
Cuproptosis patterns in papillary
renal cell carcinoma are
characterized by distinct tumor
microenvironment infiltration
landscapes

Chiyu Zhang†, Ruizhen Huang† and Xiaoqing Xi*

Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China

Cuproptosis is a novel kind of programmed cell death that has been linked to

tumor development, prognosis, and responsiveness to therapy. Nevertheless,

the precise function of cuproptosis-related genes (CRGs) in the tumor

microenvironment (TME) remains unknown. We characterized the genetic

and transcriptional changes of CRGs in papillary renal cell carcinoma (PRCC)

samples and analyzed the expression patterns in two separate cohorts. We

observed that two unique cuproptosis-related subgroups and three separate

gene subgroups were connected with clinicopathological, prognostic, and TME

features of patients. Then, a risk score for predicting overall survival (OS) was

created and validated in patients with PRCC. To make the risk score more

clinically useful, we created a nomogram that was very accurate. A lower risk

score, which was associated with higher tumor mutation burden, and immune

activity, suggested a better prognosis for OS. Additionally, the risk score was

shown to be substantially linked with the drug’s susceptibility to

chemotherapeutic agents. Our extensive research of CRGs in PRCC

identified possible roles for them in the TME, clinicopathological features,

and overall survival. These findings may help advance our knowledge of

CRGs in PRCC and pave the way for improved prognosis and the creation of

more effective immunotherapy therapies.
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Introduction

Renal cell carcinoma (RCC) is the most common kind of renal tumor, accounting for

up to 80% of cases; papillary renal cell carcinoma (PRCC) is the second most prevalent

type of RCC, accounting for around one-fifth of all instances (Mendhiratta et al., 2021;

Rysz et al., 2021). Patients with localized PRCC have a reported 5-year overall survival rate

of 70%, whereas patients with advanced PRCC do not have any feasible therapy choices at

this time (Akhtar et al., 2019; Steward et al., 2021; Chan et al., 2022). Currently, an
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increasing number of clinical investigations have been conducted

on individuals with clear cell RCC and have identified many

efficacious treatment targets, including VEGFR and mTOR

(Erlmeier et al., 2022; Labaki et al., 2022). Nevertheless, these

strategies were less effective in PRCC patients, which may be due

to the fact that PRCC carcinogenesis involves distinct genetic

alterations and molecular pathways from clear cell RCC

tumorigenesis (Paner et al., 2022). As a result, new precise

biomarkers and effective treatment techniques for PRCC are

required.

Copper (Cu) is a necessary cofactor for all species, but it

becomes hazardous when quantities reach a homeostatic

threshold (Ruiz et al., 2021). Nevertheless, the mechanism by

which excess copper causes cell death is uncertain. In human

cells, Tsvetkov et al. demonstrated that Cu-dependent, controlled

cell death is unique from other known cell death processes and

requires mitochondrial respiration (Tsvetkov et al., 2022). It

established that copper-dependent mortality occurs as a result

of copper’s direct binding to lipoylated tricarboxylic acid (TCA)

cycle components. This leads to the aggregation of lipoylated

proteins and the loss of iron-sulfur cluster proteins, which causes

a lot of stress on the body and eventually cell death. They

demonstrated that copper toxicity is unique from all other

known processes of controlled cell death, such as apoptosis,

ferroptosis, pyroptosis, and necroptosis (Tsvetkov et al., 2022).

As a result, they suggest the name “cuprotosis” for this hitherto

uncharacterized cell death process. Despite this, a number of

associations between illness and Cu have been discovered. Cu

levels have been shown to be greater in several cancers than in

normal tissues in various investigations (Stepien et al., 2017;

Aubert et al., 2020; Saleh et al., 2020; Michniewicz et al., 2021).

Cu deposition has been linked to increased proliferation and

growth, as well as angiogenesis and metastasis (Oliveri, 2022). Cu

dyshomeostasis is clearly important in cancer, although scientists

disagree over whether it is a cause or a result of carcinogenesis.

The tumor microenvironment (TME) is a complex and ever-

changingmilieu that mostly consists of stromal cells and immune

cells (Hinshaw and Shevde, 2019). Cancer develops and

progresses in conjunction with changes in the surrounding

stroma (Wu and Dai, 2017). Through the production of

different cytokines, chemokines, and other substances, cancer

cells may effectively design their microenvironment (Vitale et al.,

2019). This results in the surrounding cells’ being reprogrammed,

allowing them to play an important part in the proliferation of

cancer cells (Kochetkova and Samuel, 2022). Immune cells are

essential components of the tumoral microenvironment and are

required for this process to occur. The growing body of evidence

indicates that when innate and adaptive immune cells interact in

the TME, they promote tumor development (Hedrick and

Malanchi, 2022). The interaction of cancer cells and their

proximal immune cells eventually leads to an environment

conducive to tumor development and spread (Burrello and de

Visser, 2022). Trying to figure out how this interaction works

could lead to better medicines that can affect many parts of the

TME at the same time, which could lead to better patient

treatment results (Bader et al., 2020).

We conducted a detailed analysis of cuproptosis-related

genes and their relationship to the progression, prognosis, and

immune response of PRCC in detail. We identified distinct

cuproptosis patterns in PRCC using The Cancer Genome

Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets

and assessed the clinical features, prognostic significance, and

immune infiltration degree of the resultant cuproptosis clusters.

Additionally, we created a cuproptosis score that accurately

predicted patients with PRCC’s prognosis and therapy

responsiveness. These results may aid in the development of

successful immunotherapies for PRCC.

Materials and methods

Obtaining and processing raw data

The transcriptional mRNA sequences (fragments per

kilobase of transcript per million, FPKM) and

clinicopathological data for PRCC samples were obtained

from TCGA and GEO databases. For the following analyses,

data from the Cancer Genome Atlas’s kidney renal papillary cell

carcinoma (TCGA-KIRP) dataset and the Gene Expression

Omnibus Series 2748 (GSE 2748) dataset were collected. We

used the raw “CELL” files to modify the backdrop and normalize

the quantiles. The FPKM values of TCGA-KIRP were converted

to transcripts per kilobase million (TPM) and were thought to be

equivalent to those from microarray data (Zhao et al., 2021). The

batch effects from nonbiological technical biases in the two

datasets were removed using the ComBat algorithm from the

“SVA” package (Leek et al., 2012). The TCGA database was used

to get data on somatic mutations and copy number

variation (CNV).

Unsupervised clustering study of
cuproptosis-related genes

Thirteen cuproptosis-related genes (CRGs) were extracted

from prior studies, including FDX1, LIPT1, LIAS, DLD, DBT,

GCSH, DLST, DLAT, PDHA1, PDHB, SLC31A1, ATP7A, and

ATP7B(Cobine et al., 2021; Tsvetkov et al., 2022). To categorize

individuals into discrete molecular subgroups based on

cuproptosis-related gene (CRG) expression, the R package

“ConsensusClusterPlus” was used for consensus unsupervised

clustering analysis (Wilkerson and Hayes, 2010). This grouping

was carried out using the following standards: To begin, the

cumulative distribution function (CDF) curve steadily and gently

expanded in magnitude. Secondly, there were no small sample

sizes in any of the categories. Finally, following clustering, the
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correlation inside groups grows and the correlation between

groups diminishes. The research was conducted a total of

1000 times to confirm its accuracy as a clustering tool. We

investigated the connections between genetic subclusters and

clinicopathological features to determine the clinical utility of the

two subgroups determined by consensus clustering. Additionally,

we utilized Kaplan–Meier curves generated by the R tools

“survival” and “survminer” to assess differences in overall

survival (OS) among distinct subclusters (Lv et al., 2021).

Correlations between subclusters and the
tumor microenvironment

To get a better understanding of the biological roles within

distinct CRG subclusters, we utilized the “GSVA” R package to

conduct gene set variation analysis (GSVA) analyses on each

CRG subcluster (Hänzelmann et al., 2013). The immunological

and stromal scores of each patient were calculated using the

ESTIMATE method. Additionally, the CIBERSORT method was

used to compute the percentages of 23 human immune cell types

in each PRCC sample (Chen et al., 2018; Zhang et al., 2021).

Additionally, we estimated the levels of immune cell infiltration

in the tumor microenvironment using a single-sample gene set

enrichment analysis (ssGSEA) approach (Mao et al., 2022).

Identification of DEGs

The R tool “limma” was used to compare differentially expressed

genes (DEGs) amongst CRG subclusters (Ritchie et al., 2015). Then,

GeneOntology (GO) enrichment analysis was used to assess biological

functions, and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis was used to evaluate regulatory pathways (Gene

Ontology Consortium, 2015; Kanehisa et al., 2017).

The calculation of risk scores

A scoring system was developed to measure the cuproptosis

gene alteration patterns in each PRCC patient. To begin, DEGs

were screened across several CRG subclusters, with crossing

DEGs maintained for further research. To assess the

aforementioned intersecting DEGs and to filter for genes

linked with PRCC prognosis, we employed univariate Cox

regression techniques. Following that, we employed an

unsupervised clustering technique to divide PRCC patients

into distinct subclusters for a full systematic analysis based on

prognosis-related genes. Additionally, we used Principal

Component Analysis (PCA) to identify genes strongly linked

with prognosis in order to develop cuproptosis-relevant gene

signatures. The PCA approach enabled the scores to be

concentrated on highly associated gene modules and

downscaled for modules with modest contributions or

correlations. Finally, we established cuproptosis scores for

each PRCC patient using a mechanism identical to that used

to rate gene expression. The following equation was used to get

the risk score: Risk score = Σ (Expi * Coefi) (Coefi denotes the risk

coefficient and Expi the gene expression).

Developing and validating a nomogram-
based scoring system

Based on the conclusion of the independent prognosis study,

we utilized the clinical parameters and risk score to build a

prediction nomogram using the “rms” software. Each variable

was assigned a score in the nomogram scoring method, and the

overall score was calculated by summing the scores for all

variables for every subject. The nomogram was evaluated

using time-dependent receiver operating characteristic (ROC)

curves for survivals (Obuchowski and Bullen, 2018). The

nomogram’s calibration plots were utilized to illustrate the

prognostic validity between expected survival events and

practically actual outcomes.

Analyses of mutations and drug
susceptibility

The “maftools” R package was used to construct the mutation

annotation format (MAF) from the TCGA in order to compare

the somatic mutations of PRCC patients in two subgroups

(Mayakonda et al., 2018; Ferrer-Bonsoms et al., 2021). The

tumor mutation burden (TMB) score for each patient with

PRCC in the two groups was also computed. To examine

whether there were any differences in the therapeutic effects

of chemotherapeutic medications in the two subgroups, we

utilized the “pRRophetic” package to determine the semi-

inhibitory concentration (IC50) values of chemotherapy

agents routinely used to treat PRCC (Geeleher et al., 2014;

Wang et al., 2021).

Statistical analysis

The Wilcoxon rank-sum test was used to make comparisons

between two groups. The Kruskal-Wallis test was used for

comparisons of three or more groups. Survival studies

including risk scores were carried out using the Kaplan-Meier

technique. The log-rank test was used to examine the difference

in survival statistics. The function “surv-cutpoint” was used to

determine the best cut-off for the cohort in order to categorize

patients into high and low-risk score subgroups. The Univariate

and multivariate Cox regressions were used to assess the

prognostic significance of the risk score. R software version
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4.2.0 was used for all data analysis. A statistically significant

p-value of 0.05 was defined.

Results

Cuproptosis-related genes genetic
variation landscape in papillary renal cell
carcinoma

The TCGA dataset was used to investigate the landscape of

genetic variants in 13 CRGs in PRCC, including somatic

mutation and CNV. Genetic variations in CRGs were found

in 15 out of the 281 samples (5.34 percent), with the majority of

the variants being missense mutations (Figure 1A). The most

often mutated gene was ATP7B, followed by DBT, DLD, and

ATP7A, but PDHB, PDHA1, DLST, GCSH, LIPT1, FDX1,

SLC31A1, DLAT, and LIAS did not mutate in PRCC samples.

Following that, we examined somatic CNVs in these CRGs and

determined that they were widespread in 11 CRGs (Figure 1B).

DLD and PDHA1 exhibited increased CNV frequency, but DBT,

PDHB, SLC31A1, ATP7B, DLST, LIPT1, FDX1, DLAT, GCSH,

and GCSH all had decreased CNV frequency. Each chromosome

in Figure 1C has been colored in to illustrate where each CRG has

a copy number variation. We also analyzed the transcriptional

level of CRGs in PRCC and normal tissues, and discovered that

FIGURE 1
Cuproptosis-related genes (CRGs) genetic variation landscape in papillary renal cell carcinoma (PRCC). (A)The frequency of CRGs mutations in
281 patients with PRCC. On the right, the number indicated the mutation frequency of the CRGs. (B)The CRGs’ copy number variation (CNV)
frequency. The column indicated the frequency of variation. Red: gain frequency. Green: loss frequency. (C)The chromosomal location of the CRGs
with a CNV. (D) Analysis of the mRNA expression of CRGs in normal and PRCC tissues. Blue: normal renal tissue. Red: tumor tissue. (*p < 0.05;
***p < 0.001).
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FIGURE 2
Identification of cuproptosis subclusters in PRCC. (A) Interactions among CRGs in PRCC. Greater PRCC predictive influence is shown by larger
circles. The protective factor is represented by green, and the risk prognostic factor by the dark blue within the circle. (B) Consensus clustering
cumulative distribution function (CDF) curve when K = 2–9. (C) The consensus clusteringmatrix for CRGmodification patterns. At K = 2, the samples
are partitioned with reasonable stability. (D) Principal component analysis (PCA) of two clusters. Blue indicates CRG cluster A, whereas orange
represents CRG cluster B. (E) The heatmap depicts the expression of CRGs and clinicopathologic characteristics in different subclusters. Red denotes
high CRG expression and blue, low CRG expression.
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FIGURE 3
Correlations between the microenvironment of tumor immune cells and two PRCC subclusters. (A) Gene set variation analysis (GSVA) of
biological pathways divided into two separate subclusters, with red denoting active pathways and blue denoting inhibited pathways, respectively. (B)
The degrees of tumor microenvironment immune cell infiltration between the two CRG clusters. Blue symbolizes cluster A, whereas orange
represents cluster B. Themedian value is indicated by the thick line, and the interquartile range by the bottom and top of the box. The dispersed
dots signify anomalies. (*p < 0.05; **p < 0.01; ***p < 0.001).
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the transcriptional levels of most CRGs were positively linked

with the incidence of CNV. CNV-deficient CRGs, including

FDX1, DLAT, DLST, PDHB, SLC31A1, ATP7A, and DBT,

were expressed at lower levels in PRCC samples than in renal

samples, suggesting that CNVs may regulate CRG mRNA

expression (Figure 1D). As a result, the genomic and

transcriptome landscape in CRGs is critical for controlling the

onset and development of PRCC.

Identification of cuproptosis subclusters
in papillary renal cell carcinoma

The TCGA-PRCC and GSE2748 were combined to create

a meta-cohort. Each dataset comprised comprehensive

clinicopathological information and survival data. The

network depicted a full panorama of the CRGs’ expression

levels, correlations, and prognostic significance in PRCC

patients (Figure 2A). These findings suggest that cross-talk

between CRGs is crucial for the development of cuproptosis

patterns in individuals. To understand more about the CRGs’

expression properties in PRCC, we used a consensus

clustering approach to identify patients with PRCC based

on their transcriptional levels (Figures 2B,C). According to

our results, the optimal option for subdividing the whole

cohort into subclusters A (n = 199) and B (n = 122) is k =

2. At K = 2, the samples are partitioned with reasonable

stability. The cuproptosis transcriptional patterns of the

two subclusters differed significantly according to PCA

analysis (Figure 2D). Furthermore, evaluating the

clinicopathological characteristics of different CRG

subclusters revealed significant differences in CRG

transcription and pathological stage. Additionally, we

detected substantial changes in CRG expression across

various cuproptosis patterns, with all CRGs being

downregulated in CRG cluster B and upregulated in CRG

cluster A (Figure 2E).

Following that, we examined the molecular biological

characteristics associated with the two cuproptosis clusters.

The GSVA analysis revealed that CRG cluster A was

significantly enriched in tumor-associated pathways, including

the renal cell carcinoma pathway, pancreatic cancer pathway,

endometrial cancer pathway, and colorectal cancer pathway

(Figure 3A). Using the CIBERSORT method, we examined the

correlations between the two subclusters and 23 human immune

cell subtypes of each PRCC sample to explore the involvement of

CRGs in the TME of PRCC. According to our findings, the

infiltration of most immune cells differed significantly between

the two subclusters (Figure 3B). Subcluster B had significantly

more activated B cells, CD4 T cells, CD8 T cells, activated

dendritic cells, CD56bright natural killer cells, CD56dim

natural killer cells, MDSC, Macrophage, and natural killer

T cells than subcluster A.

Gene classification based on differentially
expressed genes

We used the “limma” R package to search for

3977 cuproptosis subcluster-related DEGs, identified as CRG

signature genes, to better understand the probable biological

roles across distinct CRG clusters (Figure 4A). The

“ClusterProfile” R package was then used to conduct GO

functional and KEGG pathway enrichment studies to annotate

and show DEGs’ biological functions. DEGs were found to be

significantly overrepresented in cellular metabolism-associated

pathways. In biological processes, DEGs were enriched in Golgi

vesicle transport, establishment of organelle localization, and

positive regulation of catabolic process. In cellular components,

DEGs were highly abundant in focal adhesion, cell−substrate

junction, and cell leading edge. DEGs were considerably enriched

in ubiquitin−like protein transferase activity, transcription

coregulator activity, and ubiquitin−protein transferase activity

throughout molecular function processes (Figure 4B). DEGs

were also highly enriched in tumor-associated pathways in

KEGG analyses: proteoglycans in cancer, prostate cancer,

pancreatic cancer, chronic myeloid leukemia and renal cell

carcinoma (Figure 4B).

Following that, we used univariate Cox regression to assess

the prognostic value of 3977 subcluster-related genes and

identified 739 genes linked with OS time for further analysis

(p < 0.05). We conducted an unsupervised cluster analysis on the

739 DEGs associated with prognosis to group PRCC patients into

three distinct gene subclusters: gene subcluster A, gene subcluster

B, and gene subcluster C (Figures 5A,B). At K = 3, the samples are

partitioned with reasonable stability. Patients with gene

subcluster B had the poorest overall survival, while patients in

gene subcluster A had the best OS (p < 0.001, Figure 5C). CRG

expression differed significantly amongst the three cuproptosis

gene subclusters, as predicted based on the cuproptosis patterns

(Figure 5D). This indicated that greater CRG expression may be

associated with a better prognosis for individuals with PRCC.

Additionally, the heatmap of gene expression indicated that these

differentially expressed genes associated with prognosis were

strongly expressed in gene cluster B (Figure 5E).

Developing the prognostic risk score

To begin, we used the R package “caret” to randomly

assign patients to one of two subgroups: training (n = 158) or

testing (n = 157). The optimum predictive signature for

739 cuproptosis subcluster-related DEGs was further

refined using least absolute shrinkage and selection

operator (LASSO) regression and multivariate Cox

regression analysis. Following LASSO regression analysis,

the least partial likelihood deviance revealed that 5 OS-

related genes remained (Figures 6A,B). Then, using the
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FIGURE 4
Functional enrichment analysis. (A) Bubble plot for Gene Ontology (GO) function enrichment analysis. BP: biological processes; CC: cellular
components; MF: molecular function. (B) Bubble plot for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The
y-axis shows pathway terms, whereas the x-axis denotes gene ratio. The size of each circle represents the number of genes. The hue of the circles
symbolizes various q values.

Frontiers in Molecular Biosciences frontiersin.org08

Zhang et al. 10.3389/fmolb.2022.910928

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.910928


FIGURE 5
Gene classification based on differentially expressed genes. (A) For K = 2–9, the relative change in the area under the CDF curve. (B)Heatmap of
the consensus matrix identifying two clusters (k = 3) and the region of their correlation. At K = 3, the samples are partitioned with reasonable stability.
(C) Kaplan–Meier curves for the overall survival of the gene subclusters. Blue indicates gene cluster A, orange cluster B, and red cluster C. Log-rank
p < 0.001, suggesting a substantial difference among the three gene clusters in terms of overall survival. Cluster B’s overall survival was much
worse than clusters A andC’s (D)CRG expression differences between gene subclusters. An interquartile range of the data was indicated by the upper
and lower ends of the boxes. The boxes’ lines indicated the median value. (one-way ANOVA test: ***p < 0.001). (E) A heat map of the clinical-
pathologic correlations between the two gene clusters. Alternate annotations are provided for age, gender, pathologic staging, and gene clusters.
Blue denotes low gene expression whereas red denotes high gene expression.
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Akaike information criterion (AIC) value, we did multivariate

Cox regression analysis on 5 OS-related genes to yield three

significant genes (APEH, ZNF844, and CLYBL). The DEGs

linked with the subclusters were used to generate the risk

score. The distribution of patients into two CRG subclusters,

three gene subclusters, and two risk score subgroups is shown

in Figure 6C. More crucially, CRG cluster B showed a

considerably higher risk score than CRG cluster A

(Figure 6D). Between gene subclusters, we discovered a

substantial variation in risk score. The risk score for gene

subcluster A was the lowest, while that for gene subcluster B

was the highest, suggesting that a low-risk score is likely to be

FIGURE 6
Developing the prognostic risk score. (A,B) Least absolute shrinkage and selection operator (LASSO) regression and partial likelihood deviance
on prognostic genes. (C) Distributions of various CRG clusters, gene clusters, risk scores, and survival outcomes are shown in alluvial plots. (D)
Differences in risk scores between two CRG clusters. The Wilcoxon rank-sum test revealed that the differences between the two clusters were
statistically significant (p < 0.001). (E)Differences in risk scores among three gene clusters. The Kruskal-Wallis test (p < 0.001) was used to assess
the differences between the three gene clusters. (F) Histogram of mRNA expression of CRG between high-risk and low-risk score groups. (G)
Heatmap of three significant genes across different risk scores. (H,I)Distribution of risk scores and patient survival status as shown by dot and scatter
plot.
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associated with immunological activation-related

characteristics, whilst a high-risk score is likely to be

associated with stromal activation-related characteristics

(Figure 6E). It was discovered that all CRGs were

considerably overexpressed in the low-risk subgroup

(Figure 6F). Similarly, as seen in the heatmap, the three

genes included in the score were significantly expressed in

the low-risk subgroup (Figure 6G). The distribution plot

demonstrated that as risk scores climbed, survival times

were reduced and recurrence rates increased (Figures 6H,I).

FIGURE 7
The construction of a nomogram for survival prediction. (A–C) Overall Survival analysis using the Kaplan–Meier method in all, training, and
testing sets. (D–F) Time-dependent receiver operating characteristic (ROC) curves to estimate the sensitivity and specificity of survival in all, training,
and testing sets based on the risk score. (G) Nomogram for predicting overall survival in patients with PRCC. (H) The nomogram’s calibration curves
for predicting overall survival. *p < 0.05, **p < 0.01.
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FIGURE 8
Comparative analysis of tumor microenvironment in various risk categories. (A–I) Relationship between the risk score and the kind of immune
cells. R represents the correlation coefficient, and when it is positive, it means that immune cell infiltration is positively correlated with the risk score,
and vice versa. (J) Relationship between immune cell abundance and three genes included in the suggested model. Red represents a positive
correlation between immune cell infiltration and gene expression, and blue represents a negative correlation. The darker the color, the greater
the correlation. (K) Relationship between risk score and both immune and stromal scores. A greater risk score was shown to be substantially
associated with a higher immunological score, stromal score, and ESTIMATE score.
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The construction of a nomogram for
survival prediction

We computed risk scores across testing and training sets to

confirm the risk score’s predictive performance. According to the

methodology used for the whole set, the patients were likewise

divided into two risk categories. Survivability studies showed that

patients in the lower-than-normal risk category had a considerably

better prognosis (Figures 7A–C). The AUC values for the risk score

at 1, 3, and 5 years were 0.819, 0.684, and 0.678, respectively, in the

all set (Figure 7D). There were 0.719, 0.694, and 0.696 AUC values

for the risk score at 1, 3, and 5 years in the testing set (Figure 7E).

Similarly, the training group’s AUC values are 0.932, 0.673, and

0.669, correspondingly (Figure 7F). One, three, and five-year

prognostic efficiency AUC values for the risk score were

demonstrated to be quite high, indicating that the risk score had

a remarkable ability to predict the life expectancy of people with

PRCC. Because the risk score is difficult to apply in practice, we

created a nomogram that combines the risk score with

clinicopathological variables to estimate patient survival time. As

predictors of the nomogram, we used the risk score, gender, age,

tumor metastasis, and cancer stage as variables to consider

(Figure 7G). In particular, the calibration plots revealed that the

nomograms we developed functioned in a manner comparable to

the ideal model, particularly when it came to the one-year survival

period (Figure 7H).

A comparative analysis of the tumor
microenvironment in various risk
categories

We employed the CIBERSORT technique to assess the

connection between the risk score and immune cell

abundance. As demonstrated in the scatter graphs, the risk

score was positively linked with B cells, M1 Macrophages,

Plasma cells, CD8 T cells, follicular helper T cells, and

CD4 memory activated T cells but negatively associated with

M0 Macrophages, M2 Macrophages, and CD4 memory resting

T cells (Figures 8A–I). We identified a substantial association

between the majority of immune cells and three genes, including

APEH and M0 Macrophages, CLYBL and M2 Macrophages, and

ZNF844 and CD4 memory resting T cells (Figure 8J). A greater

risk score was also shown to be substantially associated with a

higher immunological score, stromal score, and ESTIMATE

score (Figure 8K).

Analyzing genetic mutations and drug
susceptibility

According to accumulating research, due to their large

amounts of mutant antigens, people with a high TMB may

react better to immunotherapy than those with a low TMB.

As a further step, we compared the somatic mutation distribution

across two risk score subgroups (Figures 9A,B). The Spearman

correlation analysis showed that the risk score and tumor

mutational burden were linked in a negative way (R = -0.16,

p = 0.0074; Figure 9C). Our examination of the mutation datasets

revealed that the higher-risk category had a lower TMB than the

lower-risk category, suggesting that the lower-risk category may

benefit from immunotherapy (Figure 9D). The top twenty

mutated genes were similar in both groups, but the majority

of genes in the lower-risk subgroup had a higher mutation rate,

including TTN, MUC16, MET, MUC4, KMT2D, LRP2, and

PCLO. This finding is consistent with previous analyses of

gene mutation burden, implying that the lower-risk subgroup

may be more responsive to immunotherapy. Following that, we

chose medications presently used to treat cancer and assessed

their susceptibility in various risk categories (Figure 9E–N).

Interestingly, we discovered that patients with a high-risk

score had lower IC50 values for the majority of drugs,

including A-770041 (Lck targeted inhibitor), ABT-888 (small-

molecule inhibitors of PARP, veliparib), AG-014699 (PARP

inhibitors, rucaparib), AICAR (5-aminoimidazole-4-

carboxamide ribonucleotide), and AMG-706 (a multikinase

inhibitor, motesanib). Certain medications’ IC50 values were

considerably lowered in individuals with low-risk scores,

including AKT inhibitors and AS601245 (a selective JNK

inhibitor). When these findings are combined, they imply that

CRG is linked with medication sensitivity.

Discussion

Although several targeted agents have recently been

introduced in clinical applications for patients with high-grade

RCC, the evidence for their efficacy in PRCC is not yet strong

enough (Motzer et al., 2015; Choueiri and Kaelin, 2020). There

are very few cases of PRCC, so the results of genetic tests and

randomized control trials are often not included or only make up

a very small part of the results of RCC (Courthod et al., 2015).

Furthermore, since PRCC is distinct from clear cell RCC, the

relevant study findings for clear cell RCC do not apply to PRCC

(Massari et al., 2019). As a result, it is important to look into the

molecular processes that cause these diseases and to find new

biomarkers for targeted therapy. Tsvetkov et al. found that

FDX1 and protein acylation (LIPT1, LIAS, DLDDLAT,

PDHA1, and PDHB) were the main regulators of copper

ionophore-induced cell death, and the knockout of seven

genes prevented the killing of two copper ion carriers

(Tsvetkov et al., 2022). We began by examining the gene

mutation and expression of cuproptosis-related genes using

data from the TCGA-PRCC and GSE2748 datasets. CNV-

deficient CRGs, such as FDX1, DLAT, and DPT, were

expressed at lower levels in PRCC samples than in normal

Frontiers in Molecular Biosciences frontiersin.org13

Zhang et al. 10.3389/fmolb.2022.910928

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.910928


FIGURE 9
Analyzing genetic mutations and drug susceptibility. (A,B) The waterfall plot depicting the somatic mutation characteristics associated with
various risk scores. The numbers on the graph show the frequency of mutation. The fraction of mutation types is shown by the box on the right. (C)
Spearman correlation study of risk score and tumormutational burden. R represents the correlation coefficient, and when it is negative, it means that
the tumor burdenmutation is negatively correlated with the risk score. (D) Tumor mutational burden in several risk score categories. (E–N) The
relationship between risk score and drug sensitivity. Red represents the high-risk group and blue represents the low-risk group. The lower the half
maximal inhibitory concentration (IC50) value, the more sensitive the group of patients to the drug.
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renal samples, suggesting that CNV regulates CRG mRNA

expression. As a result, the genomic and transcriptome

landscape in CRGs is critical for controlling the onset and

development of PRCC. CNV are somatic mutations in the

DNA sequence that during the course of malignancy. The

altered chromosomal structures are produced by an increase

or decrease in the copy number of DNA segments, which is

common in many types of cancer. In PRCC, somatic CNV

identified three distinct tumor groupings. One grouping was

often characterized by numerous gains of chromosomes 7p and

17p, deletion of the Y chromosome, and further gains; the

majority of these cancers were type 1 and of low grade (Ren

et al., 2018). Somatic mutations are non-heritable changes to the

human genome that arise in somatic cells on their own accord

(Futreal et al., 2004). Linehan et al. indicated that METmutations

are mostly found in type 1 cancers and in the tyrosine kinase

domain.

Following that, we grouped PRCC patients according to their

expression of cuproptosis-related genes, resulting in two unique

pyroptotic patterns. Furthermore, evaluating the

clinicopathological characteristics of different CRG subclusters

revealed significant differences in CRG transcription and

pathological stage. Additionally, we detected substantial

changes in CRG expression across various cuproptosis

patterns, with all CRGs being downregulated in CRG cluster

B and upregulated in CRG cluster A. The GSVA analysis revealed

that CRG cluster A was significantly enriched in tumor-

associated pathways. According to our findings, the

infiltration of most immune cells differed significantly

between the two subclusters. Activated B cells, activated

CD4 T cells, and natural killer T cells were infiltrated in

much greater numbers in subcluster B than in subcluster A.

Cellular metabolism-associated pathways were found to be

significantly overrepresented by DEGs. Using a combined

study of mutation and CNV, numerous pathways were

identified as often dysregulated in PRCC. Wnt, Notch, TGF-,

and Hedgehog signaling pathways were shown to be enhanced in

type 1 PRCC (Saleeb et al., 2018). Additionally, when type

1 tumor tissue is compared to normal renal tissue, numerous

intriguing pathways have been found, including adherens

junction, focal adhesions, TGF signaling, Wnt signaling, and

MAP kinase signaling. We conducted an unsupervised cluster

analysis on the 739 DEGs associated with prognosis to group

PRCC patients into three distinct gene subclusters. Patients with

gene subcluster B had the poorest overall survival, while patients

in gene subcluster A had the best OS. CRGs expression differed

significantly amongst the three cuproptosis gene subclusters, as

predicted based on the cuproptosis patterns. We computed risk

scores across testing and training sets to confirm the risk score’s

predictive performance. Survivability studies showed that

patients in the lower-than-normal risk category had a

considerably better prognosis. Mei et al. (2022) constructed a

cuproptosis-related signature that was used to classify clear cell

renal cell carcinoma patients into distinct risk clusters, with low-

risk patients having a much better prognosis. Because the risk

score is inconvenient to apply in practice, we created a

nomogram that combines the risk score with

clinicopathological variables to estimate patient survival time.

As demonstrated in the scatter graphs, the risk score was

positively linked with B cells, M1 Macrophages, and

CD4 memory activated T cells. We identified a substantial

association between the majority of immune cells and three

genes, including APEH and M0 macrophages, CLYBL and

M2 macrophages, and ZNF844 and CD4 memory resting

T cells. A greater risk score was also shown to be substantially

associated with a higher immunological score, stromal score, and

ESTIMATE score. Our examination of the mutation datasets

revealed that the higher-risk category had a lower TMB than the

lower-risk category, suggesting that the lower-risk category may

benefit from immunotherapy. In recent years, renewed interest in

immunotherapy has been sparked by the discovery that PD-1

and its ligand PD-L1 are expressed in the majority of RCC

(Choueiri and Motzer, 2017). In addition to T- and B-cells,

natural killer cells, and macrophages, the PD-1 receptor is found

in other immune cells as well. Various malignancies cells may

express it, even though it is seldom expressed in healthy cells

(Johnson et al., 2018). One study indicated that after initiating

therapy with nivolumab in multiple patients with advanced

PRCC, computed tomography scans around half a year later

revealed a considerable decrease in the size and quantity of

systemic metastases (Adrianzen Herrera et al., 2017).

Following that, we chose medications presently used to treat

cancer and assessed their susceptibility in various risk categories.

Interestingly, we discovered that patients with a high-risk score

had lower IC50 values for the majority of drugs, including A-

770041 (Lck targeted inh ibitor) and AMG-706 (a multikinase

inhibitor, motesanib). Certain medications’ IC50 values were

considerably lowered in individuals with low-risk scores,

including AKT inhibitors and AS601245 (a selective JNK

inhibitor). When these findings are combined, they imply that

CRG is linked with medication sensitivity. In a phase II trial50,

Foretinib, a dual MET/VEGFR2 inhibitor, was recently assessed

in 74 participants with PRCC (Choueiri et al., 2013). Five out of

ten (50%) of these participants had a RECIST partial response,

whereas the remaining individuals achieved stable disease as their

best response. There are no conventional medicines that have

been shown to be effective in the treatment of metastatic PRCC.

A clinical experiment at the National Cancer Institute is now

evaluating one method that aims to exploit these cancers’ reliance

on aerobic glycolysis and a high glucose flow (Chen et al., 2019).

Indeed, there is growing evidence that copper is a dynamic

signaling molecule that exerts significant control over a varied

array of activities, including lipolysis, cellular proliferation,

autophagy, and brain activity (Tsang et al., 2020). Copper’s

growing involvement in maintaining or restoring homeostasis

emphasizes the critical nature of controlling its biological
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availability both within and outside the cell (Ackerman and

Chang, 2018). It is thought that mutations in the ATP7A/B

family, which are identical enzymes, cause the hereditary copper

transport diseases Menkes and Wilson illness (Kaler, 2013).

Genetic investigations have shown unequivocally that export

is the primary mechanism of protection against copper

toxicity, since cells lacking ATP7A are substantially more

susceptible to excess copper than those lacking

metallothioneins (Gudekar et al., 2020). Current antineoplastic

drugs have significant off-target consequences because they often

target fundamental characteristics of cells that are shared by all

rapidly reproducing cells (Oliveri, 2022). The goal of developing

new therapeutic medicines should be to improve selectivity and

thereby minimize adverse effects. Additionally, these drugs

should overcome resistance to tumor cells and specifically

target tumor stem cells. There are some copper ionophores

that have shown promise in this field because they are

naturally good at causing cuproptosis in tumor cells instead of

healthy ones. Disulfiram (DSF) and other copper ionophores

have been looked at as antitumor drugs that can cause

cuproptosis (Ge et al., 2022). It has been useful in treating

alcoholism for over half a century as a commonly used

aldehyde dehydrogenase inhibitor. Since it has various

biological functions, it’s becoming more popular to repurpose

DSF as an anticancer drug (Ekinci et al., 2019). DSF’s inexpensive

cost, great availability, safety profile, and antitumor efficacy have

piqued the curiosity of researchers (Kannappan et al., 2021). A

number of cancer cell lines have shown DSF to be an antitumor

drug in recent years (Li et al., 2020). Additionally, previous

research has shown that co-administration of DSF with

copper greatly enhances its antitumor activity since DSF’s

active form is a copper complex of DTC. DSF’s toxic effects

seem to be directly connected to the intracellular buildup of

copper that DSF promotes (Cen et al., 2004). Despite DSF’s good

outcomes in vitro and in vivo, clinical trials in malignancy

sufferers were unsuccessful (Kannappan et al., 2021). This

discouraging result might be explained by the quick

degradation of DSF and its active component or by the use of

a distinct route of administration for DSF and copper. It’s worth

mentioning that long-term use of copper-binding drugs, such as

copper ionophores, might disrupt vital metal homeostasis,

resulting in significant adverse effects in individuals

undergoing the medication. Whereas copper ionophores have

demonstrated inherent selectivity against tumor cells, as stated

above, their therapeutic window has to be expanded for safer use.

As a result, current research has concentrated on establishing

logical methodologies and innovative therapeutic modalities to

improve tumor cell targeting.

Conclusion

To summarize, the cuproptosis-related gene signature is

important for the definition of the TME and the predication

of PRCC prognosis. The risk score of a single tumor may help us

better understand the peculiarities of TME invasion and aid in

the development of more effective immunotherapy tactics.
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