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Highlights Impact and implications

� CT features were effective at estimating microvas-

cular invasion and vessels encapsulating tumour
clusters (VETC) patterns.

� Nomogram incorporating both imaging surrogates
showed informative recurrence prediction.

� The nomogram may facilitate allocation of surgical
candidates with hepatocellular carcinoma to the
optimal type of resection.
https://doi.org/10.1016/j.jhepr.2023.100806
MVI and VETC are distinct vascular patterns of HCC
associated with aggressive biological behaviour and
poor outcomes. Our multicentre study provided a
model incorporating imaging-based surrogates of
these patterns for preoperatively predicting RFS. The
proposed model, which uses imaging detection to
estimate the risk of MVI and VETC, offers an oppor-
tunity to help shed light on the association between
tumour aggressiveness and prognosis and to support
the selection of the appropriate type of surgical
resection.
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Background & Aims: Distinct vascular patterns, including microvascular invasion (MVI) and vessels encapsulating tumour
clusters (VETC), are associated with poor outcomes of hepatocellular carcinoma (HCC). Imaging surrogates of these vascular
patterns potentially help to predict post-resection recurrence. Herein, a prognostic model integrating imaging-based surro-
gates of these distinct vascular patterns was developed to predict postoperative recurrence-free survival (RFS) in patients with
HCC.
Methods: Clinico-radiological data of 1,285 patients with HCC from China undergoing surgical resection were retrospectively
enrolled from seven medical centres between 2014 and 2020. A prognostic model using clinical data and imaging-based
surrogates of MVI and VETC patterns was developed (n = 297) and externally validated (n = 373) to predict RFS. The surro-
gates (i.e. MVI and VETC scores) were individually built from preoperative computed tomography using two independent
cohorts (n = 360 and 255). Whether the model’s stratification was associated with postoperative recurrence following
anatomic resection was also evaluated.
Results: The MVI and VETC scores demonstrated effective performance in their respective training and validation cohorts
(AUC: 0.851–0.883 for MVI and 0.834–0.844 for VETC). The prognostic model incorporating serum alpha-foetoprotein, tumour
multiplicity, MVI score, and VETC score achieved a C-index of 0.748–0.764 for the developing and external validation cohorts
and generated three prognostically distinct strata. For patients at model-predicted medium risk, anatomic resection was
associated with improved RFS (p <0.05). By contrast, anatomic resection had no impact on RFS in patients at model-predicted
low or high risk (both p >0.05).
Conclusions: The proposed model integrating imaging-based surrogates of distinct vascular patterns enabled accurate pre-
diction for RFS. It can potentially be used to identify HCC surgical candidates who may benefit from anatomic resection.
Impact and implications:MVI and VETC are distinct vascular patterns of HCC associated with aggressive biological behaviour
and poor outcomes. Our multicentre study provided a model incorporating imaging-based surrogates of these patterns for
preoperatively predicting RFS. The proposed model, which uses imaging detection to estimate the risk of MVI and VETC, offers
an opportunity to help shed light on the association between tumour aggressiveness and prognosis and to support the se-
lection of the appropriate type of surgical resection.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Liver cancer is currently the third leading cause of cancer deaths
globally, and hepatocellular carcinoma (HCC) represents 75–85%
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Modelling; Recurrence.
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of primary liver cancer.1,2 Among the various therapeutic options,
surgical resection is the mainstay of curative treatment options
in China, comprising nearly half of all new patients globally.2,3

However, the outcomes of hepatic resection remain unsatisfac-
tory owing to frequent recurrence.4 Considering the current rates
of recurrence, preoperative risk stratification for guiding thera-
peutic options is still suboptimal. There is, thus, a need for
identification of novel prognosticators to improve prognostic
stratification.

Since most HCC recurrence is attributed to occult metastasis
from the primary tumour, tumour characteristics, including
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1.  Training and testing risk scores to predict MVI and VETC

2.  Discovery and validation of the model for predicting recurrence

3.  Investigating the potential significance of the model’s stratification 
in choosing the type of hepatectomy
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Fig. 1. Study flowchart. FAHZU, the First Affiliated Hospital of Zhejiang
University; FAHKMU, the First Affiliated Hospital of Kunming Medical Uni-
versity; JUMC, Jiangnan University Medical Center; MVI, microvascular inva-
sion; VETC, vessels encapsulating tumour clusters; XCHSEU, Xuzhou Central
Hospital of Southeast University; ZDHSEU, Zhongda Hospital Southeast Uni-
versity; WPHNMU, the Affiliated Wuxi People’s Hospital of Nanjing Medical
University; XYHCSU, Xiangya Hospital of Central South University.
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morphologic and pathologic factors, are considered the most
unneglectable informative prognostic indicators after resec-
tion.4–6 However, some of the factors describing tumour char-
acteristics can only be obtained after surgery.4–6 As a result,
statistical predictive models using conventional preoperative
clinical parameters, such as the preoperative Early Recurrence
after Surgery for Liver Tumour (ERASL-pre) model, lack sufficient
information about tumour characteristics.7,8 Also, current clinical
staging systems, such as Barcelona Clinic Liver Cancer (BCLC),
contain inadequate information for predicting recurrence after
resection.7,8 Thus, prognostic indicators toward a deep under-
standing of preoperative information will help refine and esti-
mate the risk of recurrence and optimise curative strategies.

Aberrant microvasculature of HCC promotes metastatic po-
tential and allows prediction of recurrence.9 In addition to
microvascular invasion (MVI), a well-established prognosticator
of recurrence, vessels encapsulating tumour clusters (VETC) has
been recently reported as a novel vascular pattern.10,11 VETC can
be released into circulation directly through the anastomosis of
VETC itself and peritumour vessels, which is recognised as a
distinct mechanism for metastasis and a powerful factor
affecting the outcome of HCC.11–13 Moreover, recent studies re-
ported that the additional use of VETC may help better predict
HCC recurrence.14,15 However, these two distinct vascular pat-
terns can only be assessed in surgical specimens, limiting their
clinical utility in the preoperative setting.

Preoperative imaging is an indispensable tool for clinical
decision-making in patients with HCC, holding the most imme-
diate promise of providing a reliable non-invasive method for
estimating MVI and VETC.10,16–18 Several peri- or intra-tumoural
imaging features deriving from contrast-enhanced images have
been highly correlated with MVI.19,20 In addition, recent studies
have described a few imaging features (e.g. necrosis) to indicate
the VETC pattern.18,21 However, the prognostic value of imaging-
based estimation of these distinct vascular patterns has not been
well-defined.17 Importantly, these easy-to-assess imaging fea-
tures reflect aggressive biological behaviour, which adds infor-
mation to the conventional clinical variables, making recurrence
prediction more accurate.

Until recently, most preoperative models do not make a
further step toward decision-making, such as the initial choice of
surgical procedure, a factor which may affect the incidence of
recurrence.22 Theoretically, anatomic resection (AR) is preferred
over non-anatomic resection (NAR) for eradicating potential
micrometastases, possibly attributed to the aberrant microvas-
culature.2,23 However, discrepant results from comparisons be-
tween AR and NAR outcomes had led to continued controversy
on the optimal type of resection.24,25 Some recent studies have
suggested limited advantages of AR in patients with high
micrometastatic burden, such as when aggressive pathological
features are presented.26,27 Ideally, the selection of the optimal
type of hepatectomy will benefit from the preoperative knowl-
edge of information on tumour aggressiveness, such as MVI and
VETC. However, an approach for recurrence risk stratification
incorporating these two distinct vascular patterns has not yet
been developed.

Thus, this study aimed at developing a prognostic model that
integrates imaging-based surrogates of MVI and VETC as pre-
dictors of postoperative recurrence in patients with HCC.
Furthermore, whether this model’s stratification was associated
with postoperative recurrence following AR was assessed.
JHEP Reports 2023
Patients and methods
This multicentre study was approved by the Institutional Ethics
Review Boards of each participating centre. Informed consent
was waived given the retrospective nature of the study. The
analysis was reported in accordance with the TRIPOD (Trans-
parent reporting of a multivariable prediction model for indi-
vidual prognosis or diagnosis) guidelines.28
Study design and patients
The overall study design is shown in Fig. 1. Data of patients with
pathologically identified HCC undergoing curative hepatectomy
with tumour-negative resection margins (R0 resection) at five
academic medical centres between January 2014 and October
2020 were reviewed. The inclusion criteria were as follows: (1)
well-preserved liver function (Child–Pugh grade A or B7 [score
<−7]), (2) available preoperative contrast-enhanced computed
tomography (CT) images within 8 weeks before hepatectomy,
and (3) a single HCC, or no more than three HCCs, of <−3 cm. The
exclusion criteria were: (1) preoperative anti-cancer treatments,
2vol. 5 j 100806



(2) the presence of macrovascular invasion or extrahepatic
metastasis, and (3) incomplete clinical data.

The detailed patient recruitment process is shown in Fig. S1.
The discovery cohort (N = 297) was recruited from three centres,
which were Zhongda Hospital Southeast University, Xiangya
Hospital of Central South University, and the First Affiliated
Hospital of Kunming Medical University. The validation cohort
(N = 373) was recruited from the Affiliated Wuxi People’s Hos-
pital of Nanjing Medical University and Jiangnan University
Medical Center. Demographic information and clinicopatholog-
ical data from laboratory tests and of liver function were
collected from electronic health records. MVI and VETC status of
patients in the discovery cohort were additionally evaluated.
After resection, all patients were followed up according to the
institutional practice, including evaluation of serum alpha-
foetoprotein (AFP) levels at 6 months and ultrasound or
contrast-enhanced CT every 6–12 months. Recurrence-free sur-
vival (RFS) was defined, based on imaging, as the time from
surgery to tumour recurrence (including intrahepatic and distant
recurrence), death, or censoring at the last follow-up (October
2022).

Using the same criteria, patients from another two centres
with available MVI or VETC patterns were enrolled to separately
estimate MVI or VETC based on preoperative CT images. These
Table 1. Baseline characteristics.

Variables

Cohorts for the RFS-predicted n

Discovery (n = 297) Validation (n =

Sex
Male 248 (83.5) 289
Female 49 (16.5) 84 (

Age, yrs† 54 (46–62) 57 (47
Aetiology

None or other 81 (27.3) 123
HBV 216 (72.7) 250

Child–Pugh class
A 280 (94.3) 352 (
B 17 (5.7) 21

ALBI grade
1 195 (65.7) 215
2/3 102 (34.4) 158 (

Cirrhosis
Absent 112 (37.7) 128 (
Present 185 (62.3) 245 (

AFP, ng/ml†

<−20 124 (41.8) 156
20–400 94 (31.6) 122 (
>400 79 (26.6) 95 (

ALT, IU/L† 31.9 (21.6–43.7) 28.2 (20.8–
AST, IU/L† 32.2 (21.7–46.6) 30.0 (22.0–
Albumin, g/L† 40.6 (37.8–43.4) 40.4 (37.3–
Bilirubin, lmol/L† 13.6 (10.5–17.4) 14.3 (11.5–
NLR† 2.18 (1.62–3.12) 2.08 (1.62–
Tumour characteristics

Tumour size, cm† 4.9 (3.1–7.7) 4.4 (2.9
Tumour multiplicity 41 (13.8) 37
MVI pattern 127 (42.7)
VETC pattern 133 (44.8)

Differences significant at p <0.05. The ALBI score was computed as –0.085 × (albumin g
grade 2 (>–2.60 to –1.39), and grade 3 (>–1.39).
AFP, alpha-foetoprotein; ALBI, albumin-bilirubin; ALT, alanine aminotransferase; AST, asp
Hepatitis B virus; MVI, microvascular invasion; NA, not applicable; NLR, neutrophil–ly
clusters; XCHSEU, Xuzhou Central Hospital of Southeast University.
† Continuous variables are presented with median and IQR and compared using the Stu
and proportions and compared using the Chi-square test or Fisher’s exact test.
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two centres were the First Affiliated Hospital of Zhejiang Uni-
versity (FAHZU) between May 2018 and April 2019 (N = 360) and
Xuzhou Central Hospital of Southeast University (XCHSEU) be-
tween May 2015 and May 2020 (N = 255).

Evaluation of histopathologic variables
Two liver pathologists independently microscopically viewed all
immunostained surgical specimens (Supplementary Methods 1)
to determine the histopathological status of VETC and MVI until
a consensus was reached. MVI was defined as the presence of
tumour cell nests in the portal vein, hepatic vein, and tumour
capsular vessel lined by endothelium.10 VETC referred to sinu-
soidal blood vessels that encapsulated individual tumour clusters
and formed cobweb-like networks on CD34-immunostained
sections.11 The area of VETC was semiquantitatively evaluated
from 0% to 100% in 5% units. The optimum cut-off value for VETC
predicting RFS was selected by calculating maximally selected
rank statistics in the discovery cohort. By doing so, a VETC area
>−5% was defined as VETC-positive.

CT techniques and imaging interpretation
CT acquisition parameters are detailed in Supplementary
Methods 2 and Table S1. According to previous imaging anal-
ysis for MVI on multiphasic contrast-enhanced CT,19 the
n (%)/median (IQR)†

omogram
FAHZU set for
MVI (N = 360)

XCHSEU set for
VETC (N = 255)373) p value

0.06
(77.5) 303 (84.2) 194 (76.1)
22.5) 57 (15.8) 61 (23.9)
–63) 0.07 59 (51–66) 57 (51–64)

0.13
(33) 95 (26.4) 76 (29.8)
(67) 265 (73.6) 179 (70.2)

>0.99
94.4) 344 (95.6) 240 (94.1)
(5.6) 16 (4.4) 15 (5.9)

0.09
(57.6) 298 (82.8) 195 (76.5)
42.4) 62 (17.2) 60 (23.5)

0.38
34.3) 145 (40.4) 96 (37.6)
65.7) 214 (59.6) 159 (62.4)

0.93
(41.8) 182 (50.6) 120 (47.1)
32.7) 92 (25.6) 84 (32.9)
25.5) 86 (23.9) 51 (20)
45.0) 0.52 27.0 (19.0–39.0) 32.0 (20.0–43.0)
44.0) 0.65 27.0 (21.0–36.0) 31 (22.0–38.0)
42.6) 0.08 43.9 (40.3–47.0) 42.5 (39.9–45.5)
17.8) 0.12 13.1 (10.1–17.7) 14.8 (11.1–18.2)
2.91) 0.64 2.40 (1.85–3.08) 2.38 (1.73–3.06)

–6.4) 0.13 3.5 (2.3–4.8) 4.8 (3.0–7.0)
(9.9) 0.69 30 (8.3) 38 (14.9)
NA 117 (32.5) NA
NA NA 112 (43.9)

/L) + 0.66 × log10 (bilirubin lmol/L) and stratified into three grades: grade 1 (<−–2.60),

artate aminotransferase; FAHZU, First Affiliated Hospital of Zhejiang University; HBV,
mphocyte ratio; RFS, recurrence-free survival; VETC, vessels encapsulating tumour

dent’s t test or Mann-Whitney U test; categorical variables are presented with counts
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following four radiological features were evaluated to potentially
indicate MVI: (1) arterial peritumoural enhancement, (2) non-
smooth tumour margin, (3) capsule disruption, (4) two-trait
predictor of venous invasion (TTPVI), and (5) satellite nodules.
Since only a few studies investigating imaging findings have
indicated VETC as a potential biomarker, the following sets of
imaging features were evaluated: (1) different types of dynamic
enhancement patterns,29 categorised as Type-1, homogeneous
hypo-enhancement; Type-2, homogeneous hyperenhancement;
Type-3, heterogeneous enhancement with septations, and Type-
MVI risk score

PointsExampleSchematicVariable

0(-)
Peritumoural

enhancement 
2.7(+)

0(-)
Nonsmooth tumour

margin 
2(+)

0(-)

Capsule disruption
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venous invasion
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A

C Points
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Single
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VETC score
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Fig. 2. Derivation of the scores and the constructed nomogram. The derivation
clusters (VETC) score (B). 0* denotes homogeneous hypo-enhancement or homog
The nomogram (C) for individual prediction of RFS. The red dots are cut-off poi
microvascular invasion; RFS, recurrence-free survival VETC, vessels encapsulatin
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4, heterogeneous enhancement with irregular ring-like struc-
tures; (2) proportions of the arterial phase hypovascular
component,30 recorded as <20% or >−20%; and (3) a set of imaging
findings related to aggressive HCC,17 including the presence of
necrosis or severe ischaemia, blood product in mass, corona
enhancement, rim arterial phase hyperenhancement, arterial
peritumoural enhancement, non-smooth tumour margin,
capsule disruption, and intratumoural artery. Tumour size and
multiplicity collected from CT reports were analysed for their
associations with both MVI and VETC.
VETC risk score

PointsExampleSchematicVariable

0*(-)Heterogeneous
enhancement 
with septations 1.9(+)

0*(-)Heterogeneous
enhancement with
irregular ring-like

structures 2.5(+)

0(-)
Necrosis or severe

ischemia
0.9(+)

0(-)≥ 20% arterial phase
hypovascular
component 1.3(+)

B

90 100

ules 

100 120 140 160 180 200

0.70 0.60 0.50 0.40 0.30 0.20 0.10

.50 0.40 0.30 0.20 0.10

m risk High risk

50 60 70 80

4 5 6 7 8

of the microvascular invasion (MVI) score (A) and vessels encapsulating tumour
eneous hyperenhancement. The score was calculated as the sum of all points.
nts for VETC score (2.05) and MVI score (2.45). AFP, alpha-foetoprotein; MVI,
g tumour clusters.
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All contrast-enhanced CT images were uploaded to the im-
aging management system developed by the Zhongda Hospital
Southeast University in anonymised Digital Imaging and Com-
munications in Medicine format. Central imaging review was
independently conducted by two radiologists (XM and CX with 6
and 5 years of experience in liver imaging, respectively), who
were blinded to all clinical and pathological data. Any discrep-
ancies in radiologic findings were resolved by a third radiologist
(YW with 15 years of experience in liver imaging). Interobserver
agreement was assessed using Kappa statistics. Details of defi-
nitions of imaging features and imaging review training are
provided in Supplementary Methods 3.

Construction of CT-based algorithms for MVI and VETC
pattern
CT-based algorithms for MVI and VETC patterns were trained and
internally validated by splitting data of the FAHZU set (for
assessing MVI) and XCHSEU set (for assessing VETC pattern) at a
ratio of 3:2. The algorithms were then externally validated in the
discovery cohort. The radiological features were investigated for
their association with MVI or VETC by logistic regression anal-
ysis. Significant variables (p <−0.1) in the univariable analysis were
included in the multivariable analysis. Then, a set of significant
radiological features was identified in a backward stepwise se-
lection model with the Akaike information criterion (AIC) being
the stopping rule. The MVI and VETC scores were individually
formulated using the linear combination of significant factors
and their regression coefficients from the multivariable analysis
results.31
Table 2. Univariable and multivariable Cox regression analyses for predicting

Variables

Univariable analyses

HR (95% CI) p value

Sex 0.93
Female Ref
Male 1.02 (0.63–1.6)

Age, yrs 0.99 (0.98–1) 0.17
Tumour size, cm 1.16 (1.11–1.22) <0.001
Tumour multiplicity <0.001

No Ref
Yes 1.94 (1.2–3.0)

MVI score 1.39 (1.29–1.50) <0.001
VETC score 1.23 (1.11–1.37) <0.001
AFP level, ng/ml

<−20 Ref
20–400 1.73 (1.11–2.69) <0.001
>400 2.72 (1.77–4.18) <0.001

Aetiology 0.24
None or other
HBV 1.27 (0.85–1.90)

Child–Pugh 0.78
Class A Ref
Class B 0.90 (0.42–1.93)

Cirrhosis 0.07
Absent Ref
Present 1.05 (0.73–1.50)

ALBI grade 0.90
1 Ref
2/3 0.92 (0.64–1.33)

ALT, IU/L 1.002 (1–1.004) 0.24
AST, IU/L 1.003 (1–1.005) 0.003
NLR 1.03 (0.87–1.22) 0.73

Wald tests were performed to estimate statistical significance of individual variables. D
AFP, alpha-foetoprotein; ALBI, albumin-bilirubin; ALT, alanine aminotransferase; AST, asp
invasion; NLR, neutrophil-lymphocyte ratio; VETC, vessels encapsulating tumour cluste
* b, regression coefficients obtained from multivariable analyses.
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Development of a model for predicting recurrence and
benefits of AR
The MVI score, VETC score, and clinical factors were investigated
for their association with RFS using univariable Cox regression
analyses after performing multiple imputations with five inde-
pendent draws for missing values. Variables significantly associ-
ated with RFS in the univariable analysis (p <−0.1) were included in
the multivariable analysis. A final multivariable Cox model was
built through backward stepwise selection with AIC being the
stopping rule and displayed as a nomogram. The effect of a vari-
able with the highest coefficient (absolute value) was assigned
100 points, each coefficient in the multivariable regression was
assigned a proportional point value. The sum of all point values
represented the total point of the nomogram, also named the
nomogram-predicted RFS score. The K-adaptive partitioning al-
gorithm with a permutation test was used to find the optimal
number of prognostically distinct subgroups and corresponding
cut-off point(s) for the nomogram-predicted RFS score.

Furthermore, the ability of the model to predict the benefit of
receiving AR was investigated using a post-hoc analysis. Pro-
pensity score matching was performed for patients receiving AR
vs. NAR using 1:1 nearest matching. Detailed analyses of the
model’s association with benefits of AR are provided in
Supplementary Methods 4.

Statistical analysis
Categorical variables were compared using the Chi-square test or
Fisher’s exact test. Continuous variables were compared using
the t test or Mann-Whitney U test.
recurrence-free survival in the discovery cohort.

Multivariable analyses

b*(95% CI) HR (95% CI) p value

0.001
Ref Ref

0.77 (0.30–1.23) 2.16 (1.36–3.44)
0.30 (0.22–0.36) 1.35 (1.25–1.46) <0.001
0.18 (0.07–0.30) 1.20 (1.07–1.34) 0.002

Ref Ref
0.46 (0.01–0.90) 1.58 (1.01–2.46) 0.04
0.52 (0.08–0.97) 1.69 (1.09–2.63) 0.02

ifferences significant at p <0.05.
artate aminotransferase; HBV, hepatitis B virus; HR, hazard ratio; MVI, microvascular
rs.
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The performance of the MVI and VETC scores was measured
using the area under receiver operating characteristic curve
(AUC) value. Harrell’s concordance index (C-index) and time-
dependent area under the curve (tdAUC) were used to eval-
uate the nomogram’s discrimination for prognostic prediction.
Calibration curves were plotted to compare the predicted
recurrence-free probabilities with the actual probabilities. The
C-index of the nomogram was compared with that of other
prognostic systems or models, including the ERASL-pre model,
BCLC stage, Hong Kong Liver Cancer (HKLC) stage, Japan Inte-
grated Staging (JIS) score, China Liver Cancer (CNLC) stage, and
the albumin-bilirubin grade-based nomogram (the Ho
model).7,32–36

All statistics were conducted via R version 4.1.1 (R Foundation
for Statistical Computing, Vienna, Austria), details are provided
in Supplementary Methods 5. The significance level for the two-
tailed testing was defined at 0.05. An online interactive RFS es-
timate calculator was developed using the R package shiny.
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Fig. 3. Kaplan-Meier curves of stratified recurrence-free survival. Discovery
cohort (A) and validation cohort (B). Kaplan-Meier curves were compared with
the log-rank test. (A–B, high-risk vs. medium-risk group p <0.001; medium-
risk vs. low-risk group p <0.001). Differences significant at p <0.05.
Results
Baseline characteristics
A total of 1,285 patients were enrolled in this study. The clini-
copathological characteristics of the patients in the discovery
cohort, validation cohort, FAHZU set, and XCHSEU set are sum-
marised in Table 1. The demographic and clinicopathological
characteristics were similar between the discovery and valida-
tion cohorts. The median follow-up time was 28 months (IQR,
26–30 months) for the discovery cohort and 26 months (IQR,
26–28 months) for the validation cohort.

Clinico-radiological characteristics of the patients in
the training (N = 209) and internal validation (JN = 151) cohorts
of the surrogate for MVI are shown in Table S2, and those of
patients for the training (N = 153) and internal validation
(N = 102) cohorts of the surrogate for VETC are shown in Table S3.

Derivation of MVI and VETC scores
After univariable and multivariable analyses, peritumoural
enhancement, non-smooth tumour margin, capsule disruption,
and TTPVI were found to be independently associated with the
presence of MVI (odds ratio [OR] = 15.60, 7.85, 2.73, and 9.20;
regression coefficient = 2.74, 2.04, 1.00, and 2.21, respectively;
Table S4). After univariable and multivariable analyses, Type-3 or
Type-4 enhancement pattern (Type-1 and -2 as a reference,
OR = 6.65 and 12.8, regression coefficient = 1.89 and 2.50,
respectively), presence of necrosis (OR = 2.49, regression coeffi-
cient = 0.91), and hypovascular enhancement proportion >− 20%
(OR = 3.63, regression coefficient = 1.29) were found to be
independently associated with a higher risk of VETC (Table S5).
With the regression coefficient rounded to one decimal, the
derived MVI score and VETC score are presented in Fig. 2A and B,
respectively.

The interobserver agreement was good to excellent for the
radiological features indicated for the MVI and VETC patterns
(j = 0.75–0.85, Table S6). During the training, internal validation,
and external validationprocedures, theMVI score achievedAUCs of
0.867 (95% CI: 0.813–0.921), 0.851 (95% CI: 0.788–0.913), and 0.883
(95% CI: 0.844–0.923) (Fig. S2A), respectively. The VETC score
achieved AUCs of 0.844 (95% CI: 0.781–0.907), 0.834 (95% CI:
0.757–0.912), and 0.842 (95% CI: 0.796–0.888), respectively. The
patient distributions according to the MVI and VETC scores are
JHEP Reports 2023
displayed in Tables S7 and S8. For the whole cohort, patients
developingextrahepatic recurrence (n=27) tended tohave ahigher
VETC score (median, IQR: 3.4 [2.2–4.0] vs. 2.2 [1.3–3.8]; p = 0.02)
and a similar MVI score (median, IQR: 2.2 [0–5.0] vs. 2.0 [0–4.2];
p = 0.40) than patients having intrahepatic recurrence (n = 226).

Prognostic model integrating imaging-based scores and
clinical factors
Percentages and patterns of missing values are displayed in
Fig. S3. All preoperative variables in Table 1 and the MVI and
VETC scores were included in the Cox regression analyses. The
imaging features used to derive the MVI and VETC scores were
similar between the discovery and validation cohorts (Table S9).
Serum AFP levels were categorised as <−20, 20–400, and >400 ng/
ml for convenience.37,38 After univariable and multivariable
6vol. 5 j 100806



analyses, with results reported as HR with 95% CI: serum AFP
level (20–400 vs. <−20 ng/ml, 1.59 [1.02–2.47]; >400 vs. <−20 ng/ml,
1.66 [1.06–2.59]), tumour multiplicity (2.12 [1.34–3.37]), VETC
score (1.22 [1.08–1.38]), and MVI score (1.35 [1.25–1.46]) were
independently associated with RFS (Table 2). Similarly, the
pathological MVI and VETC scores in the multivariable analysis
were also proven to be significant prognostic factors (HR = 4.7
and 2.3, respectively, both p <0.001). The model, termed the
AMVM (AFP, multiplicity, VETC, and MVI) model, thereafter,
achieved C-index of 0.764 (95% CI: 0.721–0.810) and 0.748 (95%
CI: 0.707–0.790) in the discovery and validation cohorts,
respectively.

An online RFS estimate and risk stratification calculator
Patients were stratified into three prognostically distinct groups,
according to the two cut-off points of the nomogram-predicted
RFS score (55 and 122) (Fig. 2C) identified by the K-adaptive
partitioning algorithm. The online interactive RFS estimate
calculator using the variables from the models is available at
https://amvmnomogram.shinyapps.io/DynNomapp/. It returns
an RFS likelihood at any time between 1 and 60 months after
resection and the predicted risk group for individual patients.

In the discovery cohort (Fig. 3A), the median RFS of the three
groups from the lowest risk stratum to the highest was 72 (95%
CI: 72–99), 26 (95% CI: 20–33), and eight (95% CI: 6–12) months,
respectively. Having the low-risk group as a reference, the HR for
the medium- and high-risk groups was 3.99 (95% CI: 2.51–6.35; p
<0.001) and 16.06 (95% CI: 9.07–28.45; p <0.001), respectively. In
the validation cohort (Fig. 3B), the median RFS of the three
groups from the lowest risk stratum to the highest was 44 (95%
CI: 42.4–66.0), 31 (95% CI: 25.0–45.2), and 16 (13.4–18.0)
months. Using the low-risk group as a reference, the HR for the
medium- and high-risk groups was 2.96 (95% CI: 1.99–4.39; p
<0.001) and 14.66 (95% CI: 7.93–27.09; p <0.001), respectively.

Evaluation of prognostic systems or models
Comparisons of the performance and discrimination between
the AMVM model and the prognostic systems or models are
Table 3. Comparison of the performance and discriminative ability between

Model 1-yr tdAUC (95% CI)

Discovery cohort
The AMVM model 0.832 (0.750–0.888)
ERASL-pre model 0.704 (0.633–0.776)
Ho model 0.647 (0.571–0.722)
BCLC stage 0.577 (0.535–0.620)
CNLC stage 0.706 (0.643–0.769)
HKLC stage 0.641 (0.570–0.712)
JIS score 0.575 (0.515–0.634)
Validation cohort
The AMVM model 0.838 (0.744–0.932)
ERASL-pre model 0.755 (0.647–0.864)
Ho model 0.763 (0.617–0.909)
BCLC stage 0.711 (0.601–0.820)
CNLC stage 0.719 (0.584–0.853)
HKLC stage 0.518 (0.401–0.635)
JIS score 0.700 (0.589–0.811)

No data were missing in these variables of the comparison models.
BCLC, Barcelona Clinic Liver Cancer; CNLC, China Liver Cancer; ERASL-pre, preoperative
Japan Integrated Staging tdAUC, time-dependent area under the curve.
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shown in Table 3. The tdAUC of the AMVM model was consis-
tently higher than that of the other systems or models over time
(Fig. 4A and B). The 1- and 2-year tdAUCs of the AMVM model
are shown in Fig. 4C and D, with the calibration curves shown in
Fig. S4.

Association between nomogram-predicted stratification and
benefit of AR
After matching, the characteristics between patients receiving AR
and those receiving NAR were similar within each stratification
(Table S10). To explore the predictive value of the nomogram’s
stratification, the recurrence rates after AR and NAR were
compared in the low-, medium-, and high-risk groups. For pa-
tients in the nomogram-predicted medium-risk group, AR was
associated with an improved RFS (HR = 1.53 [95% CI: 1.08–2.20];
p = 0.017). However, for patients in the nomogram-predicted low-
or high-risk group, there was no association between AR and
improved RFS (HR = 1.48 [95% CI: 0.85–2.58]; p = 0.17 and
HR = 0.98 [95% CI: 0.55–1.77]; p = 0.95) compared with NAR
(Fig. 5). Similar results were generated when the above analyses
were performed using data without propensity score matching
(Fig. S5).
Discussion
The distinct vascular patterns, MVI and VETC, have been recog-
nised as powerful prognostic biomarkers in HCC.10,14,15 In this
large multicentre study, a prognostic model that not only
included widely available clinical factors, such as serum AFP and
tumour multiplicity, but also pioneeringly introduced the CT-
based surrogates of MVI and VETC patterns was proposed. The
model displayed improved prognostic performance of RFS than
other rival models and routinely used staging systems. Further-
more, the AMVM model stratified patients into three prognos-
tically distinct groups, and AR only reduced the recurrence rate
of the medium-risk group.

The current evaluation of the MVI or VETC pattern is based on
the histological specimens obtained following surgery, thereby
limiting its clinical utility.10,14 By contrast, assessing these
the AMVM model and other models.

2-yr tdAUC (95% CI) C-index (95% CI)

0.835 (0.780–0.890) 0.764 (0.721–0.810)
0.734 (0.665–0.803) 0.666 (0.623–0.710)
0.658 (0.586–0.729) 0.625 (0.575–0.680)
0.561 (0.526–0.596) 0.553 (0.510–0.600)
0.701 (0.637–0.764) 0.650 (0.612–0.690)
0.666 (0.600–0.732) 0.612 (0.558–0.670)
0.549 (0.496–0.602) 0.549 (0.500–0.600)

0.832 (0.781–0.882) 0.748 (0.707–0.790)
0.693 (0.623–0.763) 0.685 (0.635–0.740)
0.646 (0.573–0.720) 0.649 (0.590–0.710)
0.610 (0.566–0.654) 0.598 (0.560–0.640)
0.666 (0.600–0.733) 0.633 (0.579–0.690)
0.578 (0.510–0.647) 0.561 (0.511–0.610)
0.612 (0.559–0.664) 0.597 (0.555–0.640)

Early Recurrence after Surgery for Liver Tumour; HKLC, Hong Kong Liver Cancer; JIS,
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distinct vascular patterns using radiological images is a non-
invasive approach.17 Among the proposed imaging features for
preoperatively estimating MVI or VETC, the features of arterial
peritumoural enhancement, non-smooth tumour margin,
capsule disruption, and TTPVI included in the MVI score have
been frequently reported;17,19,20 however, those for the VETC
score were not well-defined.18,21 In the present study where the
robustness of the proposed imaging features was verified, the
JHEP Reports 2023
externally validated VETC score indicated that the presence of a
Type-3 or Type-4 enhancement pattern, necrosis, and >−20%
arterial phase hypovascular component on CT images were
associated with this novel vascular pattern. These features might
be associated with the pathomorphological expression of the
VETC pattern, which is characterised by compressed peripheral
vascular space and subsequent low local blood supply. Although
imaging-based estimation is less likely to completely replace the
8vol. 5 j 100806
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Fig. 5. The relationship between the predicted prognostically distinct groups
and the type of hepatectomy in patients with hepatocellular carcinoma after
PSM. The recurrence rates between anatomic resection and non-anatomic
resection in the nomogram-predicted low-risk group (A), medium-risk group
(B), and high-risk group (C) after PSM. The between-group comparisons were
made using the Cox model with frail. Differences significant at p <0.05.
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current gold standard of pathological evaluation, the MVI and
VETC scores demonstrated acceptable performance as potential
surrogates. Importantly, these results indicated that both MVI
and VETC scores were independently associated with post-
resection recurrence, even when adjusting for other clinical
variables.

Preoperative models generally fail to incorporate MVI and
VETC status, even though these features have been proven as
critical determinants of recurrence.7,8 In the present study, CT-
based surrogates of MVI and VETC scores were incorporated
into a recurrence prediction model that displayed remarkable
performance. It should be noted that, unlike previous studies,
tumour size was not included as one of the four significant
prognosticators profiling tumour characteristics (i.e. AFP,
tumour multiplicity, and imaging-based surrogates of VETC and
MVI) of the AMVM model.6–8 In fact, the factors included in the
model may overcome the prognostic limitation of the uni-
dimensionality of tumour size, allowing for a more subtle
description of tumour biological aggressiveness. Additionally,
parameters representing performance status and liver function
(e.g. albumin-bilirubin grade39) were not included; a possible
explanation was that most patients enrolled were at very early
or early stages and thus had relatively well-preserved perfor-
mance and liver function. Remarkably, the proposed model
informed the risk of MVI and VETC, which may help shed light
on the association of tumour aggressiveness and prognosis and
may help clinicians define treatment plans, particularly con-
cerning the type of surgical resection.

The study also differed from previous works in that it
investigated the potential of the AMVM model to predict the
benefits of AR for patients with HCCs. Only the median-risk
group showed a significant RFS benefit for patients who
received AR vs. those who received NAR. However, the results
were not significant in the high-risk or low-risk groups. These
findings suggest that AR may reduce the risk of tumour
recurrence in HCC in patients with moderate micrometastatic
burden only. Moreover, given the potential in treating micro-
metastatic disease of neoadjuvant therapies, this model may
provide a rationale for future clinical trial design as it may
meet the needs of histologically confirming distinct vascular
patterns.

There are some limitations to this study. First, the retro-
spective nature of the study may have been subject to selec-
tion biases despite external validation being conducted to
improve reliability. Second, the association between the
AMVM model and aggressive subtypes (e.g. the macro-
trabecular massive subtype) has not been fully understood,
and needs to be evaluated by further analyses. Third, this
multicentre study was based on HCC data sets of patients
within Milan criteria in a hepatitis B virus-predominant area.3

It will certainly be necessary to verify the transferability of the
model.

Conclusions
In summary, information about MVI and VETC included in
the AMVM model offers a powerful tool that has been
externally validated as a good predictor of post-resection RFS for
patients with HCC. Moreover, this model might be useful for
selecting candidates who may benefit from AR. These results
warrant prospective validation to assess the clinical utility of the
model.
9vol. 5 j 100806
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