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Random Bits Forest: a Strong 
Classifier/Regressor for Big Data
Yi Wang1,*, Yi Li1,*, Weilin Pu1, Kathryn Wen2, Yin Yao Shugart2, Momiao Xiong3 & Li Jin1

Efficiency, memory consumption, and robustness are common problems with many popular methods 
for data analysis. As a solution, we present Random Bits Forest (RBF), a classification and regression 
algorithm that integrates neural networks (for depth), boosting (for width), and random forests (for 
prediction accuracy). Through a gradient boosting scheme, it first generates and selects ~10,000 
small, 3-layer random neural networks. These networks are then fed into a modified random forest 
algorithm to obtain predictions. Testing with datasets from the UCI (University of California, Irvine) 
Machine Learning Repository shows that RBF outperforms other popular methods in both accuracy and 
robustness, especially with large datasets (N > 1000). The algorithm also performed highly in testing 
with an independent data set, a real psoriasis genome-wide association study (GWAS).

The most widely used methods for prediction include linear regressions, logistic regressions, k-Nearest Neighbors 
(k-NN)1, support vector machines (SVM)2, neural networks (NNs)3, extreme learning machines (ELM)4, deep 
learning (DL)5, random forests (RF)6,7, and generalized boosted models (GBM)8,9.

However, each method has its own drawbacks. For instance, linear regression and logistic regression handle 
linear and log-linear conditions, respectively, but may fail while dealing with nonlinear tasks. k-NNs are sensitive 
to the local structure of the data, with the best choice for k dependent on the properties of each datasets10. SVMs 
have uncalibrated class membership probabilities, large memory requirements (O(N2)), and difficult-to-interpret 
parameters2,11,12. NNs and DL are computationally expensive, with features learnt and tuned iteratively13,14. ELMs 
do not have sufficient features to handle complex works15. GBMs have high memory consumption and low eval-
uation speed16, as all base-learners must be evaluated in order to obtain predictions for the model. For RFs, 
decision trees are axis-parallel, which may lead to suboptimal trees; though oblique random forests provide one 
way to improve the performance of random forests17, ultimately they may fail on datasets with greater depth18.

We created Random Bits Forest (RBF), a classification and regression algorithm that integrates neural net-
works, boosting, and random forests. We compared the performance of RBF with that of seven other methods, 
using 28 datasets from the UCI (University of California, Irvine) Machine Learning Repository. We then tested 
RBF on real psoriasis genome-wide association study (GWAS) data.

Methods
Summary. For clarity, features were standardized by subtracting the mean and dividing by standard devia-
tion. The features were then transformed into random features/basis, by gradient boosting of the Random Bits 
base learner, a 3-layer sparse neural network with random weights, and fed to a random forest classifier/regressor 
to obtain predictions (Fig. 1).

Random Bits. Our derived feature/basis/base learner is called Random Bits. It is a 3-layer sparse neural 
network with random weights. Two parameters were used to construct the neural network: twist1 (the number of 
features connected to each hidden node) and twist2 (the number of hidden nodes).

The features connected with hidden node are randomly assigned and interlayer weights are drawn from a 
standard normal distribution. The hidden nodes and the top node are the threshold units, with the threshold of 
each node determined by calculating the linear summation of its input for the ith sample zi and choosing a ran-
dom zi among the sample as the threshold15.
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Boosting Random Bits. In order to generate many Random Bits, we used a gradient boosting scheme with 
the following pseudocode:

For boost =  1 to B:
For step =  1 to S:

1: residual = Y; MaxVar = 0; BestBit = NULL;
2: For cand = 1 to C:

 1: Draw a random bit, RB
 2: Calculate the residual explained by RB: Var
 3: if (Var >  MaxVar) {MaxVar = Var; BestBit = RB;}

3: Set the random_bit_pool [(boost − 1) *  S +  step] = BestBit
4: Mean[0] = E(residual|BestBit = 0), Mean[1] = E(residual|BestBit = 1)
5: residual = residual − Mean[BestBit];

The algorithm launched B independent boosting chains, each with S steps. Each boosting chain undergoes 
the standard gradient boosting procedure, starting with a residual of Y and updating every step. In each step, C 
Random Bits features (C >  100) were generated, and the bit with the largest pseudo residual was chosen. The 
Random Bits from each independent boosting chain were collected to form a large (~10,000) feature pool. The 
Random Bits were stored in a compressed format requiring 1 bit per Random Bits per sample.

Random Bits Forest. The produced Random Bits are eventually fed to Random Bits Forest. Random Bits 
Forest is a random forest classifier/regressor, but slightly modified for speed: each tree was grown with a boot-
strapped sample and bootstrapped bits, the number of which can be tuned by users. The best bits among all the 
bootstrapped bits were chosen for each split. By making full use of the binary nature of Random Bits, through 
special coding and Streaming SIMD Extensions (SSE), acceleration was achieved, such that the modified random 
forest can afford ~10,000 binary features for large datasets (N =  500,000).

Benchmarking. We benchmarked nine methods: linear regression (Linear), logistic regression (LR), 
k-Nearest Neighbors (kNN), neural networks (NN), support vector machines (SVM), extreme learning machines 
(ELM), random forests (RF), generalized boosted models (GBM), and Random Bits Forest (RBF). We used the 
RBF software available at http://sourceforge.net/projects/random-bits-forest/ and implemented the other eight 
methods using various R (v3.2.1) packages: stats, RWeka (v0.4-24), nnet (v7.3-8), kernlab (v0.9-19), randomFor-
est (v4.6-10), elmNN (v1.0), and gbm (v2.1). We used ten-fold cross validation (accuracy, sensitivity, specificity 
and AUC) to evaluate each method’s performance. For methods sensitive to parameter selection, we manually 
tuned the parameters to obtain the best performance. As we chose the best handpicked parameters for each 
method respectively, the performance of each method based on the best parameters was comparable with each 
other. The results of tuning the parameters of sensitive methods on the real psoriasis genome-wide association 
study (GWAS) dataset were provided as Supplemental Materials 1. Benchmarking was performed on a desktop 
PC equipped with an AMD FX-8320 CPU and 32GB of memory. SVM, on some large-sample datasets, failed to 
complete benchmarking within reasonable time (1 week), so those results were left as blank.

Benchmarked UCI Datasets Study. We benchmarked all datasets from the UCI Machine Learning 
Repository19 that fulfilled the following criteria including: (1) the dataset contains no missing values; (2) the data-
set is in dense matrix form; (3) the dataset uses only binary classification; and (4) the dataset had clear instruc-
tions and specified the target variable.

We included 14 regression datasets (3D Road Network20, Bike Sharing21, Buzz in social media tomhard-
ware, Buzz in social media twitter, Computer hardware22, Concrete compressive strength23, Forest fire24, 
Housing25, Istanbul stock exchange26, Parkinsons telemonitoring27, Physicochemical properties of protein 

Figure 1. The summarized process. A 3-layer sparse neural network with random weights. Z represents 
threshold functions.

http://sourceforge.net/projects/random-bits-forest/
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tertiary structure, Wine quality28, Yacht hydrodynamics29, Year prediction MSD)30 and 14 classification datasets 
(Banknote authentication, Blood transfusion service center31, Breast cancer wisconsin diagnostic32, Climate 
model simulation crashes33, Connectionist bench34, EEG eye state, Fertility35, Habermans survival36, Hill valley 
with noise37, Indian liver patient38, Ionosphere39, MAGIC gamma telescope40, QSAR biodegradation41, Skin 
segmentation)42.

Applications on GWAS Dataset Study. We applied each method to a psoriasis genome-wide association 
(GWAS) genetic dataset43,44 to predict disease outcomes. We obtained the dataset, a part of the Collaborative 
Association Study of Psoriasis (CASP), from the Genetic Association Information Network (GAIN) database, a 
partnership of the Foundation for the National Institutes of Health. The data were available at http://dbgap.ncbi.
nlm.nih.gov. through dbGaP accession number phs000019.v1.p1. All genotypes were filtered by checking for 
data quality44. We used 1590 subjects (915 cases, 675 controls) in the general research use (GRU) group and 1133 
subjects (431 cases and 702 controls) in the autoimmune disease only (ADO) group. A dermatologist diagnosed 
all psoriasis cases. Each participant’s DNA was genotyped with the Perlegen 500K array. Both cases and controls 
agreed to sign the consent contract, and controls (≥ 18 years old) had no confounding factors relative to a known 
diagnosis of psoriasis.

We used both SNP ranking and multiple logistic regression methods, based upon allelic association p-values, 
for feature selection in training datasets and compared the different methods in both training and testing datasets. 
First, we trained the model based on the GRU dataset with different numbers of top associated SNPs, and then 
chose the robust and popular method (LR) to select the best number of SNPs as predictors based on the maxi-
mum AUC of the independent ADO (testing) dataset (Fig. 2 and Supplemental Materials 2). We then selected 
the best number (best number of SNPs =  50) of top associated SNPs as input variables and evaluated their per-
formance in both the GRU (training) dataset and independent ADO (testing) dataset for each learning algorithm 
(except LR). To know more information of these selected 50 top associated SNPs, the Pearson’s R squared and 
Odds Ratio45 were also provided in Supplemental Materials 3.

To evaluate a classification method’s performance on an imbalanced dataset, we used the area under the 
receiver operating characteristics (ROC) curve. The area under the curve (AUC) measures the global classifi-
cation accuracy and is equal to the probability that a classifier will rank a randomly chosen positive instance 
higher than a randomly chosen negative instance46. We used the AUC as a measure of classifier performance for 
both GRU (training) and ADO (testing) datasets (Table 3, Figs 3 and 4). The 95% confidence interval (CI) of the 
AUC47, sensitivity, specificity and accuracy of all methods were also calculated by choosing the optimal threshold 
value.

Results
Results from UCI Datasets Study. Table 1 shows the regression root-mean-square error (RMSE) of all 
methods on 14 datasets. RBF was the top performing method in 13 and the second best performing method in 1. 
In the case (Housing) in which RBF was not the best method, the difference between RBF and the top performing 
method (RF) was within 2%. RF was the second best performing among the regression datasets. RBF’s perfor-
mance exhibited the greatest improvement over that of the other methods with the 3D Road Network dataset, a 
shallow task in which the methods predicted the altitude at specific points on a 3D map. However, RBF outper-
formed RF by allowing non-axis-parallel splitting.

Table 2 shows the classification error of each method among 14 datasets. RBF was the top performer in 8 
datasets, the second best in 5, and the third best for 1. In the cases RBF was not the best method, the difference 
between RBF and the top performing method was within 2%. SVM was the second best method among classifi-
cation datasets. RBF’s performance exhibited the greatest improvement over that of the other methods with the 
Hill valley with noise dataset, a deep task in which the methods classified the shape (“hill” or “valley”) of a time 
series with 100 time points. Although all other methods, except neural networks, failed to well perform this task, 
RBF and its 3-layer random neural network features worked well on this dataset.

Figure 2. Maximum AUC of the independent ADO testing dataset with different numbers of markers. 

http://dbgap.ncbi.nlm.nih.gov
http://dbgap.ncbi.nlm.nih.gov
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Furthermore, we also observed that the datasets in which RBF performed best were all big datasets (N >  1000 
with limited features, Table 1 and Table 2). This is due to the nature of trees, which inherently require larger sam-
ples than do regressions.

Results from GWAS dataset study. Figure 2 and Supplemental Materials 2 shows that the ideal number 
of biomarkers for prediction of psoriasis was 50 in the efficient LR classifier. When the number of biomarkers was 

Figure 3. The ROC curve of six best benchmarked methods on the Psoriasis GWAS dataset of independent 
ADO group using selected best number of SNPs. 

Regression RMSE Sample Feature Linear KNN NN ELM SVM GBM RF RBF

Computer hardware 209 7 69.62 63.13 134.91 159.23 93.63 91.67 59.66 58.39

Yacht hydrodynamics 308 6 9.13 6.43 1.18 1.96 1.03 1.16 1.00 1.00

Housing 506 12 4.88 4.10 4.94 7.92 3.16 3.40 3.07 3.13

Forest fire* 517 13 1.50 1.40 2.10 1.40 1.50 1.40 1.41 1.40

Istanbul stock exchange 536 8 0.01 0.01 0.04 0.02 0.01 0.01 0.01 0.01

Concrete compressive strength 1030 9 10.53 8.28 6.36 13.18 5.25 4.72 4.53 4.18

Parkinsons telemonitoring 5875 19 9.74 6.10 6.69 10.35 6.02 2.10 1.65 1.19

Wine quality 6497 11 0.74 0.70 0.73 0.92 0.67 0.67 0.58 0.57

Bike sharing 17389 16 141.87 104.58 65.99 94.56 102.37 75.47 39.97 38.26

Buzz in social media 
tomhardware* 28179 97 1.45 0.76 0.37 1.58 1.49 0.31 0.31 0.31

Physicochemical properties 45730 9 5.19 3.79 6.12 6.12 4.16 5.05 3.45 3.27

3D Road Network 434874 2 18.37 6.44 15.55 16.95 12.53 14.82 3.86 1.20

Year prediction MSD 515345 90 9.55 9.22 10.93 11.47 — 9.63 9.24 8.87

Buzz in social media twitter* 583250 78 1.33 0.52 0.51 1.03 — 0.48 0.47 0.47

Table 1.  Regression RMSE of all methods on 14 datasets. Bold: The bold means the first place result of all 
methods compared. * The *  means the dependent variable of the corresponding data was transformed by log 
function to be more asymptotically normal. The best RBF’s RMSE was significantly less than the second best RF 
using Wilcoxon Matched-Pairs Signed-Ranks Test (p-value =  0.007185).
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less than 20, the AUC of independent ADO (test) dataset was unstable in LR classifier. On the other hand, as the 
number of biomarkers approached 50, performance improved and stabilized: the best AUC for LR was 0.7063, 
respectively. Performance did not significantly improve as the number of biomarkers increased over 50.

As seen in Table 3, all benchmarked methods were used to construct effective diagnosis models for psoriasis 
prediction based on optimal number of SNP subsets. No significant unbalances were found in the training and 
testing datasets, suggesting the credibility and stability of the prediction models. The average of AUC of 10-fold 
cross-validation48 in the training dataset and AUC of the independent testing dataset were used to evaluate the 
performance of all methods. The AUC of each method ranged from 0.6192− 0.6739 in the training dataset and 
from 0.6563− 0.7239 in the testing dataset. We found that RBF, GBM, SVM and RF were the four top performing 
methods in both the training dataset and the testing dataset. RBF was the top performer in both the training 
dataset (AUC =  0.6739, 95% CI: [0.5254, 0.8275], sensitivity =  0.6317, specificity =  0.6490, accuracy =  0.6390) 
and the testing dataset (AUC =  0.7239, 95% CI: [0.6930, 0.7548], sensitivity =  0.6543, specificity =  0.7151, 

Figure 4. The average of ten-fold’s cross-validation ROC curve of six best benchmarked methods on the 
Psoriasis GWAS dataset of GRU group using selected best number of SNPs. 

Classification error% Sample Feature LR KNN NN ELM SVM GBM RF RBF

Fertility 100 9 15.00 12.00 15.00 24.00 12.00 12.00 12.00 12.00

Connectionist Bench 208 60 26.00 13.02 21.67 14.43 10.14 12.52 12.52 12.02

Habermans survival 306 3 25.85 25.16 30.71 27.40 26.45 27.12 27.4 25.12

Ionosphere 351 34 10.26 10.25 11.98 10.28 5.13 6.26 6.55 4.26

Climate Model Simulation 
Crashes 540 18 4.26 7.04 5.56 5.93 4.44 5.74 6.48 4.81

Breast Cancer Wisconsin 
Diagnostic 569 30 5.09 2.81 8.45 8.80 1.93 3.33 2.98 2.28

Indian Liver Patient 579 10 27.83 27.82 30.21 28.34 28.51 27.47 26.09 26.42

Blood Transfusion Service 
Center 748 4 22.86 19.65 24.46 23.80 20.19 21.66 21.79 19.92

QSAR biodegradation 1055 41 13.37 13.75 14.98 22.38 12.14 12.89 12.42 11.95

Hill valley with noise 1212 100 42.00 45.71 5.28 23.42 34.73 43.89 40.50 2.47

Banknote authentication 1372 4 1.02 0.15 0.00 0.00 0.00 0.15 0.51 0.00

EEG Eye State 14980 14 35.75 15.37 31.57 42.34 19.52 8.46 5.96 3.66

MAGIC Gamma Telescope 19020 10 20.88 15.86 13.17 22.64 12.30 11.75 11.73 10.36

Table 2. Classification error of all methods on 14 datasets. Bold: The bold means the first place result of all 
methods compared. The best RBF’s error% was significantly less than the second best SVM using Wilcoxon 
Matched-Pairs Signed-Ranks Test (p-value =  0.04584).
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accuracy =  0.6920). The ROC curves for each method are also shown in Fig. 3 and Fig. 4 for performance com-
parison visualization.

Furthermore, RBF appeared to be robust in sensitivity and specificity in both the training and testing data-
sets. Although the sensitivity and specificity of RBF were not the best for all datasets, its AUC still was the top 
performer in both GRU (training) and ADO (testing) datasets. This characteristic of RBF is also applicable in the 
unbalanced dataset, whose prediction performance may be easily influenced by the disease population ratio. In 
Table 3, we see that although KNN has the second accuracy (accuracy =  0.6884) in the testing dataset, its AUC 
performance (AUC =  0.7021) is poor because it pays more attention to specificity (specificity =  0.7279) than sen-
sitivity (sensitivity =  0.6241).

Discussion
Random forests are among the top performing algorithms for machine learning, as they are accurate, fast, flexible, 
and mature. Random forest6 is a substantial modification of bagging which builds a large number of de-correlated 
trees and then averages the trees. The main idea of random forests is to improve the variance reduction of bagging 
by reducing the correlation between trees without increasing the variance heavily49. And the target is achieved in 
the tree-growing process by randomly selecting the input variables. Thus, Random Bits Forest mainly focuses on 
the automated feature engineering of random forests. We also obtain good results if we feed random bits to a reg-
ularized linear regression, though, in big data cases, no better than we get from random forests. And the statistical 
inference50 of random forests equally applies to RBF.

RBF outperforms the random forest algorithm by breaking its two limitations: the limitation to axis-parallel 
splitting that may lead to suboptimal trees17, and the decision tree depth of two that could fail on dataset with 
greater depth18. To overcome the first limitation, we used random projections. Because of pre-generation of many 
(~10,000) random projections, the tree is allowed to grow with more freedom. To overcome the second limitation, 
we improved naïve random projections with a 3-layer random neural network. We then defined a random neural 
network based on the original features and took its output as a derived feature/basis. Such additional depth may 
be crucial for specific datasets (UCI dataset: Hill valley with noise, shown in Table 2).

Compared to oblique random forests, RBF generated non-axis parallel features before random forest while 
oblique random forests generates oblique splits within the tree-growing process. One crucial improvement to our 
random projections was to use 3-layer random neural networks as random projection/basis, giving the random 
forest more depth. Additional layers did not improve accuracy on the benchmarked datasets, potentially because 
3-layer neural networks are already universal approximations.

In order to make full use of our ~10,000 bits budget, we need a feature selection procedure rather than naïve 
random projections. Feature selection was achieved by employing the gradient boosting framework. Instead of 
directly using the boosting predictions, we collected the boosted basis and fed them into the random forest. First, 
we found the random bit that best explained the residual and subtracted its effect from the residual to avoid highly 
correlated random bits. For the Hill valley with noise dataset, this method for feature selection reduced error 
from 11% to 2.5%, compared with naïve random projections.

In the boosting procedure, we used multiple independent boost chains, originally just for ease of parallel com-
puting. However, multiple chains also reduced the local optimum problem and led to better prediction. For small 
datasets, 256 boost chains were used.

Large sample (N >  1000) are important for the success of RBF since trees are more flexible models than are 
linear models and as a result require a larger sample size. For smaller samples, regularization is useful, which 
was achieved by limiting the bootstrapped sample size. The consequence is that each tree was suboptimal and 
biased, but the trees are further decorrelated, thus reducing variance. Reducing feature bootstrap also helped to 
regularize the problem.

In summary, we firstly present Random Bits Forest (RBF), an original classification and regression algorithm 
that integrates the advantages of neural networks (for learning depth), boosting (for learning width), and ran-
dom forests (for prediction accuracy). That is the reason why Random Bits Forest will perform better than other 
methods.

Independent testing dataset (ADO dataset) Training dataset (GRU dataset) with 10-fold cross validation*
Sensitivity Specificity Accuracy AUC 95% CI of AUC Sensitivity Specificity Accuracy AUC 95% CI of AUC

NN 0.6404 0.5840 0.6055 0.6563 [0.6240, 0.6886] 0.5347 0.6657 0.5899 0.6192 [0.4388, 0.7893]

KNN 0.6241 0.7279 0.6884 0.7021 [0.6699, 0.7344] 0.6428 0.6553 0.6478 0.6660 [0.5342, 0.7830]

ELM 0.6589 0.6610 0.6602 0.7053 [0.6738, 0.7368] 0.6305 0.6403 0.6346 0.6618 [0.5210, 0.8094]

RF 0.6311 0.7051 0.6770 0.7134 [0.6820, 0.7448] 0.6036 0.6703 0.6314 0.6603 [0.5072, 0.7954]

SVM 0.6589 0.6952 0.6814 0.7132 [0.6815, 0.7449] 0.6569 0.6419 0.6503 0.6694 [0.5319, 0.7843]

GBM 0.6473 0.7080 0.6849 0.7187 [0.6873, 0.7500] 0.5890 0.7129 0.6415 0.6707 [0.5153, 0.7986]

RBF 0.6543 0.7151 0.6920 0.7239 [0.6930, 0.7548] 0.6317 0.6490 0.6390 0.6739 [0.5254, 0.8275]

Table 3.  Psoriasis prediction performance with all methods based on best number of SNP subsets. Bold: 
The bold means the first place result of all methods compared. *AUC, sensitivity, specificity, and accuracy were 
its average value in 10-fold CV, 95% CI of AUC represents the range of the 95% CI of AUC in 10-fold CV.
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In conclusion, RBF is a novel robust method for machine learning, which is especially effective in datasets with 
large sample sizes (N >  1000). Our work indicates that RBF performs better if fed with extracted/selected features 
by using appropriate feature selection methods.
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