Ever since diffusion models were introduced, the training strategies 
and structure of the diffusion network have been further enhanced, 
leading to notably improved performance exceeding that of GANs in 
the domain of image synthesis [80]. As a result, diffusion models have 
come to dominate research on generative tasks. Diffusion models have 
recently been applied to a wide range of bioinformatics challenges, in-
cluding single-cell gene expression analysis, protein design, drug and 
small molecule design, and protein–ligand interaction modelling. No-
tably, these diffusion-based models outperform their predecessors, such 
as VAEs and GANs, underlining their immense potential in the field of 
bioinformatics [2]. Consequently, diffusion models have emerged as a 
pivotal approach in the domain of protein structure generation, with 
recent studies [38,44,50,86] exploring their potential, inspired by their 
successful application in image processing [52,54] and small molecule 
chemistry [84,121,204].

Trippe et al. [44] introduced ProtDiff and SMCDiff. The former is 
a method that uses alpha carbon (C𝛼) coordinates for unconditional 
protein backbone generation. The latter offers conditional sampling, in 
which scaffolds are sampled conditioned on a given motif. Their ap-
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proach achieves SE(3) equivariance by employing an EGNN to represent 
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the protein backbone. Another framework called FoldingDiff [50] de-
fines backbones with bond and torsion angles, employing a sequence 
diffusion model for novel configurations.

Anand and Achim [38] proposed a diffusion model that allows for 
the generation of both realistic protein sequences and structures across 
diverse PDB domains. This model is implemented based on the posi-
tion and orientation of the C𝛼 atoms. To ensure rotation and translation 
invariance, an invariant point attention (IPA) module [11] is incorpo-
rated. In the training phase, the model changes the intermediate struc-
ture, the distance matrix of C𝛼 coordinates, to the ground truth structure 
at 𝑡 = 0 conditioned by block adjacencies. Sequences are generated us-
ing masked language modelling. Additionally, joint sequence–structure 
modelling is achieved by inpainting missing regions of the structure. 
The performance is evaluated by comparing the complete structure pre-
dicted by AlphaFold [11] using the generated sequence.

In contrast, Genie [89] uses an asymmetric representation of the pro-
tein residues during the forward and reverse processes. During the for-
ward process, protein residues are represented as point clouds, whereas 
a cloud of reference frames is employed for the reverse process. This 
approach offers a simpler and more efficient way of noising while 
preserving the full expressiveness of the IPA model during sample gen-
eration. Crucially, it does so without violating the Gaussian assumption 
of DDPMs. Lee et al. [86] proposed the diffusion of 2-D pairwise dis-
tances and angle matrices for amino acid residues, but this approach 
requires further optimization through Rosetta minimization [19].

Hoogeboom et al. [84] proposed an unconditional E(3)-equivariant 
diffusion model (EDM) to generate 3-D molecules. This model leverages 
a probabilistic analysis to compute likelihood, incorporating both con-
tinuous coordinates and categorical features (atom types H, C, N, O, and 
F and integer-valued atom charges) during the diffusion process, and 
doing so without relying on a specific atom ordering. Each molecule 
is represented as a point cloud {(𝒙𝑖, 𝒉𝑖)}𝑖=1,…,𝑀 , with corresponding 
coordinate representation 𝒙𝑖 ∈ ℝ𝑛 and feature vector 𝒉𝑖 ∈ ℝ𝑛𝑓 . The 
equivariant diffusion process is defined for each coordinate 𝒙𝑖 and 
feature 𝒉𝑖 by adding noise to the data. The bond types are predicted 
using the distances between pairs of atoms and the atom types, as de-
tailed by Garcia et al. [188] Following this, the stability of both atoms 
and molecules is assessed. The EDM outperforms baseline methods, in-
cluding G-Schnet [205], equivariant normalizing flows (E-NFs) [188], 
and graph diffusion models (a non-equivariant variation of EDM) [84]. 
The equivariant diffusion model demonstrates effective scalability and 
achieves high precision in learning distributions [84].

Building on the E(3)-equivariant diffusion model (EDM) framework 
[84], Fu et al. [153] proposed a method to address the inherent com-
plexity of diffusion modelling for 3-D protein structures. This complex-
ity arises from the overwhelmingly large space of possible 3-D protein 
structures [153]. This framework comprises two stages, namely, gen-
erating a latent representation for a protein and decoding it. This is 
achieved by combining a 3-D graph autoencoder and a latent 3-D dif-
fusion model. This framework tackles three challenges: achieving rota-
tion equivariance in the autoencoder design, accurately reconstructing 
complex connection information in 3-D graphs during decoding, and 
developing a specialized latent diffusion process for 3-D latent repre-
sentations of proteins. In this framework [153], the protein undergoes 
downsampling to a reduced size, followed by reconstructing the original 
protein through upsampling of the latent graph representation. Due to 
the sequential arrangement dictated by the link from the N-terminus to 
the C-terminus in the amino acid chain of a protein [9,33], C𝛼 atoms are 
positioned in a fixed order [153] (the sequential order is encoded us-
ing sinusoidal positional encoding). The fixed order of C𝛼 atoms can be 
preserved during upsampling, eliminating the need for reconstructing 
edge connections, unlike in traditional graph autoencoders. The down-
sampling and upsampling of these sequential data can be performed 
using a 1-D convolutional neural network (CNN) [153]. However, ow-
ing to the 3-D nature of the protein backbone, it is crucial to ensure 

equivariance during both the downsampling and upsampling stages. A 
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traditional CNN exhibits equivariance to translations but lacks equivari-
ance to other transformations, such as rotations and reflections [206], 
so cannot meet this equivariance requirement, but graph neural net-
works (GNNs) provide a solution to this problem [174].

EquiPPIS [166] is a symmetry-aware protein–protein interaction 
(PPI) site prediction method that showcases another application of E(3) 
EGNNs. This framework directly predicts PPI sites on isolated proteins 
solely from their 3-D structure, eliminating the need for additional or 
complex information. EquiPPIS facilitates large-scale PPI site prediction 
and achieves better accuracy, with structural models predicted by Al-
phaFold 2 as input, than existing methods that use experimental input 
[166].

While deep generative models have made significant progress in 
generating protein structures at the primary, secondary, and tertiary 
levels, concerns regarding the validity of these structures persist [207]. 
Addressing this challenge, Rahman et al. [175] proposed an E(3)-
equivariant neural network encoding-based graph variational autoen-
coder (EqEN-GVAE), primarily aiming to generate physically realistic 
tertiary structures by leveraging graph representation learning. Build-
ing on the success of equivariant neural networks in generating realistic 
small molecule structures [84,188], EqEN-GVAE [175] underscores the 
necessity of imposing specific constraints via the loss function to con-
trol key properties of the generated tertiary structure and ensure the 
network captures them.

Ingraham et al. [87] proposed a generative model for proteins called 
Chroma, achieving joint sequence–structure likelihood modelling, sub-
quadratic scalability, and diverse conditional sampling without retrain-
ing for new target functions. Building on the principles of diffusion 
models [51,54], Chroma progressively transforms high-dimensional dis-
tributions into simpler, reversible distributions using random graph 
neural networks [208,209]. These networks are equipped to efficiently 
process the complex geometric relationships within intricate molecular 
structures. Chroma offers conditional programmable protein structure 
generation, validated through in silico folding and crystallographic ex-
periments. Unlike previous diffusion models, Chroma’s generative ar-
chitecture learns to reverse a correlated noise process, the distance 
statistics observed in natural proteins, which adhere to well-understood 
scaling laws in biophysics [87].

Watson et al. [42] proposed a new protein structure generation 
method called RFdiffusion, leveraging the frame representation devel-
oped by RoseTTAFold, which uses both the C𝛼 coordinates and N–C𝛼–C 
rigid orientation for each residue [20]. The training dataset is composed 
of noised structures sampled from the Protein Data Bank (PDB) for up to 
200 steps [210]. The noising process involves two steps. First, C𝛼 coor-
dinates are perturbed with 3-D Gaussian noise, for translation. Second, 
Brownian motion on the rotation matrix manifold is used to randomize 
the residue orientations [178,211]. During the reverse process (the gen-
erative process), RFdiffusion minimizes the mean squared error (MSE) 
loss between frame predictions and the true protein structure. This 
loss, averaged across all residues and without alignment, directs denois-
ing trajectories to converge on designable protein backbone structures 
[42]. The RF structure employs frame-aligned point error (FAPE) as the 
prediction training loss. While FAPE remains invariant to the global ref-
erence frame, the MSE loss lacks such invariance and thus maintains the 
continuity of the global coordinate frame across different time steps. To 
generate a protein backbone, RFdiffusion makes a denoised prediction 
of randomly initialized residue frames and searches a broad spectrum of 
potential protein structures from these random initial frames. Through 
iterative refinement, it progressively narrows down potential protein 
structures, culminating in predictions closely resembling real proteins. 
The ProteinMPNN network [212] is employed to design sequences en-
coding these structures, typically generating eight sequences per design, 
similar to prior studies [44,50]. Exploration of simultaneously designing 
both structures and sequences within RFdiffusion was not pursued [42].

Despite the promising results observed in the generation of de novo
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protein backbones through diffusion models, there remains a notable 
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absence in the formulation of a well-established methodological frame-
work for diffusion on SE(3). Yim et al. [90] introduced FrameDiff, a 
novel approach that combines expressive geometric deep learning tech-
niques with diffusion generative modelling, establishing a theoretical 
basis for SE(3)-invariant diffusion models across multiple frames. When 
applied to monomer backbone generation, FrameDiff can generate des-
ignable monomers spanning up to 500 amino acids, notably without 
dependence on a pre-trained protein structure prediction network, un-
like earlier methodologies [90].

We highlight that RFdiffusion [42] and Chroma [87] have been ex-
perimentally validated [2], unlike the other methods discussed in this 
section.

Table 2 provides an overview of protein generation methods that 
employ generative and graph-based methods, and Table 3 lists their 
contributions and limitations.

Although computational methods like diffusion models and EG-
NNs have shown remarkable success, it is essential to acknowledge 
their limitations. Diffusion models require extensive, diverse, and high-
quality datasets for effective training [109]. This poses a challenge due 
to the limited availability of experimental data on protein structures 
[132,219]. Moreover, achieving optimal performance with either EG-
NNs or diffusion models requires tuning numerous hyperparameters, a 
process that can be computationally intensive and often demands exten-
sive experimentation. Furthermore, these methods are computationally 
expensive to train, particularly for large datasets, and suffer from slow 
sampling speeds (resulting in low inference speeds) [109,153]. There-
fore, they require substantial computational resources, such as powerful 
GPUs or AI accelerators, which may not be readily available to all re-
searchers. In addition, understanding the underlying mechanisms by 
which EGNNs and diffusion models generate protein structures is cru-
cial for ensuring the reliability and interpretability of their results. 
However, achieving robust generalization across diverse protein struc-
tures and conditions remains challenging, especially in the absence of 
clear interpretability [220,221].

6. Datasets

Within computational biology and structural bioinformatics, a range 
of computational techniques are employed, often relying on input data 
sourced from either public or private databases (e.g. protein structures 
and sequences). This section provides an overview of the commonly 
employed datasets, which are listed in Table 2, including QM9, CATH, 
GEOM, and PDB.

The QM9 dataset [222] serves as a benchmark database for small 
molecules, containing 3-D structures, molecular properties, and atom 
coordinates for 134,000 small molecules (from the chemical universe 
GDB-17 database [223]) with at most 9 heavy atoms (or 29 atoms in-
cluding hydrogen). The QM9 dataset includes small amino acids, such 
as Gly and Ala, as well as nucleobases like cytosine, uracil, and thymine. 
Calculations have been performed for all 134,000 molecules to de-
termine various properties including equilibrium geometries, frontier 
orbital eigenvalues, dipole moments, harmonic frequencies, polariz-
abilities, and thermochemical energetics corresponding to atomization 
energies, enthalpies, and entropies at ambient temperature [222].

Established in 1997, the Class, Architecture, Topology, and Homol-
ogy (CATH) database [224] is an up-to-date and systematic classifi-
cation of protein 3-D structures. The CATH database systematically 
identifies domains within protein structures sourced from wwPDB and 
categorizes them into evolutionary superfamilies [225–227], offering 
both structural and functional annotations. Using a semi-automated 
approach, CATH splits 3-D structures into their constituent domains, 
which are semi-independently folding globular units. These domains 
are then clustered into homologous superfamilies based on discernible 
evidence of evolutionary ancestry. CATH operates at two levels: CATH-
B provides a daily update on domain structures and superfamily as-

signment. CATH+ includes additional derived data such as predicted 

https://www.rcsb.org/
https://www.cathdb.info
https://www.cathdb.info
https://www.wwpdb.org/
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Table 2

Descriptions of the diffusion-based generative methods addressing protein and small molecule generation.

Application Framework Year Generative Model Method Description

Protein design and 
generation

Anand and Achim [38]

2022

DDPM This is an equivariant diffusion model that uses denoising diffusion probabilistic models 
(DDPMs) and invariant point attention (IPA) modules [11].

SMCDiff/ProtDiff [44] DDPM + EGNN ProtDiff performs E(3)-equivariant unconditional protein backbone generation using C𝛼

coordinates and embedded features. SMCDiff samples scaffolds conditioned on a given 
motif.

ProteinSGM [86] Continuous-time 
stochastic 
differential 
equations (SDEs)

Based on a score-based generative model, ProteinSGM unconditionally generates novel 
protein structures.
It employs continuous-time SDE to translate protein information into four matrices 
corresponding to beta-carbon pairwise distances, 𝜔 and 𝜃 torsional angles, and 𝜙 planar 
angles.
These constraints are then used by RoseTTAFold to build protein structures.

FoldingDiff [6] DDPM + vanilla 
transformer

This framework is a torsion angle-based protein backbone diffusion model.
The protein backbone (N–C𝛼–C) is represented using a sequence of angles (invariant to 
translation and rotation) that capture the relative orientations of individual amino acid 
residues.

DiffSDS [88]

2023

Language 
diffusion model

Taking inspiration from FoldingDiff [6], DiffSDS derives a 1-D directional representation 
from invariant atom features, akin to that of the torsion angle representation.
This representation allows an encoder–decoder language model to perform the diffusion 
process.
The encoder converts atom features into a hidden atomic direction space, in which 
equivalent direction vectors reside.
The decoder reverses the transformation.

Chroma [87] SDEs + GNN Chroma is a graph neural network (GNN)-based conditional diffusion model that generates 
large single-chain proteins, and protein complexes exceeding 3,000 residues, with desired 
properties and functions.

FrameDiff [90] SDEs + SE(3) 
transformer

FrameDiff is an SE(3) diffusion model that uses denoising score matching loss for protein 
generation.
This method achieves the generation of designable monomers up to 500 amino acids in 
length without the need for a pre-trained protein structure prediction network.

RFDiffusion [42] DDPM RFdiffusion uses RoseTTAFold [20] as the denoising network.
It achieves unconditional and topology-constrained protein monomer design up to 600
residues in length, protein binder design, and enzyme active site scaffolding.
Owing to the equivariance properties of RoseTTAFold, RFdiffusion maintains rotational 
symmetry during the prediction.

LatentDiff [153] 3-D graph 
autoencoder+ 
DDPM

LatentDiff uses an equivariant protein autoencoder that embeds proteins into a latent space, 
followed by an equivariant diffusion model that learns the distribution of the latent protein 
representations.

Genie [89] DDPM + 
SE(3)-equivariant 
denoiser

This framework performs SE(3)-equivariant discrete-time diffusion to generate protein 
structures.
Similar to the framework introduced by Anand and Achim [38], Genie integrates IPA 
modules [11] and DDPMs to achieve SE(3) equivariance.

Protein–ligand 
(small molecules) 
interaction modelling

DiffSBDD [98]
2022

DDPM + EGNN This work presents a novel approach to structure-based drug design using an 
SE(3)-equivariant 3-D diffusion model conditioned on protein pockets to generate new drug 
ligands.
To validate the model performance under realistic binding scenarios, DiffSBDD uses 
experimentally determined binding data.

Small molecule 
generation and drug 
design

EDM [84] DDPM + EGNN This method comprises a 3-D graph autoencoder with a latent 3-D diffusion model to 
generate small molecules.
Similarly to ProtDiff, this method uses a densely connected EGNN.
Through a probabilistic analysis, the EDM calculates the likelihood by considering both 
continuous coordinates and categorical features, such as atom types (H, C, N, O, F) and 
integer-valued atom charges.
This computation occurs during the diffusion process, and notably, it does not depend on 
any specific atom ordering.

DiffBridge [92] Deep diffusion 
generative 
models+ GNN

This model, based on Lyapunov functions, introduces “physically informed” diffusion 
bridges a novel type of stochastic process”, which guarantees the generation of a specific 
observation at a fixed time.
This allows for training diffusion-based generative models by incorporating physical and 
statistical prior information.

SDEGen [94]
2023

SDEs + GNN A conformation generation model based on stochastic differential equations (SDEs) and 
generative modelling [54].
Beyond finding single low-energy conformations, this model finds a spectrum of locally 
optimal conformations.

GEOLDM [161] DDPM + EGNN A novel latent diffusion model that generates 3-D molecules.
This model comprises autoencoders that encode structures into continuous latent codes, 
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followed by diffusion models operating in the continuous, lower-dimensional latent space.
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Table 3

Contributions and limitations of diffusion-based generative methods addressing protein and small molecule generation.

Application Framework Contribution Limitations

Protein design 
and 
generation

Anand and 
Achim 
(2022) [38]

This framework generates plausible and realistic protein structures 
and sequences, performing joint modelling of protein sequences and 
structures.

The model was trained and tested on a relatively small training 
dataset.
The proposed conditioning (block adjacencies) over generation is 
limited.

SMCDiff/
ProtDiff 
(2022) [44]

SMCDiff was the first to address the motif-scaffolding generation 
problem using a diffusion model.

This method was trained based on proteins with up to 128 residues 
from PDB.
The absence of torsion angles in the feature representation impedes 
the model’s ability to accurately encode protein chirality, potentially 
leading to structures with incorrect handedness, such as left-handed 
helices.

ProteinSGM 
(2022) [86]

ProteinSGM offers scaffold inpainting and functional site inpainting, 
and enables the generation of realistic protein structures that adhere 
to user-defined constraints.

ProteinSGM relies on post-processing by Rosetta using a Markov chain 
Monte Carlo method, leading to computationally intensive 
predictions.

FoldingDiff 
(2022) [6]

This framework unconditionally generates diverse and realistic 
protein structures using a simple transformer model and a DDPM.

Predicting angles sequentially with a transformer model has 
limitations.
Accumulating errors from early predictions can significantly impact 
the final structure, potentially leading to atom collisions.
This method is limited to creating single-chain proteins and the 
published weights are limited to generating proteins up to length 128.

DiffSDS 
(2023) [88]

Geometric constraints and conditional diffusion enable DiffSDS to 
outperform approaches like RFDesign [213] in restoring protein 
backbone structures. Additionally, DiffSDS obtains lower connectivity 
error than RFDesign [213] and FoldingDiff [6].
This indicates DiffSDS’s superior ability to effectively connect masked 
endpoints.

Imposing geometric constraints on the model is explicitly required.
Otherwise, DiffSDS cannot generate geometrically sound structures.

Chroma 
(2023) [87]

Chroma surpasses the protein size limits for methods such as 
ProteinSGM [86], Foldingdiff [6], DiffSDS [88], and ProtDiff [44].
The short- and long-range interactions are captured using a random 
graph neural network, inspired by fast 𝑁 -body methods [214], 
leading to sub-quadratic computational scaling.
Chroma offers programmable generation of proteins according to 
user-specified properties, such as residue–residue distances, 
symmetry, and shape.

This method modifies the diffusion process to improve the accuracy of 
sampled (at low-temperature) molecular backbones at the expense of 
reducing the diversity of possible conformations.

FrameDiff 
(2023) [90]

This framework has been reported to outperform FoldingDiff [6] and 
achieve comparable performance with Chroma [87] and RFdiffusion 
[42], which has four times more parameters.

The study primarily focused on the generation of monomeric proteins 
up to 500 in length.
Evaluation of the method’s applicability to multimeric protein design 
was not addressed by the work.

RFDiffusion 
(2023) [42]

RFdiffusion incorporates a self-conditioning prediction strategy, 
following the success of the recycling process in AlphaFold 2 [11].
In this approach, the current prediction is conditioned on the 
preceding time step’s prediction, leading to a significant improvement 
in model performance.
RFdiffusion conditionally constructs scaffolds for functional motifs 
and enzyme active sites, using protein motif coordinates as input.

The production of plausible structures for large proteins is challenging 
to validate computationally due to likely exceeding the capabilities of 
single-sequence prediction models such as AF2 [11] and ESMFold 
[215].

LatentDiff 
(2023) 
[153]

LatentDiff reduces the modelling space of protein structures, using a 
pre-trained equivariant 3-D autoencoder, subsequently transforming 
protein backbones into a more compact latent space, and models the 
latent distribution with an equivariant latent diffusion model.

FrameDiff [90] and RFdiffusion [42] generate full backbone atoms, 
whereas ProtDiff [44] and LatentDiff [153] generate C𝛼 atoms [153].

Genie 
(2023) [89]

This framework uses a dual representation for protein residues.
During the forward process, proteins are treated as sequences of C𝛼

coordinates.
Thus, isotropic Gaussian noise is injected into these coordinates, 
avoiding the more challenging task of manipulating rotation matrices.
Conversely, for noise prediction, protein structures are represented as 
sequences of Frenet–Serret (FS) frames [216].
This captures crucial information about inter-residue orientations, 
enabling Genie to generate high-quality protein structures.

The model size is relatively small.
This model does not support joint sequence and structure generation.
Genie does not offer conditional structure generation.

Protein–ligand 
(small 
molecules) 
interaction 
modelling

DiffSBDD 
(2022) [98]

DiffSBDD optimizes arbitrary molecular properties using a 
noise/denoise scheme and an evolutionary algorithm and addresses 
molecular design problems using an inpainting-inspired approach.
These problems include scaffold hopping/elaboration and fragment 
growing/merging.
DiffSBDD offers de novo molecule generation based on 
protein-conditioned generation and learning the joint distribution of 
protein and ligand atoms.

The reported performance of this method is lower than some other 
methods such as Pocket2Mol [217] and GraphBP [163].
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Table 3 (continued)

Application Framework Contribution Limitations

Small 
molecule 
generation 
and drug 
design

EDM 
(2022) [84]

This method directly generates molecules in 3-D space.
Unlike autoregressive models, EDM does not rely on a particular atom 
ordering, offering greater flexibility and substantially more efficient 
training than normalizing flows.
Additionally, EDMs generate up to 16 times more stable molecules 
than E-NFs [188] when trained on QM9, while requiring half of the 
training time.
Compared with E-NFs [188], EDMs trained on QM9 generate up to 16 
times more stable molecules in half the training time.
This allows for scaling the training to larger drug-like datasets such as 
GEOM-Drugs.
Unlike previous non-autoregressive models, EDMs accommodate 
explicit modelling of hydrogen atoms within the generated valid 
conformations.

In contrast to ProtDiff, EDM does not incorporate sequence-distance 
edge features for EGNN implementation.
Consequently, it does not enforce a sequence order, so lacks a 
mechanism to establish a relationship between generated coordinates 
and a backbone chain.

DiffBridge 
(2022) [92]

This method achieves high-quality and stable molecule generation 
and uniformity-promoted point cloud generation.

Energy contributions from the torsional angle are not considered.
Deep diffusion bridge models suffer from lengthy training times.
Attempts to expedite training with larger batches lead to decreased 
performance.

SDEGen 
(2023) [94]

This model quickly identifies low-energy conformations owing to its 
ability to capture a multimodal conformation distribution.
Additionally, this model demonstrates enhanced conformation 
generation efficiency, outperforming established approaches such as 
ConfGF [218].
SDEGen also facilitates interpreting molecular evolution within 
stochastic dynamic systems.

This model does not cover the crystal conformation RMSD threshold 
of 1.5 Å.
The model performance declines for larger numbers of rotatable 
bonds, particularly for molecules with eight or more, like those in 
GEOM-Drugs.

GEOLDM 
(2023) 
[161]

The model achieves rotational and translational equivariance through 
a point-structured latent space with both invariant scalars and 
equivariant tensors.

This model has not been evaluated for generating challenging 3-D 
geometries such as proteins.
sequence domains and functionally coherent sequence subsets known 
as functional families. The latest release, CATH+ version 4.3, has sig-
nificantly expanded coverage of both structural and sequence data. 
It includes 500,238 structural domains and 151 million predicted se-
quence domains assigned to 5,481 superfamilies.

The Geometric Ensemble of Molecules (GEOM) is a comprehen-
sive dataset featuring high-quality conformers for 317,928 mid-sized 
organic molecules sourced from experimental data, alongside 133,258 
molecules from the QM9 dataset [222]. Additionally, it incorporates 
data on 304,466 drug-like species and their corresponding biologi-
cal assay results, obtained from the AICures platform, a collabora-
tive machine-learning initiative aimed at predicting potential drug 
candidates for the treatment of COVID-19 and related diseases. The 
dataset also contains 16,865 molecules from the MoleculeNet bench-
mark [228], each labelled with experimental properties pertaining to 
physical chemistry, biophysics, and physiology. Conformers within the 
GEOM dataset were generated using the CREST program [229], which 
employs extensive sampling based on the semi-empirical extended 
tight-binding method (GFN2-xTB [230]) to ensure the generation of re-
liable and accurate structures. Furthermore, conformer ensembles for 
1,511 species from the BACE dataset [231] were labelled with high-
accuracy single-point DFT energies and semi-empirical quasi-harmonic 
free energies. Among these ensembles, 534 underwent further refine-
ment through DFT geometry optimizations. GEOM serves to address 
two prominent gaps in the existing dataset literature. First, it facilitates 
the benchmarking of new models that use conformers as input to predict 
various experimental properties, such as biological assay outcomes for 
antiviral activity or physicochemical and physiological attributes. This 
fills a void left by previous molecular datasets, which primarily con-
sisted of 2-D graphs or single 3-D structures. Second, GEOM provides 
an invaluable resource for training generative models aimed at pre-
dicting conformers based on molecular graphs, a burgeoning research 
area seeking to outperform the computational efficiency and accuracy 
of conventional methods. The dataset’s extensive size, simulation accu-
racy, and connection with experimental data make it an ideal candidate 
for training generalizable models and pre-training generative models for 
conformer prediction. Additionally, machine learning models trained 
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on GEOM are anticipated to deliver notable advancements in terms of 
speed, reliability, and cost-effectiveness compared with traditional con-
former generation methods. Despite its strengths, it is important to note 
that the statistical weights assigned to each conformer by the CREST 
program may exhibit inaccuracies. Therefore, benchmarks involving 
conformer probabilities should use the DFT weights provided within 
the GEOM dataset for enhanced precision and reliability.

The Protein Data Bank (PDB) is recognized as one of the most widely 
used open-access biodata resources globally. With approximately 450 
other database resources downloading, integrating, and distributing 
PDB data, nearly 200,000 rigorously validated 3-D structures of bi-
ological macromolecules, including proteins, nucleic acids, carbohy-
drates, and their complexes with small molecule ligands, are consis-
tently archived [232–234]. The availability of PDB data without usage 
restrictions has fostered the development of structural bioinformatics 
as a vibrant sub-discipline of computational biology. The emergence of 
artificial intelligence/machine learning methods, such as AlphaFold 2 
[11] and RoseTTAFold [20], has revolutionized structural bioinformat-
ics, enabling accurate prediction of protein 3-D structures comparable 
to low-resolution experimental methods. The distribution of computed 
structure models (CSMs) currently integrated within PDB (as reported 
by Burley et al. [234]) is sourced from the following datasets:

• The AlphaFold database [235], generated by AlphaFold 2. [11]
– Model organism proteomes: 326,175 protein structures repre-

senting 48 different model organisms.
– Global health proteomes: 238,274 protein structures from vari-

ous disease-causing organisms.
– Swiss-Prot sequences [236]: 542,380 protein structures, with 

430,961 additional structures beyond those in the first two sets.
– Matched Annotation from NCBI and EMBL-EBI (MANE) se-

quences [237]: 17,334 protein structures, including 3,844 ad-
ditional structures not present in the above three sets.

• ModelArchive, using both RoseTTAFold [20] and AlphaFold 2 [11].
– Core eukaryotic protein complexes: 1,106 models developed by 

the Baker lab [238].

Table 4 describes the datasets used for training, testing, and validating 

the methods presented in Table 2.
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Table 4

A compilation of the datasets employed for the methods described in this review, along with links to their corresponding open-source code.

Framework Dataset Link

ProtDiff [44] The training data for ProtDiff were restricted to single-chain proteins (monomers) from PDB [210] and lengths between 40 and 128 amino 
acids.

Code

EDM [84] The EDM framework was trained on the standard QM9 dataset [222].
The dataset was partitioned into training, validation, and test sets, as outlined by Anderson et al. [239], with 100,000, 18,000, and 13,000 
samples, respectively, for each partition.

Code

DiffSBDD [98] DiffSBDD was trained on the CrossDocked dataset with 100,000 high-quality protein–ligand pairs for the training set and 100 proteins for the 
test set.

Code

Anand and Achim [38] This framework was trained on X-ray crystal structure data of CATH 4.2 S95 domains [240,241] from PDB [210].
The training (∼ 95%, 13,744 classes, 53,414 domains) and testing (5%, 78 classes, 4,372 domains) datasets were obtained leveraging CATH 
topology classes.
This improves the generalizability of the evaluation by removing sequence and structural redundancy between the datasets.

Code

ProteinSGM [86] To minimize redundancy and potential bias in specific folds, a subset of the CATH 4.3 dataset [224] containing protein chains with at least 
95% sequence similarity was used.
From the initial 48,949 unique chains, two filters were applied:
1) A sequence length between 40 and 128 residues.
2) The presence of all backbone heavy atom coordinates N–C𝛼–C.
This resulted in a final set of 10,361 structures, each representing one or more CATH-classified folds.

Code

FoldingDiff [6] The model was trained using the CATH dataset [242], with chains below 40% sequence identity and less than 60% overlap included.
The chains shorter than 40 residues were excluded while chains longer than 128 residues were cropped to a 128-residue window.
A standardized 80/10/10 split separated the dataset into 24,316 training backbones, 3,039 validation backbones, and 3,040 test backbones for 
accurate evaluation.

Code

FrameDiff [90] The performance of FrameDiff was assessed on monomer backbone generation and trained with 𝐿 = 4 layers on a filtered set of 20,312 
backbones taken from the Protein Data Bank (PDB). The evaluation was performed on proteins up to a length of 500.

Code

Chroma [87] The training datasets were acquired using data from the Protein Data Bank (PDB) as of March 20, 2022, UniProt 2022_01, and PFAM 35.
Chroma’s training, test, and validation sets are available at Dataset.

Code

RFDiffusion [42] The training data comprise four datasets:
1) Monomer and homo-oligomer structures sourced from PDB.
2) Hetero-oligomer structures from the PDB, with data collected up to August 2, 2021.
3) Structural models generated by AlphaFold 2, specifically those with a predicted local distance difference test (pLDDT) score exceeding 
0.758.
4) Negative protein–protein interaction instances, artificially generated through random pairing.
Throughout the training process, examples were sampled from each database, maintaining a ratio of 2:1:4:1.

Code

LatentDiff [153] LatentDiff was trained on Protein Data Bank (PDB) and Swiss-Prot data in the AlphaFold Protein Structure Database (AlphaFold DB).
The single-chain protein data from PDB were restricted to those with C𝛼–C𝛼 distance less than 5 Å and sequence length between 40 and 128 
residues, resulting in 4,460 protein sequences.

Code

SDEGen [94] This framework was evaluated based on three datasets, GEOM-QM9, GEOM-Drugs [243], and ISO17 [244,94].
GEOM-QM9 is a valuable resource for studying small molecules.
This dataset focuses on neutral molecules with a maximum of nine non-hydrogen atoms.
The included conformers were generated using the CREST program [229].
Based on the sampling scheme outlined by Shi et al. [218], the dataset was divided into a training set of 40,000 molecules with 200,000 
conformations and a test set of 200 molecules with varying numbers of conformations depending on the specific subset (GEOM-QM9: 22,408 
conformations; GEOM-Dugs: 14,324 conformations).

Code

DiffSDS [88] The model was trained using CATH 4.3 [224]. To ensure the test set remained unseen by the model and prevent potential information leakage, 
proteins with high structural similarity to the training data were filtered.
Proteins with a TM-score exceeding 0.5 were excluded from the test set.

Code

Genie [89] Two publicly available protein structure databases, SCOPe [245,246] and AlphaFold Swiss-Prot [11,235], were used for both training and 
assessing the framework. The training set contains 8,766 domains, including 3,942 domains with at most 128 residues and 7,249 with at most 
256 residues.
From AlphaFold Swiss-Prot, only high-confidence protein structures (pLDDT above 80) were included.
This resulted in a training set of 195,214 structures, each containing a maximum of 256 residues.

Code

GEOLDM [161] This model was trained based on the QM9 dataset [222] for both unconditional and conditional molecule generation.
The training, validation, and test datasets have 100,000, 18,000, and 13,000 samples, respectively.
Additionally, GEOLDM was tested on the GEOM-Drugs dataset [243].
This dataset offers extensive data on large organic molecules (up to 181 atoms, average 44.2, 5 atom types).
It includes 37 million conformations for ∼450,000 molecules, labelled with energy and statistical weight.
Following Hoogeboom et al. [84], the 30 lowest-energy conformations of each molecule were selected for training.

Code
7. Conclusion

This review aims to summarize the methods employed in protein 
and small molecule generation, focusing on diffusion models and equiv-
ariant graph neural networks and their applications in both creating 
new protein sequences and structures and refining existing approaches. 
Also explored are the datasets commonly used to train and evaluate 
these methods.

In the last decade, the rise of generative models and the availabil-
ity of high-performance computing, thanks to powerful GPUs, have 
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helped solve complex problems such as generating de novo proteins 
and novel drugs [247]. Generative adversarial networks (GANs) [79]
have historically held a prominent position in generative tasks. How-
ever, a significant shift followed the introduction of diffusion models 
by Sohl-Dickstein et al. [51] This seminal work paved the way for fur-
ther advancements, like the denoising diffusion probabilistic models 
(DDPMs) proposed by Ho et al. [52], demonstrating the potential of dif-
fusion models to challenge state-of-the-art image generation techniques. 
Several factors explain their surging popularity, including their abil-
ity to effectively learn complex distributions, handle high-dimensional 
data, and generate remarkably diverse outputs [80,82,83]. Following 

this initial breakthrough, diffusion models have undergone significant 

https://www.rcsb.org/
https://github.com/blt2114/ProtDiff_SMCDiff
https://github.com/ehoogeboom/e3_diffusion_for_molecules
https://github.com/arneschneuing/DiffSBDD
https://www.rcsb.org/
https://github.com/ProteinDesignLab/protein_seq_des
https://gitlab.com/mjslee0921/proteinsgm
https://github.com/microsoft/foldingdiff
https://github.com/jasonkyuyim/se3_diffusion
https://www.rcsb.org/
https://www.uniprot.org
http://pfam.xfam.org/
https://zenodo.org/records/8285077
https://github.com/generatebio/chroma
https://github.com/RosettaCommons/RFdiffusion
https://github.com/divelab/AIRS/tree/main/OpenProt/LatentDiff
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/JNGTDF
https://github.com/HaotianZhangAI4Science/SDEGen
https://github.com/A4Bio/DiffSDS_open
https://github.com/aqlaboratory/genie
https://github.com/MinkaiXu/GeoLDM
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refinements in training strategies and network structures, leading to 
performance surpassing even the most advanced GANs [80]. This has 
propelled them to the forefront of protein structure generation, with 
numerous recent studies [38,44,50,86] exploring their potential.

Emerging research in protein generation builds on the foundation 
laid by Anand and Achim [38], who established the potential of equiv-
ariant diffusion models to generate protein sequences and structures 
jointly. This was followed by Trippe et al. [44] proposing SMCDiff 
and ProtDiff methods, the first approaches to addressing the motif-
scaffolding generation problem using diffusion models. Additionally, 
advancements in protein structure prediction tools like RoseTTAFold 
[20] have inspired approaches such as RFDiffusion [42] and Pro-
teinSGM [86] to achieve protein design for monomers exceeding 600 
residues. Notably, Chroma [87] uses a combination of GNNs and dif-
fusion models to generate even larger protein complexes, surpassing 
3,000 residues. Building on earlier successes in small molecule and 
protein generation, recent methods (Tables 2 and 3) focus on creating 
longer and experimentally validated protein structures and sequences.

Despite the promising results demonstrated by diffusion models, 
such as their proficiency in binder design and their ability to facili-
tate the targeting and modulation of diverse protein states [248,249], 
current methods still face a variety of challenges. These include gen-
erating longer protein sequences, managing computational complex-
ity, ensuring experimental validation of generated structures, avoiding 
unrealistic protein structures, and designing multi-state enzymes. Al-
though experimental findings provide valuable insights into specific 
signalling proteins and pathways, the features and design principles of 
multi-state enzymes remain elusive [250]. The modelling of signalling 
pathways with multi-state enzymes is particularly hindered by the com-
binatorial explosion of interactions within the system [250]. Tackling 
these complexities requires further research and innovation in gener-
ative methods. For example, ProtDiff [44] is susceptible to generating 
left-handed helices due to its inherent reflection symmetry, which is not 
found in stable forms within naturally occurring proteins. Therefore, fu-
ture efforts may focus on developing a framework capable of generating 
diverse, novel, and high-fidelity proteins.
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